btreeInt.h

Go to the documentation of this file.
00001 /*
00002 ** 2004 April 6
00003 **
00004 ** The author disclaims copyright to this source code.  In place of
00005 ** a legal notice, here is a blessing:
00006 **
00007 **    May you do good and not evil.
00008 **    May you find forgiveness for yourself and forgive others.
00009 **    May you share freely, never taking more than you give.
00010 **
00011 *************************************************************************
00012 ** $Id: btreeInt.h,v 1.34 2008/09/30 17:18:17 drh Exp $
00013 **
00014 ** This file implements a external (disk-based) database using BTrees.
00015 ** For a detailed discussion of BTrees, refer to
00016 **
00017 **     Donald E. Knuth, THE ART OF COMPUTER PROGRAMMING, Volume 3:
00018 **     "Sorting And Searching", pages 473-480. Addison-Wesley
00019 **     Publishing Company, Reading, Massachusetts.
00020 **
00021 ** The basic idea is that each page of the file contains N database
00022 ** entries and N+1 pointers to subpages.
00023 **
00024 **   ----------------------------------------------------------------
00025 **   |  Ptr(0) | Key(0) | Ptr(1) | Key(1) | ... | Key(N-1) | Ptr(N) |
00026 **   ----------------------------------------------------------------
00027 **
00028 ** All of the keys on the page that Ptr(0) points to have values less
00029 ** than Key(0).  All of the keys on page Ptr(1) and its subpages have
00030 ** values greater than Key(0) and less than Key(1).  All of the keys
00031 ** on Ptr(N) and its subpages have values greater than Key(N-1).  And
00032 ** so forth.
00033 **
00034 ** Finding a particular key requires reading O(log(M)) pages from the 
00035 ** disk where M is the number of entries in the tree.
00036 **
00037 ** In this implementation, a single file can hold one or more separate 
00038 ** BTrees.  Each BTree is identified by the index of its root page.  The
00039 ** key and data for any entry are combined to form the "payload".  A
00040 ** fixed amount of payload can be carried directly on the database
00041 ** page.  If the payload is larger than the preset amount then surplus
00042 ** bytes are stored on overflow pages.  The payload for an entry
00043 ** and the preceding pointer are combined to form a "Cell".  Each 
00044 ** page has a small header which contains the Ptr(N) pointer and other
00045 ** information such as the size of key and data.
00046 **
00047 ** FORMAT DETAILS
00048 **
00049 ** The file is divided into pages.  The first page is called page 1,
00050 ** the second is page 2, and so forth.  A page number of zero indicates
00051 ** "no such page".  The page size can be anything between 512 and 65536.
00052 ** Each page can be either a btree page, a freelist page or an overflow
00053 ** page.
00054 **
00055 ** The first page is always a btree page.  The first 100 bytes of the first
00056 ** page contain a special header (the "file header") that describes the file.
00057 ** The format of the file header is as follows:
00058 **
00059 **   OFFSET   SIZE    DESCRIPTION
00060 **      0      16     Header string: "SQLite format 3\000"
00061 **     16       2     Page size in bytes.  
00062 **     18       1     File format write version
00063 **     19       1     File format read version
00064 **     20       1     Bytes of unused space at the end of each page
00065 **     21       1     Max embedded payload fraction
00066 **     22       1     Min embedded payload fraction
00067 **     23       1     Min leaf payload fraction
00068 **     24       4     File change counter
00069 **     28       4     Reserved for future use
00070 **     32       4     First freelist page
00071 **     36       4     Number of freelist pages in the file
00072 **     40      60     15 4-byte meta values passed to higher layers
00073 **
00074 ** All of the integer values are big-endian (most significant byte first).
00075 **
00076 ** The file change counter is incremented when the database is changed
00077 ** This counter allows other processes to know when the file has changed
00078 ** and thus when they need to flush their cache.
00079 **
00080 ** The max embedded payload fraction is the amount of the total usable
00081 ** space in a page that can be consumed by a single cell for standard
00082 ** B-tree (non-LEAFDATA) tables.  A value of 255 means 100%.  The default
00083 ** is to limit the maximum cell size so that at least 4 cells will fit
00084 ** on one page.  Thus the default max embedded payload fraction is 64.
00085 **
00086 ** If the payload for a cell is larger than the max payload, then extra
00087 ** payload is spilled to overflow pages.  Once an overflow page is allocated,
00088 ** as many bytes as possible are moved into the overflow pages without letting
00089 ** the cell size drop below the min embedded payload fraction.
00090 **
00091 ** The min leaf payload fraction is like the min embedded payload fraction
00092 ** except that it applies to leaf nodes in a LEAFDATA tree.  The maximum
00093 ** payload fraction for a LEAFDATA tree is always 100% (or 255) and it
00094 ** not specified in the header.
00095 **
00096 ** Each btree pages is divided into three sections:  The header, the
00097 ** cell pointer array, and the cell content area.  Page 1 also has a 100-byte
00098 ** file header that occurs before the page header.
00099 **
00100 **      |----------------|
00101 **      | file header    |   100 bytes.  Page 1 only.
00102 **      |----------------|
00103 **      | page header    |   8 bytes for leaves.  12 bytes for interior nodes
00104 **      |----------------|
00105 **      | cell pointer   |   |  2 bytes per cell.  Sorted order.
00106 **      | array          |   |  Grows downward
00107 **      |                |   v
00108 **      |----------------|
00109 **      | unallocated    |
00110 **      | space          |
00111 **      |----------------|   ^  Grows upwards
00112 **      | cell content   |   |  Arbitrary order interspersed with freeblocks.
00113 **      | area           |   |  and free space fragments.
00114 **      |----------------|
00115 **
00116 ** The page headers looks like this:
00117 **
00118 **   OFFSET   SIZE     DESCRIPTION
00119 **      0       1      Flags. 1: intkey, 2: zerodata, 4: leafdata, 8: leaf
00120 **      1       2      byte offset to the first freeblock
00121 **      3       2      number of cells on this page
00122 **      5       2      first byte of the cell content area
00123 **      7       1      number of fragmented free bytes
00124 **      8       4      Right child (the Ptr(N) value).  Omitted on leaves.
00125 **
00126 ** The flags define the format of this btree page.  The leaf flag means that
00127 ** this page has no children.  The zerodata flag means that this page carries
00128 ** only keys and no data.  The intkey flag means that the key is a integer
00129 ** which is stored in the key size entry of the cell header rather than in
00130 ** the payload area.
00131 **
00132 ** The cell pointer array begins on the first byte after the page header.
00133 ** The cell pointer array contains zero or more 2-byte numbers which are
00134 ** offsets from the beginning of the page to the cell content in the cell
00135 ** content area.  The cell pointers occur in sorted order.  The system strives
00136 ** to keep free space after the last cell pointer so that new cells can
00137 ** be easily added without having to defragment the page.
00138 **
00139 ** Cell content is stored at the very end of the page and grows toward the
00140 ** beginning of the page.
00141 **
00142 ** Unused space within the cell content area is collected into a linked list of
00143 ** freeblocks.  Each freeblock is at least 4 bytes in size.  The byte offset
00144 ** to the first freeblock is given in the header.  Freeblocks occur in
00145 ** increasing order.  Because a freeblock must be at least 4 bytes in size,
00146 ** any group of 3 or fewer unused bytes in the cell content area cannot
00147 ** exist on the freeblock chain.  A group of 3 or fewer free bytes is called
00148 ** a fragment.  The total number of bytes in all fragments is recorded.
00149 ** in the page header at offset 7.
00150 **
00151 **    SIZE    DESCRIPTION
00152 **      2     Byte offset of the next freeblock
00153 **      2     Bytes in this freeblock
00154 **
00155 ** Cells are of variable length.  Cells are stored in the cell content area at
00156 ** the end of the page.  Pointers to the cells are in the cell pointer array
00157 ** that immediately follows the page header.  Cells is not necessarily
00158 ** contiguous or in order, but cell pointers are contiguous and in order.
00159 **
00160 ** Cell content makes use of variable length integers.  A variable
00161 ** length integer is 1 to 9 bytes where the lower 7 bits of each 
00162 ** byte are used.  The integer consists of all bytes that have bit 8 set and
00163 ** the first byte with bit 8 clear.  The most significant byte of the integer
00164 ** appears first.  A variable-length integer may not be more than 9 bytes long.
00165 ** As a special case, all 8 bytes of the 9th byte are used as data.  This
00166 ** allows a 64-bit integer to be encoded in 9 bytes.
00167 **
00168 **    0x00                      becomes  0x00000000
00169 **    0x7f                      becomes  0x0000007f
00170 **    0x81 0x00                 becomes  0x00000080
00171 **    0x82 0x00                 becomes  0x00000100
00172 **    0x80 0x7f                 becomes  0x0000007f
00173 **    0x8a 0x91 0xd1 0xac 0x78  becomes  0x12345678
00174 **    0x81 0x81 0x81 0x81 0x01  becomes  0x10204081
00175 **
00176 ** Variable length integers are used for rowids and to hold the number of
00177 ** bytes of key and data in a btree cell.
00178 **
00179 ** The content of a cell looks like this:
00180 **
00181 **    SIZE    DESCRIPTION
00182 **      4     Page number of the left child. Omitted if leaf flag is set.
00183 **     var    Number of bytes of data. Omitted if the zerodata flag is set.
00184 **     var    Number of bytes of key. Or the key itself if intkey flag is set.
00185 **      *     Payload
00186 **      4     First page of the overflow chain.  Omitted if no overflow
00187 **
00188 ** Overflow pages form a linked list.  Each page except the last is completely
00189 ** filled with data (pagesize - 4 bytes).  The last page can have as little
00190 ** as 1 byte of data.
00191 **
00192 **    SIZE    DESCRIPTION
00193 **      4     Page number of next overflow page
00194 **      *     Data
00195 **
00196 ** Freelist pages come in two subtypes: trunk pages and leaf pages.  The
00197 ** file header points to the first in a linked list of trunk page.  Each trunk
00198 ** page points to multiple leaf pages.  The content of a leaf page is
00199 ** unspecified.  A trunk page looks like this:
00200 **
00201 **    SIZE    DESCRIPTION
00202 **      4     Page number of next trunk page
00203 **      4     Number of leaf pointers on this page
00204 **      *     zero or more pages numbers of leaves
00205 */
00206 #include "sqliteInt.h"
00207 #include "pager.h"
00208 #include "btree.h"
00209 #include "os.h"
00210 #include <assert.h>
00211 
00212 /* Round up a number to the next larger multiple of 8.  This is used
00213 ** to force 8-byte alignment on 64-bit architectures.
00214 */
00215 #define ROUND8(x)   ((x+7)&~7)
00216 
00217 
00218 /* The following value is the maximum cell size assuming a maximum page
00219 ** size give above.
00220 */
00221 #define MX_CELL_SIZE(pBt)  (pBt->pageSize-8)
00222 
00223 /* The maximum number of cells on a single page of the database.  This
00224 ** assumes a minimum cell size of 6 bytes  (4 bytes for the cell itself
00225 ** plus 2 bytes for the index to the cell in the page header).  Such
00226 ** small cells will be rare, but they are possible.
00227 */
00228 #define MX_CELL(pBt) ((pBt->pageSize-8)/6)
00229 
00230 /* Forward declarations */
00231 typedef struct MemPage MemPage;
00232 typedef struct BtLock BtLock;
00233 
00234 /*
00235 ** This is a magic string that appears at the beginning of every
00236 ** SQLite database in order to identify the file as a real database.
00237 **
00238 ** You can change this value at compile-time by specifying a
00239 ** -DSQLITE_FILE_HEADER="..." on the compiler command-line.  The
00240 ** header must be exactly 16 bytes including the zero-terminator so
00241 ** the string itself should be 15 characters long.  If you change
00242 ** the header, then your custom library will not be able to read 
00243 ** databases generated by the standard tools and the standard tools
00244 ** will not be able to read databases created by your custom library.
00245 */
00246 #ifndef SQLITE_FILE_HEADER /* 123456789 123456 */
00247 #  define SQLITE_FILE_HEADER "SQLite format 3"
00248 #endif
00249 
00250 /*
00251 ** Page type flags.  An ORed combination of these flags appear as the
00252 ** first byte of on-disk image of every BTree page.
00253 */
00254 #define PTF_INTKEY    0x01
00255 #define PTF_ZERODATA  0x02
00256 #define PTF_LEAFDATA  0x04
00257 #define PTF_LEAF      0x08
00258 
00259 /*
00260 ** As each page of the file is loaded into memory, an instance of the following
00261 ** structure is appended and initialized to zero.  This structure stores
00262 ** information about the page that is decoded from the raw file page.
00263 **
00264 ** The pParent field points back to the parent page.  This allows us to
00265 ** walk up the BTree from any leaf to the root.  Care must be taken to
00266 ** unref() the parent page pointer when this page is no longer referenced.
00267 ** The pageDestructor() routine handles that chore.
00268 **
00269 ** Access to all fields of this structure is controlled by the mutex
00270 ** stored in MemPage.pBt->mutex.
00271 */
00272 struct MemPage {
00273   u8 isInit;           /* True if previously initialized. MUST BE FIRST! */
00274   u8 nOverflow;        /* Number of overflow cell bodies in aCell[] */
00275   u8 intKey;           /* True if intkey flag is set */
00276   u8 leaf;             /* True if leaf flag is set */
00277   u8 hasData;          /* True if this page stores data */
00278   u8 hdrOffset;        /* 100 for page 1.  0 otherwise */
00279   u8 childPtrSize;     /* 0 if leaf==1.  4 if leaf==0 */
00280   u16 maxLocal;        /* Copy of BtShared.maxLocal or BtShared.maxLeaf */
00281   u16 minLocal;        /* Copy of BtShared.minLocal or BtShared.minLeaf */
00282   u16 cellOffset;      /* Index in aData of first cell pointer */
00283   u16 nFree;           /* Number of free bytes on the page */
00284   u16 nCell;           /* Number of cells on this page, local and ovfl */
00285   u16 maskPage;        /* Mask for page offset */
00286   struct _OvflCell {   /* Cells that will not fit on aData[] */
00287     u8 *pCell;          /* Pointers to the body of the overflow cell */
00288     u16 idx;            /* Insert this cell before idx-th non-overflow cell */
00289   } aOvfl[5];
00290   BtShared *pBt;       /* Pointer to BtShared that this page is part of */
00291   u8 *aData;           /* Pointer to disk image of the page data */
00292   DbPage *pDbPage;     /* Pager page handle */
00293   Pgno pgno;           /* Page number for this page */
00294 };
00295 
00296 /*
00297 ** The in-memory image of a disk page has the auxiliary information appended
00298 ** to the end.  EXTRA_SIZE is the number of bytes of space needed to hold
00299 ** that extra information.
00300 */
00301 #define EXTRA_SIZE sizeof(MemPage)
00302 
00303 /* A Btree handle
00304 **
00305 ** A database connection contains a pointer to an instance of
00306 ** this object for every database file that it has open.  This structure
00307 ** is opaque to the database connection.  The database connection cannot
00308 ** see the internals of this structure and only deals with pointers to
00309 ** this structure.
00310 **
00311 ** For some database files, the same underlying database cache might be 
00312 ** shared between multiple connections.  In that case, each contection
00313 ** has it own pointer to this object.  But each instance of this object
00314 ** points to the same BtShared object.  The database cache and the
00315 ** schema associated with the database file are all contained within
00316 ** the BtShared object.
00317 **
00318 ** All fields in this structure are accessed under sqlite3.mutex.
00319 ** The pBt pointer itself may not be changed while there exists cursors 
00320 ** in the referenced BtShared that point back to this Btree since those
00321 ** cursors have to do go through this Btree to find their BtShared and
00322 ** they often do so without holding sqlite3.mutex.
00323 */
00324 struct Btree {
00325   sqlite3 *db;       /* The database connection holding this btree */
00326   BtShared *pBt;     /* Sharable content of this btree */
00327   u8 inTrans;        /* TRANS_NONE, TRANS_READ or TRANS_WRITE */
00328   u8 sharable;       /* True if we can share pBt with another db */
00329   u8 locked;         /* True if db currently has pBt locked */
00330   int wantToLock;    /* Number of nested calls to sqlite3BtreeEnter() */
00331   Btree *pNext;      /* List of other sharable Btrees from the same db */
00332   Btree *pPrev;      /* Back pointer of the same list */
00333 };
00334 
00335 /*
00336 ** Btree.inTrans may take one of the following values.
00337 **
00338 ** If the shared-data extension is enabled, there may be multiple users
00339 ** of the Btree structure. At most one of these may open a write transaction,
00340 ** but any number may have active read transactions.
00341 */
00342 #define TRANS_NONE  0
00343 #define TRANS_READ  1
00344 #define TRANS_WRITE 2
00345 
00346 /*
00347 ** An instance of this object represents a single database file.
00348 ** 
00349 ** A single database file can be in use as the same time by two
00350 ** or more database connections.  When two or more connections are
00351 ** sharing the same database file, each connection has it own
00352 ** private Btree object for the file and each of those Btrees points
00353 ** to this one BtShared object.  BtShared.nRef is the number of
00354 ** connections currently sharing this database file.
00355 **
00356 ** Fields in this structure are accessed under the BtShared.mutex
00357 ** mutex, except for nRef and pNext which are accessed under the
00358 ** global SQLITE_MUTEX_STATIC_MASTER mutex.  The pPager field
00359 ** may not be modified once it is initially set as long as nRef>0.
00360 ** The pSchema field may be set once under BtShared.mutex and
00361 ** thereafter is unchanged as long as nRef>0.
00362 */
00363 struct BtShared {
00364   Pager *pPager;        /* The page cache */
00365   sqlite3 *db;          /* Database connection currently using this Btree */
00366   BtCursor *pCursor;    /* A list of all open cursors */
00367   MemPage *pPage1;      /* First page of the database */
00368   u8 inStmt;            /* True if we are in a statement subtransaction */
00369   u8 readOnly;          /* True if the underlying file is readonly */
00370   u8 pageSizeFixed;     /* True if the page size can no longer be changed */
00371 #ifndef SQLITE_OMIT_AUTOVACUUM
00372   u8 autoVacuum;        /* True if auto-vacuum is enabled */
00373   u8 incrVacuum;        /* True if incr-vacuum is enabled */
00374   Pgno nTrunc;          /* Non-zero if the db will be truncated (incr vacuum) */
00375 #endif
00376   u16 pageSize;         /* Total number of bytes on a page */
00377   u16 usableSize;       /* Number of usable bytes on each page */
00378   int maxLocal;         /* Maximum local payload in non-LEAFDATA tables */
00379   int minLocal;         /* Minimum local payload in non-LEAFDATA tables */
00380   int maxLeaf;          /* Maximum local payload in a LEAFDATA table */
00381   int minLeaf;          /* Minimum local payload in a LEAFDATA table */
00382   u8 inTransaction;     /* Transaction state */
00383   int nTransaction;     /* Number of open transactions (read + write) */
00384   void *pSchema;        /* Pointer to space allocated by sqlite3BtreeSchema() */
00385   void (*xFreeSchema)(void*);  /* Destructor for BtShared.pSchema */
00386   sqlite3_mutex *mutex; /* Non-recursive mutex required to access this struct */
00387   BusyHandler busyHdr;  /* The busy handler for this btree */
00388 #ifndef SQLITE_OMIT_SHARED_CACHE
00389   int nRef;             /* Number of references to this structure */
00390   BtShared *pNext;      /* Next on a list of sharable BtShared structs */
00391   BtLock *pLock;        /* List of locks held on this shared-btree struct */
00392   Btree *pExclusive;    /* Btree with an EXCLUSIVE lock on the whole db */
00393 #endif
00394   u8 *pTmpSpace;        /* BtShared.pageSize bytes of space for tmp use */
00395 };
00396 
00397 /*
00398 ** An instance of the following structure is used to hold information
00399 ** about a cell.  The parseCellPtr() function fills in this structure
00400 ** based on information extract from the raw disk page.
00401 */
00402 typedef struct CellInfo CellInfo;
00403 struct CellInfo {
00404   u8 *pCell;     /* Pointer to the start of cell content */
00405   i64 nKey;      /* The key for INTKEY tables, or number of bytes in key */
00406   u32 nData;     /* Number of bytes of data */
00407   u32 nPayload;  /* Total amount of payload */
00408   u16 nHeader;   /* Size of the cell content header in bytes */
00409   u16 nLocal;    /* Amount of payload held locally */
00410   u16 iOverflow; /* Offset to overflow page number.  Zero if no overflow */
00411   u16 nSize;     /* Size of the cell content on the main b-tree page */
00412 };
00413 
00414 /*
00415 ** Maximum depth of an SQLite B-Tree structure. Any B-Tree deeper than
00416 ** this will be declared corrupt. This value is calculated based on a
00417 ** maximum database size of 2^31 pages a minimum fanout of 2 for a
00418 ** root-node and 3 for all other internal nodes.
00419 **
00420 ** If a tree that appears to be taller than this is encountered, it is
00421 ** assumed that the database is corrupt.
00422 */
00423 #define BTCURSOR_MAX_DEPTH 20
00424 
00425 /*
00426 ** A cursor is a pointer to a particular entry within a particular
00427 ** b-tree within a database file.
00428 **
00429 ** The entry is identified by its MemPage and the index in
00430 ** MemPage.aCell[] of the entry.
00431 **
00432 ** When a single database file can shared by two more database connections,
00433 ** but cursors cannot be shared.  Each cursor is associated with a
00434 ** particular database connection identified BtCursor.pBtree.db.
00435 **
00436 ** Fields in this structure are accessed under the BtShared.mutex
00437 ** found at self->pBt->mutex. 
00438 */
00439 struct BtCursor {
00440   Btree *pBtree;            /* The Btree to which this cursor belongs */
00441   BtShared *pBt;            /* The BtShared this cursor points to */
00442   BtCursor *pNext, *pPrev;  /* Forms a linked list of all cursors */
00443   struct KeyInfo *pKeyInfo; /* Argument passed to comparison function */
00444   Pgno pgnoRoot;            /* The root page of this tree */
00445   CellInfo info;            /* A parse of the cell we are pointing at */
00446   u8 wrFlag;                /* True if writable */
00447   u8 atLast;                /* Cursor pointing to the last entry */
00448   u8 validNKey;             /* True if info.nKey is valid */
00449   u8 eState;                /* One of the CURSOR_XXX constants (see below) */
00450   void *pKey;      /* Saved key that was cursor's last known position */
00451   i64 nKey;        /* Size of pKey, or last integer key */
00452   int skip;        /* (skip<0) -> Prev() is a no-op. (skip>0) -> Next() is */
00453 #ifndef SQLITE_OMIT_INCRBLOB
00454   u8 isIncrblobHandle;      /* True if this cursor is an incr. io handle */
00455   Pgno *aOverflow;          /* Cache of overflow page locations */
00456 #endif
00457 #ifndef NDEBUG
00458   u8 pagesShuffled;         /* True if Btree pages are rearranged by balance()*/
00459 #endif
00460   i16 iPage;                            /* Index of current page in apPage */
00461   MemPage *apPage[BTCURSOR_MAX_DEPTH];  /* Pages from root to current page */
00462   u16 aiIdx[BTCURSOR_MAX_DEPTH];        /* Current index in apPage[i] */
00463 };
00464 
00465 /*
00466 ** Potential values for BtCursor.eState.
00467 **
00468 ** CURSOR_VALID:
00469 **   Cursor points to a valid entry. getPayload() etc. may be called.
00470 **
00471 ** CURSOR_INVALID:
00472 **   Cursor does not point to a valid entry. This can happen (for example) 
00473 **   because the table is empty or because BtreeCursorFirst() has not been
00474 **   called.
00475 **
00476 ** CURSOR_REQUIRESEEK:
00477 **   The table that this cursor was opened on still exists, but has been 
00478 **   modified since the cursor was last used. The cursor position is saved
00479 **   in variables BtCursor.pKey and BtCursor.nKey. When a cursor is in 
00480 **   this state, restoreCursorPosition() can be called to attempt to
00481 **   seek the cursor to the saved position.
00482 **
00483 ** CURSOR_FAULT:
00484 **   A unrecoverable error (an I/O error or a malloc failure) has occurred
00485 **   on a different connection that shares the BtShared cache with this
00486 **   cursor.  The error has left the cache in an inconsistent state.
00487 **   Do nothing else with this cursor.  Any attempt to use the cursor
00488 **   should return the error code stored in BtCursor.skip
00489 */
00490 #define CURSOR_INVALID           0
00491 #define CURSOR_VALID             1
00492 #define CURSOR_REQUIRESEEK       2
00493 #define CURSOR_FAULT             3
00494 
00495 /* The database page the PENDING_BYTE occupies. This page is never used.
00496 ** TODO: This macro is very similary to PAGER_MJ_PGNO() in pager.c. They
00497 ** should possibly be consolidated (presumably in pager.h).
00498 **
00499 ** If disk I/O is omitted (meaning that the database is stored purely
00500 ** in memory) then there is no pending byte.
00501 */
00502 #ifdef SQLITE_OMIT_DISKIO
00503 # define PENDING_BYTE_PAGE(pBt)  0x7fffffff
00504 #else
00505 # define PENDING_BYTE_PAGE(pBt) ((PENDING_BYTE/(pBt)->pageSize)+1)
00506 #endif
00507 
00508 /*
00509 ** A linked list of the following structures is stored at BtShared.pLock.
00510 ** Locks are added (or upgraded from READ_LOCK to WRITE_LOCK) when a cursor 
00511 ** is opened on the table with root page BtShared.iTable. Locks are removed
00512 ** from this list when a transaction is committed or rolled back, or when
00513 ** a btree handle is closed.
00514 */
00515 struct BtLock {
00516   Btree *pBtree;        /* Btree handle holding this lock */
00517   Pgno iTable;          /* Root page of table */
00518   u8 eLock;             /* READ_LOCK or WRITE_LOCK */
00519   BtLock *pNext;        /* Next in BtShared.pLock list */
00520 };
00521 
00522 /* Candidate values for BtLock.eLock */
00523 #define READ_LOCK     1
00524 #define WRITE_LOCK    2
00525 
00526 /*
00527 ** These macros define the location of the pointer-map entry for a 
00528 ** database page. The first argument to each is the number of usable
00529 ** bytes on each page of the database (often 1024). The second is the
00530 ** page number to look up in the pointer map.
00531 **
00532 ** PTRMAP_PAGENO returns the database page number of the pointer-map
00533 ** page that stores the required pointer. PTRMAP_PTROFFSET returns
00534 ** the offset of the requested map entry.
00535 **
00536 ** If the pgno argument passed to PTRMAP_PAGENO is a pointer-map page,
00537 ** then pgno is returned. So (pgno==PTRMAP_PAGENO(pgsz, pgno)) can be
00538 ** used to test if pgno is a pointer-map page. PTRMAP_ISPAGE implements
00539 ** this test.
00540 */
00541 #define PTRMAP_PAGENO(pBt, pgno) ptrmapPageno(pBt, pgno)
00542 #define PTRMAP_PTROFFSET(pgptrmap, pgno) (5*(pgno-pgptrmap-1))
00543 #define PTRMAP_ISPAGE(pBt, pgno) (PTRMAP_PAGENO((pBt),(pgno))==(pgno))
00544 
00545 /*
00546 ** The pointer map is a lookup table that identifies the parent page for
00547 ** each child page in the database file.  The parent page is the page that
00548 ** contains a pointer to the child.  Every page in the database contains
00549 ** 0 or 1 parent pages.  (In this context 'database page' refers
00550 ** to any page that is not part of the pointer map itself.)  Each pointer map
00551 ** entry consists of a single byte 'type' and a 4 byte parent page number.
00552 ** The PTRMAP_XXX identifiers below are the valid types.
00553 **
00554 ** The purpose of the pointer map is to facility moving pages from one
00555 ** position in the file to another as part of autovacuum.  When a page
00556 ** is moved, the pointer in its parent must be updated to point to the
00557 ** new location.  The pointer map is used to locate the parent page quickly.
00558 **
00559 ** PTRMAP_ROOTPAGE: The database page is a root-page. The page-number is not
00560 **                  used in this case.
00561 **
00562 ** PTRMAP_FREEPAGE: The database page is an unused (free) page. The page-number 
00563 **                  is not used in this case.
00564 **
00565 ** PTRMAP_OVERFLOW1: The database page is the first page in a list of 
00566 **                   overflow pages. The page number identifies the page that
00567 **                   contains the cell with a pointer to this overflow page.
00568 **
00569 ** PTRMAP_OVERFLOW2: The database page is the second or later page in a list of
00570 **                   overflow pages. The page-number identifies the previous
00571 **                   page in the overflow page list.
00572 **
00573 ** PTRMAP_BTREE: The database page is a non-root btree page. The page number
00574 **               identifies the parent page in the btree.
00575 */
00576 #define PTRMAP_ROOTPAGE 1
00577 #define PTRMAP_FREEPAGE 2
00578 #define PTRMAP_OVERFLOW1 3
00579 #define PTRMAP_OVERFLOW2 4
00580 #define PTRMAP_BTREE 5
00581 
00582 /* A bunch of assert() statements to check the transaction state variables
00583 ** of handle p (type Btree*) are internally consistent.
00584 */
00585 #define btreeIntegrity(p) \
00586   assert( p->pBt->inTransaction!=TRANS_NONE || p->pBt->nTransaction==0 ); \
00587   assert( p->pBt->inTransaction>=p->inTrans ); 
00588 
00589 
00590 /*
00591 ** The ISAUTOVACUUM macro is used within balance_nonroot() to determine
00592 ** if the database supports auto-vacuum or not. Because it is used
00593 ** within an expression that is an argument to another macro 
00594 ** (sqliteMallocRaw), it is not possible to use conditional compilation.
00595 ** So, this macro is defined instead.
00596 */
00597 #ifndef SQLITE_OMIT_AUTOVACUUM
00598 #define ISAUTOVACUUM (pBt->autoVacuum)
00599 #else
00600 #define ISAUTOVACUUM 0
00601 #endif
00602 
00603 
00604 /*
00605 ** This structure is passed around through all the sanity checking routines
00606 ** in order to keep track of some global state information.
00607 */
00608 typedef struct IntegrityCk IntegrityCk;
00609 struct IntegrityCk {
00610   BtShared *pBt;    /* The tree being checked out */
00611   Pager *pPager;    /* The associated pager.  Also accessible by pBt->pPager */
00612   int nPage;        /* Number of pages in the database */
00613   int *anRef;       /* Number of times each page is referenced */
00614   int mxErr;        /* Stop accumulating errors when this reaches zero */
00615   int nErr;         /* Number of messages written to zErrMsg so far */
00616   int mallocFailed; /* A memory allocation error has occurred */
00617   StrAccum errMsg;  /* Accumulate the error message text here */
00618 };
00619 
00620 /*
00621 ** Read or write a two- and four-byte big-endian integer values.
00622 */
00623 #define get2byte(x)   ((x)[0]<<8 | (x)[1])
00624 #define put2byte(p,v) ((p)[0] = (v)>>8, (p)[1] = (v))
00625 #define get4byte sqlite3Get4byte
00626 #define put4byte sqlite3Put4byte
00627 
00628 /*
00629 ** Internal routines that should be accessed by the btree layer only.
00630 */
00631 int sqlite3BtreeGetPage(BtShared*, Pgno, MemPage**, int);
00632 int sqlite3BtreeInitPage(MemPage *pPage);
00633 void sqlite3BtreeParseCellPtr(MemPage*, u8*, CellInfo*);
00634 void sqlite3BtreeParseCell(MemPage*, int, CellInfo*);
00635 int sqlite3BtreeRestoreCursorPosition(BtCursor *pCur);
00636 void sqlite3BtreeGetTempCursor(BtCursor *pCur, BtCursor *pTempCur);
00637 void sqlite3BtreeReleaseTempCursor(BtCursor *pCur);
00638 void sqlite3BtreeMoveToParent(BtCursor *pCur);

ContextLogger2—ContextLogger2 Logger Daemon Internals—Generated on Mon May 2 13:49:52 2011 by Doxygen 1.6.1