00001 /* 00002 ** 2008 February 16 00003 ** 00004 ** The author disclaims copyright to this source code. In place of 00005 ** a legal notice, here is a blessing: 00006 ** 00007 ** May you do good and not evil. 00008 ** May you find forgiveness for yourself and forgive others. 00009 ** May you share freely, never taking more than you give. 00010 ** 00011 ************************************************************************* 00012 ** This file implements an object that represents a fixed-length 00013 ** bitmap. Bits are numbered starting with 1. 00014 ** 00015 ** A bitmap is used to record which pages of a database file have been 00016 ** journalled during a transaction, or which pages have the "dont-write" 00017 ** property. Usually only a few pages are meet either condition. 00018 ** So the bitmap is usually sparse and has low cardinality. 00019 ** But sometimes (for example when during a DROP of a large table) most 00020 ** or all of the pages in a database can get journalled. In those cases, 00021 ** the bitmap becomes dense with high cardinality. The algorithm needs 00022 ** to handle both cases well. 00023 ** 00024 ** The size of the bitmap is fixed when the object is created. 00025 ** 00026 ** All bits are clear when the bitmap is created. Individual bits 00027 ** may be set or cleared one at a time. 00028 ** 00029 ** Test operations are about 100 times more common that set operations. 00030 ** Clear operations are exceedingly rare. There are usually between 00031 ** 5 and 500 set operations per Bitvec object, though the number of sets can 00032 ** sometimes grow into tens of thousands or larger. The size of the 00033 ** Bitvec object is the number of pages in the database file at the 00034 ** start of a transaction, and is thus usually less than a few thousand, 00035 ** but can be as large as 2 billion for a really big database. 00036 ** 00037 ** @(#) $Id: bitvec.c,v 1.8 2008/11/11 15:48:48 drh Exp $ 00038 */ 00039 #include "sqliteInt.h" 00040 00041 #define BITVEC_SZ 512 00042 /* Round the union size down to the nearest pointer boundary, since that's how 00043 ** it will be aligned within the Bitvec struct. */ 00044 #define BITVEC_USIZE (((BITVEC_SZ-12)/sizeof(Bitvec*))*sizeof(Bitvec*)) 00045 #define BITVEC_NCHAR BITVEC_USIZE 00046 #define BITVEC_NBIT (BITVEC_NCHAR*8) 00047 #define BITVEC_NINT (BITVEC_USIZE/4) 00048 #define BITVEC_MXHASH (BITVEC_NINT/2) 00049 #define BITVEC_NPTR (BITVEC_USIZE/sizeof(Bitvec *)) 00050 00051 #define BITVEC_HASH(X) (((X)*37)%BITVEC_NINT) 00052 00053 /* 00054 ** A bitmap is an instance of the following structure. 00055 ** 00056 ** This bitmap records the existance of zero or more bits 00057 ** with values between 1 and iSize, inclusive. 00058 ** 00059 ** There are three possible representations of the bitmap. 00060 ** If iSize<=BITVEC_NBIT, then Bitvec.u.aBitmap[] is a straight 00061 ** bitmap. The least significant bit is bit 1. 00062 ** 00063 ** If iSize>BITVEC_NBIT and iDivisor==0 then Bitvec.u.aHash[] is 00064 ** a hash table that will hold up to BITVEC_MXHASH distinct values. 00065 ** 00066 ** Otherwise, the value i is redirected into one of BITVEC_NPTR 00067 ** sub-bitmaps pointed to by Bitvec.u.apSub[]. Each subbitmap 00068 ** handles up to iDivisor separate values of i. apSub[0] holds 00069 ** values between 1 and iDivisor. apSub[1] holds values between 00070 ** iDivisor+1 and 2*iDivisor. apSub[N] holds values between 00071 ** N*iDivisor+1 and (N+1)*iDivisor. Each subbitmap is normalized 00072 ** to hold deal with values between 1 and iDivisor. 00073 */ 00074 struct Bitvec { 00075 u32 iSize; /* Maximum bit index */ 00076 u32 nSet; /* Number of bits that are set */ 00077 u32 iDivisor; /* Number of bits handled by each apSub[] entry */ 00078 union { 00079 u8 aBitmap[BITVEC_NCHAR]; /* Bitmap representation */ 00080 u32 aHash[BITVEC_NINT]; /* Hash table representation */ 00081 Bitvec *apSub[BITVEC_NPTR]; /* Recursive representation */ 00082 } u; 00083 }; 00084 00085 /* 00086 ** Create a new bitmap object able to handle bits between 0 and iSize, 00087 ** inclusive. Return a pointer to the new object. Return NULL if 00088 ** malloc fails. 00089 */ 00090 Bitvec *sqlite3BitvecCreate(u32 iSize){ 00091 Bitvec *p; 00092 assert( sizeof(*p)==BITVEC_SZ ); 00093 p = sqlite3MallocZero( sizeof(*p) ); 00094 if( p ){ 00095 p->iSize = iSize; 00096 } 00097 return p; 00098 } 00099 00100 /* 00101 ** Check to see if the i-th bit is set. Return true or false. 00102 ** If p is NULL (if the bitmap has not been created) or if 00103 ** i is out of range, then return false. 00104 */ 00105 int sqlite3BitvecTest(Bitvec *p, u32 i){ 00106 if( p==0 ) return 0; 00107 if( i>p->iSize || i==0 ) return 0; 00108 if( p->iSize<=BITVEC_NBIT ){ 00109 i--; 00110 return (p->u.aBitmap[i/8] & (1<<(i&7)))!=0; 00111 } 00112 if( p->iDivisor>0 ){ 00113 u32 bin = (i-1)/p->iDivisor; 00114 i = (i-1)%p->iDivisor + 1; 00115 return sqlite3BitvecTest(p->u.apSub[bin], i); 00116 }else{ 00117 u32 h = BITVEC_HASH(i); 00118 while( p->u.aHash[h] ){ 00119 if( p->u.aHash[h]==i ) return 1; 00120 h++; 00121 if( h>=BITVEC_NINT ) h = 0; 00122 } 00123 return 0; 00124 } 00125 } 00126 00127 /* 00128 ** Set the i-th bit. Return 0 on success and an error code if 00129 ** anything goes wrong. 00130 ** 00131 ** This routine might cause sub-bitmaps to be allocated. Failing 00132 ** to get the memory needed to hold the sub-bitmap is the only 00133 ** that can go wrong with an insert, assuming p and i are valid. 00134 ** 00135 ** The calling function must ensure that p is a valid Bitvec object 00136 ** and that the value for "i" is within range of the Bitvec object. 00137 ** Otherwise the behavior is undefined. 00138 */ 00139 int sqlite3BitvecSet(Bitvec *p, u32 i){ 00140 u32 h; 00141 assert( p!=0 ); 00142 assert( i>0 ); 00143 assert( i<=p->iSize ); 00144 if( p->iSize<=BITVEC_NBIT ){ 00145 i--; 00146 p->u.aBitmap[i/8] |= 1 << (i&7); 00147 return SQLITE_OK; 00148 } 00149 if( p->iDivisor ){ 00150 u32 bin = (i-1)/p->iDivisor; 00151 i = (i-1)%p->iDivisor + 1; 00152 if( p->u.apSub[bin]==0 ){ 00153 sqlite3BeginBenignMalloc(); 00154 p->u.apSub[bin] = sqlite3BitvecCreate( p->iDivisor ); 00155 sqlite3EndBenignMalloc(); 00156 if( p->u.apSub[bin]==0 ) return SQLITE_NOMEM; 00157 } 00158 return sqlite3BitvecSet(p->u.apSub[bin], i); 00159 } 00160 h = BITVEC_HASH(i); 00161 while( p->u.aHash[h] ){ 00162 if( p->u.aHash[h]==i ) return SQLITE_OK; 00163 h++; 00164 if( h==BITVEC_NINT ) h = 0; 00165 } 00166 p->nSet++; 00167 if( p->nSet>=BITVEC_MXHASH ){ 00168 unsigned int j; 00169 int rc; 00170 u32 aiValues[BITVEC_NINT]; 00171 memcpy(aiValues, p->u.aHash, sizeof(aiValues)); 00172 memset(p->u.apSub, 0, sizeof(p->u.apSub[0])*BITVEC_NPTR); 00173 p->iDivisor = (p->iSize + BITVEC_NPTR - 1)/BITVEC_NPTR; 00174 rc = sqlite3BitvecSet(p, i); 00175 for(j=0; j<BITVEC_NINT; j++){ 00176 if( aiValues[j] ) rc |= sqlite3BitvecSet(p, aiValues[j]); 00177 } 00178 return rc; 00179 } 00180 p->u.aHash[h] = i; 00181 return SQLITE_OK; 00182 } 00183 00184 /* 00185 ** Clear the i-th bit. Return 0 on success and an error code if 00186 ** anything goes wrong. 00187 */ 00188 void sqlite3BitvecClear(Bitvec *p, u32 i){ 00189 assert( p!=0 ); 00190 assert( i>0 ); 00191 if( p->iSize<=BITVEC_NBIT ){ 00192 i--; 00193 p->u.aBitmap[i/8] &= ~(1 << (i&7)); 00194 }else if( p->iDivisor ){ 00195 u32 bin = (i-1)/p->iDivisor; 00196 i = (i-1)%p->iDivisor + 1; 00197 if( p->u.apSub[bin] ){ 00198 sqlite3BitvecClear(p->u.apSub[bin], i); 00199 } 00200 }else{ 00201 unsigned int j; 00202 u32 aiValues[BITVEC_NINT]; 00203 memcpy(aiValues, p->u.aHash, sizeof(aiValues)); 00204 memset(p->u.aHash, 0, sizeof(p->u.aHash[0])*BITVEC_NINT); 00205 p->nSet = 0; 00206 for(j=0; j<BITVEC_NINT; j++){ 00207 if( aiValues[j] && aiValues[j]!=i ){ 00208 sqlite3BitvecSet(p, aiValues[j]); 00209 } 00210 } 00211 } 00212 } 00213 00214 /* 00215 ** Destroy a bitmap object. Reclaim all memory used. 00216 */ 00217 void sqlite3BitvecDestroy(Bitvec *p){ 00218 if( p==0 ) return; 00219 if( p->iDivisor ){ 00220 unsigned int i; 00221 for(i=0; i<BITVEC_NPTR; i++){ 00222 sqlite3BitvecDestroy(p->u.apSub[i]); 00223 } 00224 } 00225 sqlite3_free(p); 00226 } 00227 00228 #ifndef SQLITE_OMIT_BUILTIN_TEST 00229 /* 00230 ** Let V[] be an array of unsigned characters sufficient to hold 00231 ** up to N bits. Let I be an integer between 0 and N. 0<=I<N. 00232 ** Then the following macros can be used to set, clear, or test 00233 ** individual bits within V. 00234 */ 00235 #define SETBIT(V,I) V[I>>3] |= (1<<(I&7)) 00236 #define CLEARBIT(V,I) V[I>>3] &= ~(1<<(I&7)) 00237 #define TESTBIT(V,I) (V[I>>3]&(1<<(I&7)))!=0 00238 00239 /* 00240 ** This routine runs an extensive test of the Bitvec code. 00241 ** 00242 ** The input is an array of integers that acts as a program 00243 ** to test the Bitvec. The integers are opcodes followed 00244 ** by 0, 1, or 3 operands, depending on the opcode. Another 00245 ** opcode follows immediately after the last operand. 00246 ** 00247 ** There are 6 opcodes numbered from 0 through 5. 0 is the 00248 ** "halt" opcode and causes the test to end. 00249 ** 00250 ** 0 Halt and return the number of errors 00251 ** 1 N S X Set N bits beginning with S and incrementing by X 00252 ** 2 N S X Clear N bits beginning with S and incrementing by X 00253 ** 3 N Set N randomly chosen bits 00254 ** 4 N Clear N randomly chosen bits 00255 ** 5 N S X Set N bits from S increment X in array only, not in bitvec 00256 ** 00257 ** The opcodes 1 through 4 perform set and clear operations are performed 00258 ** on both a Bitvec object and on a linear array of bits obtained from malloc. 00259 ** Opcode 5 works on the linear array only, not on the Bitvec. 00260 ** Opcode 5 is used to deliberately induce a fault in order to 00261 ** confirm that error detection works. 00262 ** 00263 ** At the conclusion of the test the linear array is compared 00264 ** against the Bitvec object. If there are any differences, 00265 ** an error is returned. If they are the same, zero is returned. 00266 ** 00267 ** If a memory allocation error occurs, return -1. 00268 */ 00269 int sqlite3BitvecBuiltinTest(int sz, int *aOp){ 00270 Bitvec *pBitvec = 0; 00271 unsigned char *pV = 0; 00272 int rc = -1; 00273 int i, nx, pc, op; 00274 00275 /* Allocate the Bitvec to be tested and a linear array of 00276 ** bits to act as the reference */ 00277 pBitvec = sqlite3BitvecCreate( sz ); 00278 pV = sqlite3_malloc( (sz+7)/8 + 1 ); 00279 if( pBitvec==0 || pV==0 ) goto bitvec_end; 00280 memset(pV, 0, (sz+7)/8 + 1); 00281 00282 /* Run the program */ 00283 pc = 0; 00284 while( (op = aOp[pc])!=0 ){ 00285 switch( op ){ 00286 case 1: 00287 case 2: 00288 case 5: { 00289 nx = 4; 00290 i = aOp[pc+2] - 1; 00291 aOp[pc+2] += aOp[pc+3]; 00292 break; 00293 } 00294 case 3: 00295 case 4: 00296 default: { 00297 nx = 2; 00298 sqlite3_randomness(sizeof(i), &i); 00299 break; 00300 } 00301 } 00302 if( (--aOp[pc+1]) > 0 ) nx = 0; 00303 pc += nx; 00304 i = (i & 0x7fffffff)%sz; 00305 if( (op & 1)!=0 ){ 00306 SETBIT(pV, (i+1)); 00307 if( op!=5 ){ 00308 if( sqlite3BitvecSet(pBitvec, i+1) ) goto bitvec_end; 00309 } 00310 }else{ 00311 CLEARBIT(pV, (i+1)); 00312 sqlite3BitvecClear(pBitvec, i+1); 00313 } 00314 } 00315 00316 /* Test to make sure the linear array exactly matches the 00317 ** Bitvec object. Start with the assumption that they do 00318 ** match (rc==0). Change rc to non-zero if a discrepancy 00319 ** is found. 00320 */ 00321 rc = sqlite3BitvecTest(0,0) + sqlite3BitvecTest(pBitvec, sz+1) 00322 + sqlite3BitvecTest(pBitvec, 0); 00323 for(i=1; i<=sz; i++){ 00324 if( (TESTBIT(pV,i))!=sqlite3BitvecTest(pBitvec,i) ){ 00325 rc = i; 00326 break; 00327 } 00328 } 00329 00330 /* Free allocated structure */ 00331 bitvec_end: 00332 sqlite3_free(pV); 00333 sqlite3BitvecDestroy(pBitvec); 00334 return rc; 00335 } 00336 #endif /* SQLITE_OMIT_BUILTIN_TEST */
ContextLogger2—ContextLogger2 Logger Daemon Internals—Generated on Mon May 2 13:49:51 2011 by Doxygen 1.6.1