build.c

Go to the documentation of this file.
00001 /*
00002 ** 2001 September 15
00003 **
00004 ** The author disclaims copyright to this source code.  In place of
00005 ** a legal notice, here is a blessing:
00006 **
00007 **    May you do good and not evil.
00008 **    May you find forgiveness for yourself and forgive others.
00009 **    May you share freely, never taking more than you give.
00010 **
00011 *************************************************************************
00012 ** This file contains C code routines that are called by the SQLite parser
00013 ** when syntax rules are reduced.  The routines in this file handle the
00014 ** following kinds of SQL syntax:
00015 **
00016 **     CREATE TABLE
00017 **     DROP TABLE
00018 **     CREATE INDEX
00019 **     DROP INDEX
00020 **     creating ID lists
00021 **     BEGIN TRANSACTION
00022 **     COMMIT
00023 **     ROLLBACK
00024 **
00025 ** $Id: build.c,v 1.501 2008/11/11 18:28:59 drh Exp $
00026 */
00027 #include "sqliteInt.h"
00028 #include <ctype.h>
00029 
00030 /*
00031 ** This routine is called when a new SQL statement is beginning to
00032 ** be parsed.  Initialize the pParse structure as needed.
00033 */
00034 void sqlite3BeginParse(Parse *pParse, int explainFlag){
00035   pParse->explain = explainFlag;
00036   pParse->nVar = 0;
00037 }
00038 
00039 #ifndef SQLITE_OMIT_SHARED_CACHE
00040 /*
00041 ** The TableLock structure is only used by the sqlite3TableLock() and
00042 ** codeTableLocks() functions.
00043 */
00044 struct TableLock {
00045   int iDb;             /* The database containing the table to be locked */
00046   int iTab;            /* The root page of the table to be locked */
00047   u8 isWriteLock;      /* True for write lock.  False for a read lock */
00048   const char *zName;   /* Name of the table */
00049 };
00050 
00051 /*
00052 ** Record the fact that we want to lock a table at run-time.  
00053 **
00054 ** The table to be locked has root page iTab and is found in database iDb.
00055 ** A read or a write lock can be taken depending on isWritelock.
00056 **
00057 ** This routine just records the fact that the lock is desired.  The
00058 ** code to make the lock occur is generated by a later call to
00059 ** codeTableLocks() which occurs during sqlite3FinishCoding().
00060 */
00061 void sqlite3TableLock(
00062   Parse *pParse,     /* Parsing context */
00063   int iDb,           /* Index of the database containing the table to lock */
00064   int iTab,          /* Root page number of the table to be locked */
00065   u8 isWriteLock,    /* True for a write lock */
00066   const char *zName  /* Name of the table to be locked */
00067 ){
00068   int i;
00069   int nBytes;
00070   TableLock *p;
00071 
00072   if( iDb<0 ){
00073     return;
00074   }
00075 
00076   for(i=0; i<pParse->nTableLock; i++){
00077     p = &pParse->aTableLock[i];
00078     if( p->iDb==iDb && p->iTab==iTab ){
00079       p->isWriteLock = (p->isWriteLock || isWriteLock);
00080       return;
00081     }
00082   }
00083 
00084   nBytes = sizeof(TableLock) * (pParse->nTableLock+1);
00085   pParse->aTableLock = 
00086       sqlite3DbReallocOrFree(pParse->db, pParse->aTableLock, nBytes);
00087   if( pParse->aTableLock ){
00088     p = &pParse->aTableLock[pParse->nTableLock++];
00089     p->iDb = iDb;
00090     p->iTab = iTab;
00091     p->isWriteLock = isWriteLock;
00092     p->zName = zName;
00093   }else{
00094     pParse->nTableLock = 0;
00095     pParse->db->mallocFailed = 1;
00096   }
00097 }
00098 
00099 /*
00100 ** Code an OP_TableLock instruction for each table locked by the
00101 ** statement (configured by calls to sqlite3TableLock()).
00102 */
00103 static void codeTableLocks(Parse *pParse){
00104   int i;
00105   Vdbe *pVdbe; 
00106 
00107   if( 0==(pVdbe = sqlite3GetVdbe(pParse)) ){
00108     return;
00109   }
00110 
00111   for(i=0; i<pParse->nTableLock; i++){
00112     TableLock *p = &pParse->aTableLock[i];
00113     int p1 = p->iDb;
00114     sqlite3VdbeAddOp4(pVdbe, OP_TableLock, p1, p->iTab, p->isWriteLock,
00115                       p->zName, P4_STATIC);
00116   }
00117 }
00118 #else
00119   #define codeTableLocks(x)
00120 #endif
00121 
00122 /*
00123 ** This routine is called after a single SQL statement has been
00124 ** parsed and a VDBE program to execute that statement has been
00125 ** prepared.  This routine puts the finishing touches on the
00126 ** VDBE program and resets the pParse structure for the next
00127 ** parse.
00128 **
00129 ** Note that if an error occurred, it might be the case that
00130 ** no VDBE code was generated.
00131 */
00132 void sqlite3FinishCoding(Parse *pParse){
00133   sqlite3 *db;
00134   Vdbe *v;
00135 
00136   db = pParse->db;
00137   if( db->mallocFailed ) return;
00138   if( pParse->nested ) return;
00139   if( pParse->nErr ) return;
00140 
00141   /* Begin by generating some termination code at the end of the
00142   ** vdbe program
00143   */
00144   v = sqlite3GetVdbe(pParse);
00145   if( v ){
00146     sqlite3VdbeAddOp0(v, OP_Halt);
00147 
00148     /* The cookie mask contains one bit for each database file open.
00149     ** (Bit 0 is for main, bit 1 is for temp, and so forth.)  Bits are
00150     ** set for each database that is used.  Generate code to start a
00151     ** transaction on each used database and to verify the schema cookie
00152     ** on each used database.
00153     */
00154     if( pParse->cookieGoto>0 ){
00155       u32 mask;
00156       int iDb;
00157       sqlite3VdbeJumpHere(v, pParse->cookieGoto-1);
00158       for(iDb=0, mask=1; iDb<db->nDb; mask<<=1, iDb++){
00159         if( (mask & pParse->cookieMask)==0 ) continue;
00160         sqlite3VdbeUsesBtree(v, iDb);
00161         sqlite3VdbeAddOp2(v,OP_Transaction, iDb, (mask & pParse->writeMask)!=0);
00162         sqlite3VdbeAddOp2(v,OP_VerifyCookie, iDb, pParse->cookieValue[iDb]);
00163       }
00164 #ifndef SQLITE_OMIT_VIRTUALTABLE
00165       {
00166         int i;
00167         for(i=0; i<pParse->nVtabLock; i++){
00168           char *vtab = (char *)pParse->apVtabLock[i]->pVtab;
00169           sqlite3VdbeAddOp4(v, OP_VBegin, 0, 0, 0, vtab, P4_VTAB);
00170         }
00171         pParse->nVtabLock = 0;
00172       }
00173 #endif
00174 
00175       /* Once all the cookies have been verified and transactions opened, 
00176       ** obtain the required table-locks. This is a no-op unless the 
00177       ** shared-cache feature is enabled.
00178       */
00179       codeTableLocks(pParse);
00180       sqlite3VdbeAddOp2(v, OP_Goto, 0, pParse->cookieGoto);
00181     }
00182 
00183 #ifndef SQLITE_OMIT_TRACE
00184     if( !db->init.busy ){
00185       /* Change the P4 argument of the first opcode (which will always be
00186       ** an OP_Trace) to be the complete text of the current SQL statement.
00187       */
00188       VdbeOp *pOp = sqlite3VdbeGetOp(v, 0);
00189       if( pOp && pOp->opcode==OP_Trace ){
00190         sqlite3VdbeChangeP4(v, 0, pParse->zSql, pParse->zTail-pParse->zSql);
00191       }
00192     }
00193 #endif /* SQLITE_OMIT_TRACE */
00194   }
00195 
00196 
00197   /* Get the VDBE program ready for execution
00198   */
00199   if( v && pParse->nErr==0 && !db->mallocFailed ){
00200 #ifdef SQLITE_DEBUG
00201     FILE *trace = (db->flags & SQLITE_VdbeTrace)!=0 ? stdout : 0;
00202     sqlite3VdbeTrace(v, trace);
00203 #endif
00204     assert( pParse->disableColCache==0 );  /* Disables and re-enables match */
00205     sqlite3VdbeMakeReady(v, pParse->nVar, pParse->nMem+3,
00206                          pParse->nTab+3, pParse->explain);
00207     pParse->rc = SQLITE_DONE;
00208     pParse->colNamesSet = 0;
00209   }else if( pParse->rc==SQLITE_OK ){
00210     pParse->rc = SQLITE_ERROR;
00211   }
00212   pParse->nTab = 0;
00213   pParse->nMem = 0;
00214   pParse->nSet = 0;
00215   pParse->nVar = 0;
00216   pParse->cookieMask = 0;
00217   pParse->cookieGoto = 0;
00218 }
00219 
00220 /*
00221 ** Run the parser and code generator recursively in order to generate
00222 ** code for the SQL statement given onto the end of the pParse context
00223 ** currently under construction.  When the parser is run recursively
00224 ** this way, the final OP_Halt is not appended and other initialization
00225 ** and finalization steps are omitted because those are handling by the
00226 ** outermost parser.
00227 **
00228 ** Not everything is nestable.  This facility is designed to permit
00229 ** INSERT, UPDATE, and DELETE operations against SQLITE_MASTER.  Use
00230 ** care if you decide to try to use this routine for some other purposes.
00231 */
00232 void sqlite3NestedParse(Parse *pParse, const char *zFormat, ...){
00233   va_list ap;
00234   char *zSql;
00235   char *zErrMsg = 0;
00236   sqlite3 *db = pParse->db;
00237 # define SAVE_SZ  (sizeof(Parse) - offsetof(Parse,nVar))
00238   char saveBuf[SAVE_SZ];
00239 
00240   if( pParse->nErr ) return;
00241   assert( pParse->nested<10 );  /* Nesting should only be of limited depth */
00242   va_start(ap, zFormat);
00243   zSql = sqlite3VMPrintf(db, zFormat, ap);
00244   va_end(ap);
00245   if( zSql==0 ){
00246     return;   /* A malloc must have failed */
00247   }
00248   pParse->nested++;
00249   memcpy(saveBuf, &pParse->nVar, SAVE_SZ);
00250   memset(&pParse->nVar, 0, SAVE_SZ);
00251   sqlite3RunParser(pParse, zSql, &zErrMsg);
00252   sqlite3DbFree(db, zErrMsg);
00253   sqlite3DbFree(db, zSql);
00254   memcpy(&pParse->nVar, saveBuf, SAVE_SZ);
00255   pParse->nested--;
00256 }
00257 
00258 /*
00259 ** Locate the in-memory structure that describes a particular database
00260 ** table given the name of that table and (optionally) the name of the
00261 ** database containing the table.  Return NULL if not found.
00262 **
00263 ** If zDatabase is 0, all databases are searched for the table and the
00264 ** first matching table is returned.  (No checking for duplicate table
00265 ** names is done.)  The search order is TEMP first, then MAIN, then any
00266 ** auxiliary databases added using the ATTACH command.
00267 **
00268 ** See also sqlite3LocateTable().
00269 */
00270 Table *sqlite3FindTable(sqlite3 *db, const char *zName, const char *zDatabase){
00271   Table *p = 0;
00272   int i;
00273   int nName;
00274   assert( zName!=0 );
00275   nName = sqlite3Strlen(db, zName) + 1;
00276   for(i=OMIT_TEMPDB; i<db->nDb; i++){
00277     int j = (i<2) ? i^1 : i;   /* Search TEMP before MAIN */
00278     if( zDatabase!=0 && sqlite3StrICmp(zDatabase, db->aDb[j].zName) ) continue;
00279     p = sqlite3HashFind(&db->aDb[j].pSchema->tblHash, zName, nName);
00280     if( p ) break;
00281   }
00282   return p;
00283 }
00284 
00285 /*
00286 ** Locate the in-memory structure that describes a particular database
00287 ** table given the name of that table and (optionally) the name of the
00288 ** database containing the table.  Return NULL if not found.  Also leave an
00289 ** error message in pParse->zErrMsg.
00290 **
00291 ** The difference between this routine and sqlite3FindTable() is that this
00292 ** routine leaves an error message in pParse->zErrMsg where
00293 ** sqlite3FindTable() does not.
00294 */
00295 Table *sqlite3LocateTable(
00296   Parse *pParse,         /* context in which to report errors */
00297   int isView,            /* True if looking for a VIEW rather than a TABLE */
00298   const char *zName,     /* Name of the table we are looking for */
00299   const char *zDbase     /* Name of the database.  Might be NULL */
00300 ){
00301   Table *p;
00302 
00303   /* Read the database schema. If an error occurs, leave an error message
00304   ** and code in pParse and return NULL. */
00305   if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
00306     return 0;
00307   }
00308 
00309   p = sqlite3FindTable(pParse->db, zName, zDbase);
00310   if( p==0 ){
00311     const char *zMsg = isView ? "no such view" : "no such table";
00312     if( zDbase ){
00313       sqlite3ErrorMsg(pParse, "%s: %s.%s", zMsg, zDbase, zName);
00314     }else{
00315       sqlite3ErrorMsg(pParse, "%s: %s", zMsg, zName);
00316     }
00317     pParse->checkSchema = 1;
00318   }
00319   return p;
00320 }
00321 
00322 /*
00323 ** Locate the in-memory structure that describes 
00324 ** a particular index given the name of that index
00325 ** and the name of the database that contains the index.
00326 ** Return NULL if not found.
00327 **
00328 ** If zDatabase is 0, all databases are searched for the
00329 ** table and the first matching index is returned.  (No checking
00330 ** for duplicate index names is done.)  The search order is
00331 ** TEMP first, then MAIN, then any auxiliary databases added
00332 ** using the ATTACH command.
00333 */
00334 Index *sqlite3FindIndex(sqlite3 *db, const char *zName, const char *zDb){
00335   Index *p = 0;
00336   int i;
00337   int nName = sqlite3Strlen(db, zName)+1;
00338   for(i=OMIT_TEMPDB; i<db->nDb; i++){
00339     int j = (i<2) ? i^1 : i;  /* Search TEMP before MAIN */
00340     Schema *pSchema = db->aDb[j].pSchema;
00341     if( zDb && sqlite3StrICmp(zDb, db->aDb[j].zName) ) continue;
00342     assert( pSchema || (j==1 && !db->aDb[1].pBt) );
00343     if( pSchema ){
00344       p = sqlite3HashFind(&pSchema->idxHash, zName, nName);
00345     }
00346     if( p ) break;
00347   }
00348   return p;
00349 }
00350 
00351 /*
00352 ** Reclaim the memory used by an index
00353 */
00354 static void freeIndex(Index *p){
00355   sqlite3 *db = p->pTable->db;
00356   sqlite3DbFree(db, p->zColAff);
00357   sqlite3DbFree(db, p);
00358 }
00359 
00360 /*
00361 ** Remove the given index from the index hash table, and free
00362 ** its memory structures.
00363 **
00364 ** The index is removed from the database hash tables but
00365 ** it is not unlinked from the Table that it indexes.
00366 ** Unlinking from the Table must be done by the calling function.
00367 */
00368 static void sqliteDeleteIndex(Index *p){
00369   Index *pOld;
00370   const char *zName = p->zName;
00371 
00372   pOld = sqlite3HashInsert(&p->pSchema->idxHash, zName, strlen(zName)+1, 0);
00373   assert( pOld==0 || pOld==p );
00374   freeIndex(p);
00375 }
00376 
00377 /*
00378 ** For the index called zIdxName which is found in the database iDb,
00379 ** unlike that index from its Table then remove the index from
00380 ** the index hash table and free all memory structures associated
00381 ** with the index.
00382 */
00383 void sqlite3UnlinkAndDeleteIndex(sqlite3 *db, int iDb, const char *zIdxName){
00384   Index *pIndex;
00385   int len;
00386   Hash *pHash = &db->aDb[iDb].pSchema->idxHash;
00387 
00388   len = sqlite3Strlen(db, zIdxName);
00389   pIndex = sqlite3HashInsert(pHash, zIdxName, len+1, 0);
00390   if( pIndex ){
00391     if( pIndex->pTable->pIndex==pIndex ){
00392       pIndex->pTable->pIndex = pIndex->pNext;
00393     }else{
00394       Index *p;
00395       for(p=pIndex->pTable->pIndex; p && p->pNext!=pIndex; p=p->pNext){}
00396       if( p && p->pNext==pIndex ){
00397         p->pNext = pIndex->pNext;
00398       }
00399     }
00400     freeIndex(pIndex);
00401   }
00402   db->flags |= SQLITE_InternChanges;
00403 }
00404 
00405 /*
00406 ** Erase all schema information from the in-memory hash tables of
00407 ** a single database.  This routine is called to reclaim memory
00408 ** before the database closes.  It is also called during a rollback
00409 ** if there were schema changes during the transaction or if a
00410 ** schema-cookie mismatch occurs.
00411 **
00412 ** If iDb<=0 then reset the internal schema tables for all database
00413 ** files.  If iDb>=2 then reset the internal schema for only the
00414 ** single file indicated.
00415 */
00416 void sqlite3ResetInternalSchema(sqlite3 *db, int iDb){
00417   int i, j;
00418   assert( iDb>=0 && iDb<db->nDb );
00419 
00420   if( iDb==0 ){
00421     sqlite3BtreeEnterAll(db);
00422   }
00423   for(i=iDb; i<db->nDb; i++){
00424     Db *pDb = &db->aDb[i];
00425     if( pDb->pSchema ){
00426       assert(i==1 || (pDb->pBt && sqlite3BtreeHoldsMutex(pDb->pBt)));
00427       sqlite3SchemaFree(pDb->pSchema);
00428     }
00429     if( iDb>0 ) return;
00430   }
00431   assert( iDb==0 );
00432   db->flags &= ~SQLITE_InternChanges;
00433   sqlite3BtreeLeaveAll(db);
00434 
00435   /* If one or more of the auxiliary database files has been closed,
00436   ** then remove them from the auxiliary database list.  We take the
00437   ** opportunity to do this here since we have just deleted all of the
00438   ** schema hash tables and therefore do not have to make any changes
00439   ** to any of those tables.
00440   */
00441   for(i=0; i<db->nDb; i++){
00442     struct Db *pDb = &db->aDb[i];
00443     if( pDb->pBt==0 ){
00444       if( pDb->pAux && pDb->xFreeAux ) pDb->xFreeAux(pDb->pAux);
00445       pDb->pAux = 0;
00446     }
00447   }
00448   for(i=j=2; i<db->nDb; i++){
00449     struct Db *pDb = &db->aDb[i];
00450     if( pDb->pBt==0 ){
00451       sqlite3DbFree(db, pDb->zName);
00452       pDb->zName = 0;
00453       continue;
00454     }
00455     if( j<i ){
00456       db->aDb[j] = db->aDb[i];
00457     }
00458     j++;
00459   }
00460   memset(&db->aDb[j], 0, (db->nDb-j)*sizeof(db->aDb[j]));
00461   db->nDb = j;
00462   if( db->nDb<=2 && db->aDb!=db->aDbStatic ){
00463     memcpy(db->aDbStatic, db->aDb, 2*sizeof(db->aDb[0]));
00464     sqlite3DbFree(db, db->aDb);
00465     db->aDb = db->aDbStatic;
00466   }
00467 }
00468 
00469 /*
00470 ** This routine is called when a commit occurs.
00471 */
00472 void sqlite3CommitInternalChanges(sqlite3 *db){
00473   db->flags &= ~SQLITE_InternChanges;
00474 }
00475 
00476 /*
00477 ** Clear the column names from a table or view.
00478 */
00479 static void sqliteResetColumnNames(Table *pTable){
00480   int i;
00481   Column *pCol;
00482   sqlite3 *db = pTable->db;
00483   assert( pTable!=0 );
00484   if( (pCol = pTable->aCol)!=0 ){
00485     for(i=0; i<pTable->nCol; i++, pCol++){
00486       sqlite3DbFree(db, pCol->zName);
00487       sqlite3ExprDelete(db, pCol->pDflt);
00488       sqlite3DbFree(db, pCol->zType);
00489       sqlite3DbFree(db, pCol->zColl);
00490     }
00491     sqlite3DbFree(db, pTable->aCol);
00492   }
00493   pTable->aCol = 0;
00494   pTable->nCol = 0;
00495 }
00496 
00497 /*
00498 ** Remove the memory data structures associated with the given
00499 ** Table.  No changes are made to disk by this routine.
00500 **
00501 ** This routine just deletes the data structure.  It does not unlink
00502 ** the table data structure from the hash table.  Nor does it remove
00503 ** foreign keys from the sqlite.aFKey hash table.  But it does destroy
00504 ** memory structures of the indices and foreign keys associated with 
00505 ** the table.
00506 */
00507 void sqlite3DeleteTable(Table *pTable){
00508   Index *pIndex, *pNext;
00509   FKey *pFKey, *pNextFKey;
00510   sqlite3 *db;
00511 
00512   if( pTable==0 ) return;
00513   db = pTable->db;
00514 
00515   /* Do not delete the table until the reference count reaches zero. */
00516   pTable->nRef--;
00517   if( pTable->nRef>0 ){
00518     return;
00519   }
00520   assert( pTable->nRef==0 );
00521 
00522   /* Delete all indices associated with this table
00523   */
00524   for(pIndex = pTable->pIndex; pIndex; pIndex=pNext){
00525     pNext = pIndex->pNext;
00526     assert( pIndex->pSchema==pTable->pSchema );
00527     sqliteDeleteIndex(pIndex);
00528   }
00529 
00530 #ifndef SQLITE_OMIT_FOREIGN_KEY
00531   /* Delete all foreign keys associated with this table.  The keys
00532   ** should have already been unlinked from the pSchema->aFKey hash table 
00533   */
00534   for(pFKey=pTable->pFKey; pFKey; pFKey=pNextFKey){
00535     pNextFKey = pFKey->pNextFrom;
00536     assert( sqlite3HashFind(&pTable->pSchema->aFKey,
00537                            pFKey->zTo, strlen(pFKey->zTo)+1)!=pFKey );
00538     sqlite3DbFree(db, pFKey);
00539   }
00540 #endif
00541 
00542   /* Delete the Table structure itself.
00543   */
00544   sqliteResetColumnNames(pTable);
00545   sqlite3DbFree(db, pTable->zName);
00546   sqlite3DbFree(db, pTable->zColAff);
00547   sqlite3SelectDelete(db, pTable->pSelect);
00548 #ifndef SQLITE_OMIT_CHECK
00549   sqlite3ExprDelete(db, pTable->pCheck);
00550 #endif
00551   sqlite3VtabClear(pTable);
00552   sqlite3DbFree(db, pTable);
00553 }
00554 
00555 /*
00556 ** Unlink the given table from the hash tables and the delete the
00557 ** table structure with all its indices and foreign keys.
00558 */
00559 void sqlite3UnlinkAndDeleteTable(sqlite3 *db, int iDb, const char *zTabName){
00560   Table *p;
00561   FKey *pF1, *pF2;
00562   Db *pDb;
00563 
00564   assert( db!=0 );
00565   assert( iDb>=0 && iDb<db->nDb );
00566   assert( zTabName && zTabName[0] );
00567   pDb = &db->aDb[iDb];
00568   p = sqlite3HashInsert(&pDb->pSchema->tblHash, zTabName, strlen(zTabName)+1,0);
00569   if( p ){
00570 #ifndef SQLITE_OMIT_FOREIGN_KEY
00571     for(pF1=p->pFKey; pF1; pF1=pF1->pNextFrom){
00572       int nTo = strlen(pF1->zTo) + 1;
00573       pF2 = sqlite3HashFind(&pDb->pSchema->aFKey, pF1->zTo, nTo);
00574       if( pF2==pF1 ){
00575         sqlite3HashInsert(&pDb->pSchema->aFKey, pF1->zTo, nTo, pF1->pNextTo);
00576       }else{
00577         while( pF2 && pF2->pNextTo!=pF1 ){ pF2=pF2->pNextTo; }
00578         if( pF2 ){
00579           pF2->pNextTo = pF1->pNextTo;
00580         }
00581       }
00582     }
00583 #endif
00584     sqlite3DeleteTable(p);
00585   }
00586   db->flags |= SQLITE_InternChanges;
00587 }
00588 
00589 /*
00590 ** Given a token, return a string that consists of the text of that
00591 ** token with any quotations removed.  Space to hold the returned string
00592 ** is obtained from sqliteMalloc() and must be freed by the calling
00593 ** function.
00594 **
00595 ** Tokens are often just pointers into the original SQL text and so
00596 ** are not \000 terminated and are not persistent.  The returned string
00597 ** is \000 terminated and is persistent.
00598 */
00599 char *sqlite3NameFromToken(sqlite3 *db, Token *pName){
00600   char *zName;
00601   if( pName ){
00602     zName = sqlite3DbStrNDup(db, (char*)pName->z, pName->n);
00603     sqlite3Dequote(zName);
00604   }else{
00605     zName = 0;
00606   }
00607   return zName;
00608 }
00609 
00610 /*
00611 ** Open the sqlite_master table stored in database number iDb for
00612 ** writing. The table is opened using cursor 0.
00613 */
00614 void sqlite3OpenMasterTable(Parse *p, int iDb){
00615   Vdbe *v = sqlite3GetVdbe(p);
00616   sqlite3TableLock(p, iDb, MASTER_ROOT, 1, SCHEMA_TABLE(iDb));
00617   sqlite3VdbeAddOp2(v, OP_SetNumColumns, 0, 5);/* sqlite_master has 5 columns */
00618   sqlite3VdbeAddOp3(v, OP_OpenWrite, 0, MASTER_ROOT, iDb);
00619 }
00620 
00621 /*
00622 ** The token *pName contains the name of a database (either "main" or
00623 ** "temp" or the name of an attached db). This routine returns the
00624 ** index of the named database in db->aDb[], or -1 if the named db 
00625 ** does not exist.
00626 */
00627 int sqlite3FindDb(sqlite3 *db, Token *pName){
00628   int i = -1;    /* Database number */
00629   int n;         /* Number of characters in the name */
00630   Db *pDb;       /* A database whose name space is being searched */
00631   char *zName;   /* Name we are searching for */
00632 
00633   zName = sqlite3NameFromToken(db, pName);
00634   if( zName ){
00635     n = strlen(zName);
00636     for(i=(db->nDb-1), pDb=&db->aDb[i]; i>=0; i--, pDb--){
00637       if( (!OMIT_TEMPDB || i!=1 ) && n==strlen(pDb->zName) && 
00638           0==sqlite3StrICmp(pDb->zName, zName) ){
00639         break;
00640       }
00641     }
00642     sqlite3DbFree(db, zName);
00643   }
00644   return i;
00645 }
00646 
00647 /* The table or view or trigger name is passed to this routine via tokens
00648 ** pName1 and pName2. If the table name was fully qualified, for example:
00649 **
00650 ** CREATE TABLE xxx.yyy (...);
00651 ** 
00652 ** Then pName1 is set to "xxx" and pName2 "yyy". On the other hand if
00653 ** the table name is not fully qualified, i.e.:
00654 **
00655 ** CREATE TABLE yyy(...);
00656 **
00657 ** Then pName1 is set to "yyy" and pName2 is "".
00658 **
00659 ** This routine sets the *ppUnqual pointer to point at the token (pName1 or
00660 ** pName2) that stores the unqualified table name.  The index of the
00661 ** database "xxx" is returned.
00662 */
00663 int sqlite3TwoPartName(
00664   Parse *pParse,      /* Parsing and code generating context */
00665   Token *pName1,      /* The "xxx" in the name "xxx.yyy" or "xxx" */
00666   Token *pName2,      /* The "yyy" in the name "xxx.yyy" */
00667   Token **pUnqual     /* Write the unqualified object name here */
00668 ){
00669   int iDb;                    /* Database holding the object */
00670   sqlite3 *db = pParse->db;
00671 
00672   if( pName2 && pName2->n>0 ){
00673     assert( !db->init.busy );
00674     *pUnqual = pName2;
00675     iDb = sqlite3FindDb(db, pName1);
00676     if( iDb<0 ){
00677       sqlite3ErrorMsg(pParse, "unknown database %T", pName1);
00678       pParse->nErr++;
00679       return -1;
00680     }
00681   }else{
00682     assert( db->init.iDb==0 || db->init.busy );
00683     iDb = db->init.iDb;
00684     *pUnqual = pName1;
00685   }
00686   return iDb;
00687 }
00688 
00689 /*
00690 ** This routine is used to check if the UTF-8 string zName is a legal
00691 ** unqualified name for a new schema object (table, index, view or
00692 ** trigger). All names are legal except those that begin with the string
00693 ** "sqlite_" (in upper, lower or mixed case). This portion of the namespace
00694 ** is reserved for internal use.
00695 */
00696 int sqlite3CheckObjectName(Parse *pParse, const char *zName){
00697   if( !pParse->db->init.busy && pParse->nested==0 
00698           && (pParse->db->flags & SQLITE_WriteSchema)==0
00699           && 0==sqlite3StrNICmp(zName, "sqlite_", 7) ){
00700     sqlite3ErrorMsg(pParse, "object name reserved for internal use: %s", zName);
00701     return SQLITE_ERROR;
00702   }
00703   return SQLITE_OK;
00704 }
00705 
00706 /*
00707 ** Begin constructing a new table representation in memory.  This is
00708 ** the first of several action routines that get called in response
00709 ** to a CREATE TABLE statement.  In particular, this routine is called
00710 ** after seeing tokens "CREATE" and "TABLE" and the table name. The isTemp
00711 ** flag is true if the table should be stored in the auxiliary database
00712 ** file instead of in the main database file.  This is normally the case
00713 ** when the "TEMP" or "TEMPORARY" keyword occurs in between
00714 ** CREATE and TABLE.
00715 **
00716 ** The new table record is initialized and put in pParse->pNewTable.
00717 ** As more of the CREATE TABLE statement is parsed, additional action
00718 ** routines will be called to add more information to this record.
00719 ** At the end of the CREATE TABLE statement, the sqlite3EndTable() routine
00720 ** is called to complete the construction of the new table record.
00721 */
00722 void sqlite3StartTable(
00723   Parse *pParse,   /* Parser context */
00724   Token *pName1,   /* First part of the name of the table or view */
00725   Token *pName2,   /* Second part of the name of the table or view */
00726   int isTemp,      /* True if this is a TEMP table */
00727   int isView,      /* True if this is a VIEW */
00728   int isVirtual,   /* True if this is a VIRTUAL table */
00729   int noErr        /* Do nothing if table already exists */
00730 ){
00731   Table *pTable;
00732   char *zName = 0; /* The name of the new table */
00733   sqlite3 *db = pParse->db;
00734   Vdbe *v;
00735   int iDb;         /* Database number to create the table in */
00736   Token *pName;    /* Unqualified name of the table to create */
00737 
00738   /* The table or view name to create is passed to this routine via tokens
00739   ** pName1 and pName2. If the table name was fully qualified, for example:
00740   **
00741   ** CREATE TABLE xxx.yyy (...);
00742   ** 
00743   ** Then pName1 is set to "xxx" and pName2 "yyy". On the other hand if
00744   ** the table name is not fully qualified, i.e.:
00745   **
00746   ** CREATE TABLE yyy(...);
00747   **
00748   ** Then pName1 is set to "yyy" and pName2 is "".
00749   **
00750   ** The call below sets the pName pointer to point at the token (pName1 or
00751   ** pName2) that stores the unqualified table name. The variable iDb is
00752   ** set to the index of the database that the table or view is to be
00753   ** created in.
00754   */
00755   iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pName);
00756   if( iDb<0 ) return;
00757   if( !OMIT_TEMPDB && isTemp && iDb>1 ){
00758     /* If creating a temp table, the name may not be qualified */
00759     sqlite3ErrorMsg(pParse, "temporary table name must be unqualified");
00760     return;
00761   }
00762   if( !OMIT_TEMPDB && isTemp ) iDb = 1;
00763 
00764   pParse->sNameToken = *pName;
00765   zName = sqlite3NameFromToken(db, pName);
00766   if( zName==0 ) return;
00767   if( SQLITE_OK!=sqlite3CheckObjectName(pParse, zName) ){
00768     goto begin_table_error;
00769   }
00770   if( db->init.iDb==1 ) isTemp = 1;
00771 #ifndef SQLITE_OMIT_AUTHORIZATION
00772   assert( (isTemp & 1)==isTemp );
00773   {
00774     int code;
00775     char *zDb = db->aDb[iDb].zName;
00776     if( sqlite3AuthCheck(pParse, SQLITE_INSERT, SCHEMA_TABLE(isTemp), 0, zDb) ){
00777       goto begin_table_error;
00778     }
00779     if( isView ){
00780       if( !OMIT_TEMPDB && isTemp ){
00781         code = SQLITE_CREATE_TEMP_VIEW;
00782       }else{
00783         code = SQLITE_CREATE_VIEW;
00784       }
00785     }else{
00786       if( !OMIT_TEMPDB && isTemp ){
00787         code = SQLITE_CREATE_TEMP_TABLE;
00788       }else{
00789         code = SQLITE_CREATE_TABLE;
00790       }
00791     }
00792     if( !isVirtual && sqlite3AuthCheck(pParse, code, zName, 0, zDb) ){
00793       goto begin_table_error;
00794     }
00795   }
00796 #endif
00797 
00798   /* Make sure the new table name does not collide with an existing
00799   ** index or table name in the same database.  Issue an error message if
00800   ** it does. The exception is if the statement being parsed was passed
00801   ** to an sqlite3_declare_vtab() call. In that case only the column names
00802   ** and types will be used, so there is no need to test for namespace
00803   ** collisions.
00804   */
00805   if( !IN_DECLARE_VTAB ){
00806     if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
00807       goto begin_table_error;
00808     }
00809     pTable = sqlite3FindTable(db, zName, db->aDb[iDb].zName);
00810     if( pTable ){
00811       if( !noErr ){
00812         sqlite3ErrorMsg(pParse, "table %T already exists", pName);
00813       }
00814       goto begin_table_error;
00815     }
00816     if( sqlite3FindIndex(db, zName, 0)!=0 && (iDb==0 || !db->init.busy) ){
00817       sqlite3ErrorMsg(pParse, "there is already an index named %s", zName);
00818       goto begin_table_error;
00819     }
00820   }
00821 
00822   pTable = sqlite3DbMallocZero(db, sizeof(Table));
00823   if( pTable==0 ){
00824     db->mallocFailed = 1;
00825     pParse->rc = SQLITE_NOMEM;
00826     pParse->nErr++;
00827     goto begin_table_error;
00828   }
00829   pTable->zName = zName;
00830   pTable->iPKey = -1;
00831   pTable->pSchema = db->aDb[iDb].pSchema;
00832   pTable->nRef = 1;
00833   pTable->db = db;
00834   if( pParse->pNewTable ) sqlite3DeleteTable(pParse->pNewTable);
00835   pParse->pNewTable = pTable;
00836 
00837   /* If this is the magic sqlite_sequence table used by autoincrement,
00838   ** then record a pointer to this table in the main database structure
00839   ** so that INSERT can find the table easily.
00840   */
00841 #ifndef SQLITE_OMIT_AUTOINCREMENT
00842   if( !pParse->nested && strcmp(zName, "sqlite_sequence")==0 ){
00843     pTable->pSchema->pSeqTab = pTable;
00844   }
00845 #endif
00846 
00847   /* Begin generating the code that will insert the table record into
00848   ** the SQLITE_MASTER table.  Note in particular that we must go ahead
00849   ** and allocate the record number for the table entry now.  Before any
00850   ** PRIMARY KEY or UNIQUE keywords are parsed.  Those keywords will cause
00851   ** indices to be created and the table record must come before the 
00852   ** indices.  Hence, the record number for the table must be allocated
00853   ** now.
00854   */
00855   if( !db->init.busy && (v = sqlite3GetVdbe(pParse))!=0 ){
00856     int j1;
00857     int fileFormat;
00858     int reg1, reg2, reg3;
00859     sqlite3BeginWriteOperation(pParse, 0, iDb);
00860 
00861 #ifndef SQLITE_OMIT_VIRTUALTABLE
00862     if( isVirtual ){
00863       sqlite3VdbeAddOp0(v, OP_VBegin);
00864     }
00865 #endif
00866 
00867     /* If the file format and encoding in the database have not been set, 
00868     ** set them now.
00869     */
00870     reg1 = pParse->regRowid = ++pParse->nMem;
00871     reg2 = pParse->regRoot = ++pParse->nMem;
00872     reg3 = ++pParse->nMem;
00873     sqlite3VdbeAddOp3(v, OP_ReadCookie, iDb, reg3, 1);   /* file_format */
00874     sqlite3VdbeUsesBtree(v, iDb);
00875     j1 = sqlite3VdbeAddOp1(v, OP_If, reg3);
00876     fileFormat = (db->flags & SQLITE_LegacyFileFmt)!=0 ?
00877                   1 : SQLITE_MAX_FILE_FORMAT;
00878     sqlite3VdbeAddOp2(v, OP_Integer, fileFormat, reg3);
00879     sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, 1, reg3);
00880     sqlite3VdbeAddOp2(v, OP_Integer, ENC(db), reg3);
00881     sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, 4, reg3);
00882     sqlite3VdbeJumpHere(v, j1);
00883 
00884     /* This just creates a place-holder record in the sqlite_master table.
00885     ** The record created does not contain anything yet.  It will be replaced
00886     ** by the real entry in code generated at sqlite3EndTable().
00887     **
00888     ** The rowid for the new entry is left on the top of the stack.
00889     ** The rowid value is needed by the code that sqlite3EndTable will
00890     ** generate.
00891     */
00892 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE)
00893     if( isView || isVirtual ){
00894       sqlite3VdbeAddOp2(v, OP_Integer, 0, reg2);
00895     }else
00896 #endif
00897     {
00898       sqlite3VdbeAddOp2(v, OP_CreateTable, iDb, reg2);
00899     }
00900     sqlite3OpenMasterTable(pParse, iDb);
00901     sqlite3VdbeAddOp2(v, OP_NewRowid, 0, reg1);
00902     sqlite3VdbeAddOp2(v, OP_Null, 0, reg3);
00903     sqlite3VdbeAddOp3(v, OP_Insert, 0, reg3, reg1);
00904     sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
00905     sqlite3VdbeAddOp0(v, OP_Close);
00906   }
00907 
00908   /* Normal (non-error) return. */
00909   return;
00910 
00911   /* If an error occurs, we jump here */
00912 begin_table_error:
00913   sqlite3DbFree(db, zName);
00914   return;
00915 }
00916 
00917 /*
00918 ** This macro is used to compare two strings in a case-insensitive manner.
00919 ** It is slightly faster than calling sqlite3StrICmp() directly, but
00920 ** produces larger code.
00921 **
00922 ** WARNING: This macro is not compatible with the strcmp() family. It
00923 ** returns true if the two strings are equal, otherwise false.
00924 */
00925 #define STRICMP(x, y) (\
00926 sqlite3UpperToLower[*(unsigned char *)(x)]==   \
00927 sqlite3UpperToLower[*(unsigned char *)(y)]     \
00928 && sqlite3StrICmp((x)+1,(y)+1)==0 )
00929 
00930 /*
00931 ** Add a new column to the table currently being constructed.
00932 **
00933 ** The parser calls this routine once for each column declaration
00934 ** in a CREATE TABLE statement.  sqlite3StartTable() gets called
00935 ** first to get things going.  Then this routine is called for each
00936 ** column.
00937 */
00938 void sqlite3AddColumn(Parse *pParse, Token *pName){
00939   Table *p;
00940   int i;
00941   char *z;
00942   Column *pCol;
00943   sqlite3 *db = pParse->db;
00944   if( (p = pParse->pNewTable)==0 ) return;
00945 #if SQLITE_MAX_COLUMN
00946   if( p->nCol+1>db->aLimit[SQLITE_LIMIT_COLUMN] ){
00947     sqlite3ErrorMsg(pParse, "too many columns on %s", p->zName);
00948     return;
00949   }
00950 #endif
00951   z = sqlite3NameFromToken(pParse->db, pName);
00952   if( z==0 ) return;
00953   for(i=0; i<p->nCol; i++){
00954     if( STRICMP(z, p->aCol[i].zName) ){
00955       sqlite3ErrorMsg(pParse, "duplicate column name: %s", z);
00956       sqlite3DbFree(db, z);
00957       return;
00958     }
00959   }
00960   if( (p->nCol & 0x7)==0 ){
00961     Column *aNew;
00962     aNew = sqlite3DbRealloc(pParse->db,p->aCol,(p->nCol+8)*sizeof(p->aCol[0]));
00963     if( aNew==0 ){
00964       sqlite3DbFree(db, z);
00965       return;
00966     }
00967     p->aCol = aNew;
00968   }
00969   pCol = &p->aCol[p->nCol];
00970   memset(pCol, 0, sizeof(p->aCol[0]));
00971   pCol->zName = z;
00972  
00973   /* If there is no type specified, columns have the default affinity
00974   ** 'NONE'. If there is a type specified, then sqlite3AddColumnType() will
00975   ** be called next to set pCol->affinity correctly.
00976   */
00977   pCol->affinity = SQLITE_AFF_NONE;
00978   p->nCol++;
00979 }
00980 
00981 /*
00982 ** This routine is called by the parser while in the middle of
00983 ** parsing a CREATE TABLE statement.  A "NOT NULL" constraint has
00984 ** been seen on a column.  This routine sets the notNull flag on
00985 ** the column currently under construction.
00986 */
00987 void sqlite3AddNotNull(Parse *pParse, int onError){
00988   Table *p;
00989   int i;
00990   if( (p = pParse->pNewTable)==0 ) return;
00991   i = p->nCol-1;
00992   if( i>=0 ) p->aCol[i].notNull = onError;
00993 }
00994 
00995 /*
00996 ** Scan the column type name zType (length nType) and return the
00997 ** associated affinity type.
00998 **
00999 ** This routine does a case-independent search of zType for the 
01000 ** substrings in the following table. If one of the substrings is
01001 ** found, the corresponding affinity is returned. If zType contains
01002 ** more than one of the substrings, entries toward the top of 
01003 ** the table take priority. For example, if zType is 'BLOBINT', 
01004 ** SQLITE_AFF_INTEGER is returned.
01005 **
01006 ** Substring     | Affinity
01007 ** --------------------------------
01008 ** 'INT'         | SQLITE_AFF_INTEGER
01009 ** 'CHAR'        | SQLITE_AFF_TEXT
01010 ** 'CLOB'        | SQLITE_AFF_TEXT
01011 ** 'TEXT'        | SQLITE_AFF_TEXT
01012 ** 'BLOB'        | SQLITE_AFF_NONE
01013 ** 'REAL'        | SQLITE_AFF_REAL
01014 ** 'FLOA'        | SQLITE_AFF_REAL
01015 ** 'DOUB'        | SQLITE_AFF_REAL
01016 **
01017 ** If none of the substrings in the above table are found,
01018 ** SQLITE_AFF_NUMERIC is returned.
01019 */
01020 char sqlite3AffinityType(const Token *pType){
01021   u32 h = 0;
01022   char aff = SQLITE_AFF_NUMERIC;
01023   const unsigned char *zIn = pType->z;
01024   const unsigned char *zEnd = &pType->z[pType->n];
01025 
01026   while( zIn!=zEnd ){
01027     h = (h<<8) + sqlite3UpperToLower[*zIn];
01028     zIn++;
01029     if( h==(('c'<<24)+('h'<<16)+('a'<<8)+'r') ){             /* CHAR */
01030       aff = SQLITE_AFF_TEXT; 
01031     }else if( h==(('c'<<24)+('l'<<16)+('o'<<8)+'b') ){       /* CLOB */
01032       aff = SQLITE_AFF_TEXT;
01033     }else if( h==(('t'<<24)+('e'<<16)+('x'<<8)+'t') ){       /* TEXT */
01034       aff = SQLITE_AFF_TEXT;
01035     }else if( h==(('b'<<24)+('l'<<16)+('o'<<8)+'b')          /* BLOB */
01036         && (aff==SQLITE_AFF_NUMERIC || aff==SQLITE_AFF_REAL) ){
01037       aff = SQLITE_AFF_NONE;
01038 #ifndef SQLITE_OMIT_FLOATING_POINT
01039     }else if( h==(('r'<<24)+('e'<<16)+('a'<<8)+'l')          /* REAL */
01040         && aff==SQLITE_AFF_NUMERIC ){
01041       aff = SQLITE_AFF_REAL;
01042     }else if( h==(('f'<<24)+('l'<<16)+('o'<<8)+'a')          /* FLOA */
01043         && aff==SQLITE_AFF_NUMERIC ){
01044       aff = SQLITE_AFF_REAL;
01045     }else if( h==(('d'<<24)+('o'<<16)+('u'<<8)+'b')          /* DOUB */
01046         && aff==SQLITE_AFF_NUMERIC ){
01047       aff = SQLITE_AFF_REAL;
01048 #endif
01049     }else if( (h&0x00FFFFFF)==(('i'<<16)+('n'<<8)+'t') ){    /* INT */
01050       aff = SQLITE_AFF_INTEGER;
01051       break;
01052     }
01053   }
01054 
01055   return aff;
01056 }
01057 
01058 /*
01059 ** This routine is called by the parser while in the middle of
01060 ** parsing a CREATE TABLE statement.  The pFirst token is the first
01061 ** token in the sequence of tokens that describe the type of the
01062 ** column currently under construction.   pLast is the last token
01063 ** in the sequence.  Use this information to construct a string
01064 ** that contains the typename of the column and store that string
01065 ** in zType.
01066 */ 
01067 void sqlite3AddColumnType(Parse *pParse, Token *pType){
01068   Table *p;
01069   int i;
01070   Column *pCol;
01071   sqlite3 *db;
01072 
01073   if( (p = pParse->pNewTable)==0 ) return;
01074   i = p->nCol-1;
01075   if( i<0 ) return;
01076   pCol = &p->aCol[i];
01077   db = pParse->db;
01078   sqlite3DbFree(db, pCol->zType);
01079   pCol->zType = sqlite3NameFromToken(db, pType);
01080   pCol->affinity = sqlite3AffinityType(pType);
01081 }
01082 
01083 /*
01084 ** The expression is the default value for the most recently added column
01085 ** of the table currently under construction.
01086 **
01087 ** Default value expressions must be constant.  Raise an exception if this
01088 ** is not the case.
01089 **
01090 ** This routine is called by the parser while in the middle of
01091 ** parsing a CREATE TABLE statement.
01092 */
01093 void sqlite3AddDefaultValue(Parse *pParse, Expr *pExpr){
01094   Table *p;
01095   Column *pCol;
01096   sqlite3 *db = pParse->db;
01097   if( (p = pParse->pNewTable)!=0 ){
01098     pCol = &(p->aCol[p->nCol-1]);
01099     if( !sqlite3ExprIsConstantOrFunction(pExpr) ){
01100       sqlite3ErrorMsg(pParse, "default value of column [%s] is not constant",
01101           pCol->zName);
01102     }else{
01103       Expr *pCopy;
01104       sqlite3ExprDelete(db, pCol->pDflt);
01105       pCol->pDflt = pCopy = sqlite3ExprDup(db, pExpr);
01106       if( pCopy ){
01107         sqlite3TokenCopy(db, &pCopy->span, &pExpr->span);
01108       }
01109     }
01110   }
01111   sqlite3ExprDelete(db, pExpr);
01112 }
01113 
01114 /*
01115 ** Designate the PRIMARY KEY for the table.  pList is a list of names 
01116 ** of columns that form the primary key.  If pList is NULL, then the
01117 ** most recently added column of the table is the primary key.
01118 **
01119 ** A table can have at most one primary key.  If the table already has
01120 ** a primary key (and this is the second primary key) then create an
01121 ** error.
01122 **
01123 ** If the PRIMARY KEY is on a single column whose datatype is INTEGER,
01124 ** then we will try to use that column as the rowid.  Set the Table.iPKey
01125 ** field of the table under construction to be the index of the
01126 ** INTEGER PRIMARY KEY column.  Table.iPKey is set to -1 if there is
01127 ** no INTEGER PRIMARY KEY.
01128 **
01129 ** If the key is not an INTEGER PRIMARY KEY, then create a unique
01130 ** index for the key.  No index is created for INTEGER PRIMARY KEYs.
01131 */
01132 void sqlite3AddPrimaryKey(
01133   Parse *pParse,    /* Parsing context */
01134   ExprList *pList,  /* List of field names to be indexed */
01135   int onError,      /* What to do with a uniqueness conflict */
01136   int autoInc,      /* True if the AUTOINCREMENT keyword is present */
01137   int sortOrder     /* SQLITE_SO_ASC or SQLITE_SO_DESC */
01138 ){
01139   Table *pTab = pParse->pNewTable;
01140   char *zType = 0;
01141   int iCol = -1, i;
01142   if( pTab==0 || IN_DECLARE_VTAB ) goto primary_key_exit;
01143   if( pTab->tabFlags & TF_HasPrimaryKey ){
01144     sqlite3ErrorMsg(pParse, 
01145       "table \"%s\" has more than one primary key", pTab->zName);
01146     goto primary_key_exit;
01147   }
01148   pTab->tabFlags |= TF_HasPrimaryKey;
01149   if( pList==0 ){
01150     iCol = pTab->nCol - 1;
01151     pTab->aCol[iCol].isPrimKey = 1;
01152   }else{
01153     for(i=0; i<pList->nExpr; i++){
01154       for(iCol=0; iCol<pTab->nCol; iCol++){
01155         if( sqlite3StrICmp(pList->a[i].zName, pTab->aCol[iCol].zName)==0 ){
01156           break;
01157         }
01158       }
01159       if( iCol<pTab->nCol ){
01160         pTab->aCol[iCol].isPrimKey = 1;
01161       }
01162     }
01163     if( pList->nExpr>1 ) iCol = -1;
01164   }
01165   if( iCol>=0 && iCol<pTab->nCol ){
01166     zType = pTab->aCol[iCol].zType;
01167   }
01168   if( zType && sqlite3StrICmp(zType, "INTEGER")==0
01169         && sortOrder==SQLITE_SO_ASC ){
01170     pTab->iPKey = iCol;
01171     pTab->keyConf = onError;
01172     assert( autoInc==0 || autoInc==1 );
01173     pTab->tabFlags |= autoInc*TF_Autoincrement;
01174   }else if( autoInc ){
01175 #ifndef SQLITE_OMIT_AUTOINCREMENT
01176     sqlite3ErrorMsg(pParse, "AUTOINCREMENT is only allowed on an "
01177        "INTEGER PRIMARY KEY");
01178 #endif
01179   }else{
01180     sqlite3CreateIndex(pParse, 0, 0, 0, pList, onError, 0, 0, sortOrder, 0);
01181     pList = 0;
01182   }
01183 
01184 primary_key_exit:
01185   sqlite3ExprListDelete(pParse->db, pList);
01186   return;
01187 }
01188 
01189 /*
01190 ** Add a new CHECK constraint to the table currently under construction.
01191 */
01192 void sqlite3AddCheckConstraint(
01193   Parse *pParse,    /* Parsing context */
01194   Expr *pCheckExpr  /* The check expression */
01195 ){
01196   sqlite3 *db = pParse->db;
01197 #ifndef SQLITE_OMIT_CHECK
01198   Table *pTab = pParse->pNewTable;
01199   if( pTab && !IN_DECLARE_VTAB ){
01200     /* The CHECK expression must be duplicated so that tokens refer
01201     ** to malloced space and not the (ephemeral) text of the CREATE TABLE
01202     ** statement */
01203     pTab->pCheck = sqlite3ExprAnd(db, pTab->pCheck, 
01204                                   sqlite3ExprDup(db, pCheckExpr));
01205   }
01206 #endif
01207   sqlite3ExprDelete(db, pCheckExpr);
01208 }
01209 
01210 /*
01211 ** Set the collation function of the most recently parsed table column
01212 ** to the CollSeq given.
01213 */
01214 void sqlite3AddCollateType(Parse *pParse, Token *pToken){
01215   Table *p;
01216   int i;
01217   char *zColl;              /* Dequoted name of collation sequence */
01218   sqlite3 *db;
01219 
01220   if( (p = pParse->pNewTable)==0 ) return;
01221   i = p->nCol-1;
01222   db = pParse->db;
01223   zColl = sqlite3NameFromToken(db, pToken);
01224   if( !zColl ) return;
01225 
01226   if( sqlite3LocateCollSeq(pParse, zColl, -1) ){
01227     Index *pIdx;
01228     p->aCol[i].zColl = zColl;
01229   
01230     /* If the column is declared as "<name> PRIMARY KEY COLLATE <type>",
01231     ** then an index may have been created on this column before the
01232     ** collation type was added. Correct this if it is the case.
01233     */
01234     for(pIdx=p->pIndex; pIdx; pIdx=pIdx->pNext){
01235       assert( pIdx->nColumn==1 );
01236       if( pIdx->aiColumn[0]==i ){
01237         pIdx->azColl[0] = p->aCol[i].zColl;
01238       }
01239     }
01240   }else{
01241     sqlite3DbFree(db, zColl);
01242   }
01243 }
01244 
01245 /*
01246 ** This function returns the collation sequence for database native text
01247 ** encoding identified by the string zName, length nName.
01248 **
01249 ** If the requested collation sequence is not available, or not available
01250 ** in the database native encoding, the collation factory is invoked to
01251 ** request it. If the collation factory does not supply such a sequence,
01252 ** and the sequence is available in another text encoding, then that is
01253 ** returned instead.
01254 **
01255 ** If no versions of the requested collations sequence are available, or
01256 ** another error occurs, NULL is returned and an error message written into
01257 ** pParse.
01258 **
01259 ** This routine is a wrapper around sqlite3FindCollSeq().  This routine
01260 ** invokes the collation factory if the named collation cannot be found
01261 ** and generates an error message.
01262 */
01263 CollSeq *sqlite3LocateCollSeq(Parse *pParse, const char *zName, int nName){
01264   sqlite3 *db = pParse->db;
01265   u8 enc = ENC(db);
01266   u8 initbusy = db->init.busy;
01267   CollSeq *pColl;
01268 
01269   pColl = sqlite3FindCollSeq(db, enc, zName, nName, initbusy);
01270   if( !initbusy && (!pColl || !pColl->xCmp) ){
01271     pColl = sqlite3GetCollSeq(db, pColl, zName, nName);
01272     if( !pColl ){
01273       if( nName<0 ){
01274         nName = sqlite3Strlen(db, zName);
01275       }
01276       sqlite3ErrorMsg(pParse, "no such collation sequence: %.*s", nName, zName);
01277       pColl = 0;
01278     }
01279   }
01280 
01281   return pColl;
01282 }
01283 
01284 
01285 /*
01286 ** Generate code that will increment the schema cookie.
01287 **
01288 ** The schema cookie is used to determine when the schema for the
01289 ** database changes.  After each schema change, the cookie value
01290 ** changes.  When a process first reads the schema it records the
01291 ** cookie.  Thereafter, whenever it goes to access the database,
01292 ** it checks the cookie to make sure the schema has not changed
01293 ** since it was last read.
01294 **
01295 ** This plan is not completely bullet-proof.  It is possible for
01296 ** the schema to change multiple times and for the cookie to be
01297 ** set back to prior value.  But schema changes are infrequent
01298 ** and the probability of hitting the same cookie value is only
01299 ** 1 chance in 2^32.  So we're safe enough.
01300 */
01301 void sqlite3ChangeCookie(Parse *pParse, int iDb){
01302   int r1 = sqlite3GetTempReg(pParse);
01303   sqlite3 *db = pParse->db;
01304   Vdbe *v = pParse->pVdbe;
01305   sqlite3VdbeAddOp2(v, OP_Integer, db->aDb[iDb].pSchema->schema_cookie+1, r1);
01306   sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, 0, r1);
01307   sqlite3ReleaseTempReg(pParse, r1);
01308 }
01309 
01310 /*
01311 ** Measure the number of characters needed to output the given
01312 ** identifier.  The number returned includes any quotes used
01313 ** but does not include the null terminator.
01314 **
01315 ** The estimate is conservative.  It might be larger that what is
01316 ** really needed.
01317 */
01318 static int identLength(const char *z){
01319   int n;
01320   for(n=0; *z; n++, z++){
01321     if( *z=='"' ){ n++; }
01322   }
01323   return n + 2;
01324 }
01325 
01326 /*
01327 ** Write an identifier onto the end of the given string.  Add
01328 ** quote characters as needed.
01329 */
01330 static void identPut(char *z, int *pIdx, char *zSignedIdent){
01331   unsigned char *zIdent = (unsigned char*)zSignedIdent;
01332   int i, j, needQuote;
01333   i = *pIdx;
01334   for(j=0; zIdent[j]; j++){
01335     if( !isalnum(zIdent[j]) && zIdent[j]!='_' ) break;
01336   }
01337   needQuote =  zIdent[j]!=0 || isdigit(zIdent[0])
01338                   || sqlite3KeywordCode(zIdent, j)!=TK_ID;
01339   if( needQuote ) z[i++] = '"';
01340   for(j=0; zIdent[j]; j++){
01341     z[i++] = zIdent[j];
01342     if( zIdent[j]=='"' ) z[i++] = '"';
01343   }
01344   if( needQuote ) z[i++] = '"';
01345   z[i] = 0;
01346   *pIdx = i;
01347 }
01348 
01349 /*
01350 ** Generate a CREATE TABLE statement appropriate for the given
01351 ** table.  Memory to hold the text of the statement is obtained
01352 ** from sqliteMalloc() and must be freed by the calling function.
01353 */
01354 static char *createTableStmt(sqlite3 *db, Table *p, int isTemp){
01355   int i, k, n;
01356   char *zStmt;
01357   char *zSep, *zSep2, *zEnd, *z;
01358   Column *pCol;
01359   n = 0;
01360   for(pCol = p->aCol, i=0; i<p->nCol; i++, pCol++){
01361     n += identLength(pCol->zName);
01362     z = pCol->zType;
01363     if( z ){
01364       n += (strlen(z) + 1);
01365     }
01366   }
01367   n += identLength(p->zName);
01368   if( n<50 ){
01369     zSep = "";
01370     zSep2 = ",";
01371     zEnd = ")";
01372   }else{
01373     zSep = "\n  ";
01374     zSep2 = ",\n  ";
01375     zEnd = "\n)";
01376   }
01377   n += 35 + 6*p->nCol;
01378   zStmt = sqlite3Malloc( n );
01379   if( zStmt==0 ){
01380     db->mallocFailed = 1;
01381     return 0;
01382   }
01383   sqlite3_snprintf(n, zStmt,
01384                   !OMIT_TEMPDB&&isTemp ? "CREATE TEMP TABLE ":"CREATE TABLE ");
01385   k = strlen(zStmt);
01386   identPut(zStmt, &k, p->zName);
01387   zStmt[k++] = '(';
01388   for(pCol=p->aCol, i=0; i<p->nCol; i++, pCol++){
01389     sqlite3_snprintf(n-k, &zStmt[k], zSep);
01390     k += strlen(&zStmt[k]);
01391     zSep = zSep2;
01392     identPut(zStmt, &k, pCol->zName);
01393     if( (z = pCol->zType)!=0 ){
01394       zStmt[k++] = ' ';
01395       assert( strlen(z)+k+1<=n );
01396       sqlite3_snprintf(n-k, &zStmt[k], "%s", z);
01397       k += strlen(z);
01398     }
01399   }
01400   sqlite3_snprintf(n-k, &zStmt[k], "%s", zEnd);
01401   return zStmt;
01402 }
01403 
01404 /*
01405 ** This routine is called to report the final ")" that terminates
01406 ** a CREATE TABLE statement.
01407 **
01408 ** The table structure that other action routines have been building
01409 ** is added to the internal hash tables, assuming no errors have
01410 ** occurred.
01411 **
01412 ** An entry for the table is made in the master table on disk, unless
01413 ** this is a temporary table or db->init.busy==1.  When db->init.busy==1
01414 ** it means we are reading the sqlite_master table because we just
01415 ** connected to the database or because the sqlite_master table has
01416 ** recently changed, so the entry for this table already exists in
01417 ** the sqlite_master table.  We do not want to create it again.
01418 **
01419 ** If the pSelect argument is not NULL, it means that this routine
01420 ** was called to create a table generated from a 
01421 ** "CREATE TABLE ... AS SELECT ..." statement.  The column names of
01422 ** the new table will match the result set of the SELECT.
01423 */
01424 void sqlite3EndTable(
01425   Parse *pParse,          /* Parse context */
01426   Token *pCons,           /* The ',' token after the last column defn. */
01427   Token *pEnd,            /* The final ')' token in the CREATE TABLE */
01428   Select *pSelect         /* Select from a "CREATE ... AS SELECT" */
01429 ){
01430   Table *p;
01431   sqlite3 *db = pParse->db;
01432   int iDb;
01433 
01434   if( (pEnd==0 && pSelect==0) || pParse->nErr || db->mallocFailed ) {
01435     return;
01436   }
01437   p = pParse->pNewTable;
01438   if( p==0 ) return;
01439 
01440   assert( !db->init.busy || !pSelect );
01441 
01442   iDb = sqlite3SchemaToIndex(db, p->pSchema);
01443 
01444 #ifndef SQLITE_OMIT_CHECK
01445   /* Resolve names in all CHECK constraint expressions.
01446   */
01447   if( p->pCheck ){
01448     SrcList sSrc;                   /* Fake SrcList for pParse->pNewTable */
01449     NameContext sNC;                /* Name context for pParse->pNewTable */
01450 
01451     memset(&sNC, 0, sizeof(sNC));
01452     memset(&sSrc, 0, sizeof(sSrc));
01453     sSrc.nSrc = 1;
01454     sSrc.a[0].zName = p->zName;
01455     sSrc.a[0].pTab = p;
01456     sSrc.a[0].iCursor = -1;
01457     sNC.pParse = pParse;
01458     sNC.pSrcList = &sSrc;
01459     sNC.isCheck = 1;
01460     if( sqlite3ResolveExprNames(&sNC, p->pCheck) ){
01461       return;
01462     }
01463   }
01464 #endif /* !defined(SQLITE_OMIT_CHECK) */
01465 
01466   /* If the db->init.busy is 1 it means we are reading the SQL off the
01467   ** "sqlite_master" or "sqlite_temp_master" table on the disk.
01468   ** So do not write to the disk again.  Extract the root page number
01469   ** for the table from the db->init.newTnum field.  (The page number
01470   ** should have been put there by the sqliteOpenCb routine.)
01471   */
01472   if( db->init.busy ){
01473     p->tnum = db->init.newTnum;
01474   }
01475 
01476   /* If not initializing, then create a record for the new table
01477   ** in the SQLITE_MASTER table of the database.  The record number
01478   ** for the new table entry should already be on the stack.
01479   **
01480   ** If this is a TEMPORARY table, write the entry into the auxiliary
01481   ** file instead of into the main database file.
01482   */
01483   if( !db->init.busy ){
01484     int n;
01485     Vdbe *v;
01486     char *zType;    /* "view" or "table" */
01487     char *zType2;   /* "VIEW" or "TABLE" */
01488     char *zStmt;    /* Text of the CREATE TABLE or CREATE VIEW statement */
01489 
01490     v = sqlite3GetVdbe(pParse);
01491     if( v==0 ) return;
01492 
01493     sqlite3VdbeAddOp1(v, OP_Close, 0);
01494 
01495     /* Create the rootpage for the new table and push it onto the stack.
01496     ** A view has no rootpage, so just push a zero onto the stack for
01497     ** views.  Initialize zType at the same time.
01498     */
01499     if( p->pSelect==0 ){
01500       /* A regular table */
01501       zType = "table";
01502       zType2 = "TABLE";
01503 #ifndef SQLITE_OMIT_VIEW
01504     }else{
01505       /* A view */
01506       zType = "view";
01507       zType2 = "VIEW";
01508 #endif
01509     }
01510 
01511     /* If this is a CREATE TABLE xx AS SELECT ..., execute the SELECT
01512     ** statement to populate the new table. The root-page number for the
01513     ** new table is on the top of the vdbe stack.
01514     **
01515     ** Once the SELECT has been coded by sqlite3Select(), it is in a
01516     ** suitable state to query for the column names and types to be used
01517     ** by the new table.
01518     **
01519     ** A shared-cache write-lock is not required to write to the new table,
01520     ** as a schema-lock must have already been obtained to create it. Since
01521     ** a schema-lock excludes all other database users, the write-lock would
01522     ** be redundant.
01523     */
01524     if( pSelect ){
01525       SelectDest dest;
01526       Table *pSelTab;
01527 
01528       assert(pParse->nTab==0);
01529       sqlite3VdbeAddOp3(v, OP_OpenWrite, 1, pParse->regRoot, iDb);
01530       sqlite3VdbeChangeP5(v, 1);
01531       pParse->nTab = 2;
01532       sqlite3SelectDestInit(&dest, SRT_Table, 1);
01533       sqlite3Select(pParse, pSelect, &dest);
01534       sqlite3VdbeAddOp1(v, OP_Close, 1);
01535       if( pParse->nErr==0 ){
01536         pSelTab = sqlite3ResultSetOfSelect(pParse, pSelect);
01537         if( pSelTab==0 ) return;
01538         assert( p->aCol==0 );
01539         p->nCol = pSelTab->nCol;
01540         p->aCol = pSelTab->aCol;
01541         pSelTab->nCol = 0;
01542         pSelTab->aCol = 0;
01543         sqlite3DeleteTable(pSelTab);
01544       }
01545     }
01546 
01547     /* Compute the complete text of the CREATE statement */
01548     if( pSelect ){
01549       zStmt = createTableStmt(db, p, p->pSchema==db->aDb[1].pSchema);
01550     }else{
01551       n = pEnd->z - pParse->sNameToken.z + 1;
01552       zStmt = sqlite3MPrintf(db, 
01553           "CREATE %s %.*s", zType2, n, pParse->sNameToken.z
01554       );
01555     }
01556 
01557     /* A slot for the record has already been allocated in the 
01558     ** SQLITE_MASTER table.  We just need to update that slot with all
01559     ** the information we've collected.  The rowid for the preallocated
01560     ** slot is the 2nd item on the stack.  The top of the stack is the
01561     ** root page for the new table (or a 0 if this is a view).
01562     */
01563     sqlite3NestedParse(pParse,
01564       "UPDATE %Q.%s "
01565          "SET type='%s', name=%Q, tbl_name=%Q, rootpage=#%d, sql=%Q "
01566        "WHERE rowid=#%d",
01567       db->aDb[iDb].zName, SCHEMA_TABLE(iDb),
01568       zType,
01569       p->zName,
01570       p->zName,
01571       pParse->regRoot,
01572       zStmt,
01573       pParse->regRowid
01574     );
01575     sqlite3DbFree(db, zStmt);
01576     sqlite3ChangeCookie(pParse, iDb);
01577 
01578 #ifndef SQLITE_OMIT_AUTOINCREMENT
01579     /* Check to see if we need to create an sqlite_sequence table for
01580     ** keeping track of autoincrement keys.
01581     */
01582     if( p->tabFlags & TF_Autoincrement ){
01583       Db *pDb = &db->aDb[iDb];
01584       if( pDb->pSchema->pSeqTab==0 ){
01585         sqlite3NestedParse(pParse,
01586           "CREATE TABLE %Q.sqlite_sequence(name,seq)",
01587           pDb->zName
01588         );
01589       }
01590     }
01591 #endif
01592 
01593     /* Reparse everything to update our internal data structures */
01594     sqlite3VdbeAddOp4(v, OP_ParseSchema, iDb, 0, 0,
01595         sqlite3MPrintf(db, "tbl_name='%q'",p->zName), P4_DYNAMIC);
01596   }
01597 
01598 
01599   /* Add the table to the in-memory representation of the database.
01600   */
01601   if( db->init.busy && pParse->nErr==0 ){
01602     Table *pOld;
01603     FKey *pFKey; 
01604     Schema *pSchema = p->pSchema;
01605     pOld = sqlite3HashInsert(&pSchema->tblHash, p->zName, strlen(p->zName)+1,p);
01606     if( pOld ){
01607       assert( p==pOld );  /* Malloc must have failed inside HashInsert() */
01608       db->mallocFailed = 1;
01609       return;
01610     }
01611 #ifndef SQLITE_OMIT_FOREIGN_KEY
01612     for(pFKey=p->pFKey; pFKey; pFKey=pFKey->pNextFrom){
01613       void *data;
01614       int nTo = strlen(pFKey->zTo) + 1;
01615       pFKey->pNextTo = sqlite3HashFind(&pSchema->aFKey, pFKey->zTo, nTo);
01616       data = sqlite3HashInsert(&pSchema->aFKey, pFKey->zTo, nTo, pFKey);
01617       if( data==(void *)pFKey ){
01618         db->mallocFailed = 1;
01619       }
01620     }
01621 #endif
01622     pParse->pNewTable = 0;
01623     db->nTable++;
01624     db->flags |= SQLITE_InternChanges;
01625 
01626 #ifndef SQLITE_OMIT_ALTERTABLE
01627     if( !p->pSelect ){
01628       const char *zName = (const char *)pParse->sNameToken.z;
01629       int nName;
01630       assert( !pSelect && pCons && pEnd );
01631       if( pCons->z==0 ){
01632         pCons = pEnd;
01633       }
01634       nName = (const char *)pCons->z - zName;
01635       p->addColOffset = 13 + sqlite3Utf8CharLen(zName, nName);
01636     }
01637 #endif
01638   }
01639 }
01640 
01641 #ifndef SQLITE_OMIT_VIEW
01642 /*
01643 ** The parser calls this routine in order to create a new VIEW
01644 */
01645 void sqlite3CreateView(
01646   Parse *pParse,     /* The parsing context */
01647   Token *pBegin,     /* The CREATE token that begins the statement */
01648   Token *pName1,     /* The token that holds the name of the view */
01649   Token *pName2,     /* The token that holds the name of the view */
01650   Select *pSelect,   /* A SELECT statement that will become the new view */
01651   int isTemp,        /* TRUE for a TEMPORARY view */
01652   int noErr          /* Suppress error messages if VIEW already exists */
01653 ){
01654   Table *p;
01655   int n;
01656   const unsigned char *z;
01657   Token sEnd;
01658   DbFixer sFix;
01659   Token *pName;
01660   int iDb;
01661   sqlite3 *db = pParse->db;
01662 
01663   if( pParse->nVar>0 ){
01664     sqlite3ErrorMsg(pParse, "parameters are not allowed in views");
01665     sqlite3SelectDelete(db, pSelect);
01666     return;
01667   }
01668   sqlite3StartTable(pParse, pName1, pName2, isTemp, 1, 0, noErr);
01669   p = pParse->pNewTable;
01670   if( p==0 || pParse->nErr ){
01671     sqlite3SelectDelete(db, pSelect);
01672     return;
01673   }
01674   sqlite3TwoPartName(pParse, pName1, pName2, &pName);
01675   iDb = sqlite3SchemaToIndex(db, p->pSchema);
01676   if( sqlite3FixInit(&sFix, pParse, iDb, "view", pName)
01677     && sqlite3FixSelect(&sFix, pSelect)
01678   ){
01679     sqlite3SelectDelete(db, pSelect);
01680     return;
01681   }
01682 
01683   /* Make a copy of the entire SELECT statement that defines the view.
01684   ** This will force all the Expr.token.z values to be dynamically
01685   ** allocated rather than point to the input string - which means that
01686   ** they will persist after the current sqlite3_exec() call returns.
01687   */
01688   p->pSelect = sqlite3SelectDup(db, pSelect);
01689   sqlite3SelectDelete(db, pSelect);
01690   if( db->mallocFailed ){
01691     return;
01692   }
01693   if( !db->init.busy ){
01694     sqlite3ViewGetColumnNames(pParse, p);
01695   }
01696 
01697   /* Locate the end of the CREATE VIEW statement.  Make sEnd point to
01698   ** the end.
01699   */
01700   sEnd = pParse->sLastToken;
01701   if( sEnd.z[0]!=0 && sEnd.z[0]!=';' ){
01702     sEnd.z += sEnd.n;
01703   }
01704   sEnd.n = 0;
01705   n = sEnd.z - pBegin->z;
01706   z = (const unsigned char*)pBegin->z;
01707   while( n>0 && (z[n-1]==';' || isspace(z[n-1])) ){ n--; }
01708   sEnd.z = &z[n-1];
01709   sEnd.n = 1;
01710 
01711   /* Use sqlite3EndTable() to add the view to the SQLITE_MASTER table */
01712   sqlite3EndTable(pParse, 0, &sEnd, 0);
01713   return;
01714 }
01715 #endif /* SQLITE_OMIT_VIEW */
01716 
01717 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE)
01718 /*
01719 ** The Table structure pTable is really a VIEW.  Fill in the names of
01720 ** the columns of the view in the pTable structure.  Return the number
01721 ** of errors.  If an error is seen leave an error message in pParse->zErrMsg.
01722 */
01723 int sqlite3ViewGetColumnNames(Parse *pParse, Table *pTable){
01724   Table *pSelTab;   /* A fake table from which we get the result set */
01725   Select *pSel;     /* Copy of the SELECT that implements the view */
01726   int nErr = 0;     /* Number of errors encountered */
01727   int n;            /* Temporarily holds the number of cursors assigned */
01728   sqlite3 *db = pParse->db;  /* Database connection for malloc errors */
01729   int (*xAuth)(void*,int,const char*,const char*,const char*,const char*);
01730 
01731   assert( pTable );
01732 
01733 #ifndef SQLITE_OMIT_VIRTUALTABLE
01734   if( sqlite3VtabCallConnect(pParse, pTable) ){
01735     return SQLITE_ERROR;
01736   }
01737   if( IsVirtual(pTable) ) return 0;
01738 #endif
01739 
01740 #ifndef SQLITE_OMIT_VIEW
01741   /* A positive nCol means the columns names for this view are
01742   ** already known.
01743   */
01744   if( pTable->nCol>0 ) return 0;
01745 
01746   /* A negative nCol is a special marker meaning that we are currently
01747   ** trying to compute the column names.  If we enter this routine with
01748   ** a negative nCol, it means two or more views form a loop, like this:
01749   **
01750   **     CREATE VIEW one AS SELECT * FROM two;
01751   **     CREATE VIEW two AS SELECT * FROM one;
01752   **
01753   ** Actually, this error is caught previously and so the following test
01754   ** should always fail.  But we will leave it in place just to be safe.
01755   */
01756   if( pTable->nCol<0 ){
01757     sqlite3ErrorMsg(pParse, "view %s is circularly defined", pTable->zName);
01758     return 1;
01759   }
01760   assert( pTable->nCol>=0 );
01761 
01762   /* If we get this far, it means we need to compute the table names.
01763   ** Note that the call to sqlite3ResultSetOfSelect() will expand any
01764   ** "*" elements in the results set of the view and will assign cursors
01765   ** to the elements of the FROM clause.  But we do not want these changes
01766   ** to be permanent.  So the computation is done on a copy of the SELECT
01767   ** statement that defines the view.
01768   */
01769   assert( pTable->pSelect );
01770   pSel = sqlite3SelectDup(db, pTable->pSelect);
01771   if( pSel ){
01772     n = pParse->nTab;
01773     sqlite3SrcListAssignCursors(pParse, pSel->pSrc);
01774     pTable->nCol = -1;
01775 #ifndef SQLITE_OMIT_AUTHORIZATION
01776     xAuth = db->xAuth;
01777     db->xAuth = 0;
01778     pSelTab = sqlite3ResultSetOfSelect(pParse, pSel);
01779     db->xAuth = xAuth;
01780 #else
01781     pSelTab = sqlite3ResultSetOfSelect(pParse, pSel);
01782 #endif
01783     pParse->nTab = n;
01784     if( pSelTab ){
01785       assert( pTable->aCol==0 );
01786       pTable->nCol = pSelTab->nCol;
01787       pTable->aCol = pSelTab->aCol;
01788       pSelTab->nCol = 0;
01789       pSelTab->aCol = 0;
01790       sqlite3DeleteTable(pSelTab);
01791       pTable->pSchema->flags |= DB_UnresetViews;
01792     }else{
01793       pTable->nCol = 0;
01794       nErr++;
01795     }
01796     sqlite3SelectDelete(db, pSel);
01797   } else {
01798     nErr++;
01799   }
01800 #endif /* SQLITE_OMIT_VIEW */
01801   return nErr;  
01802 }
01803 #endif /* !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) */
01804 
01805 #ifndef SQLITE_OMIT_VIEW
01806 /*
01807 ** Clear the column names from every VIEW in database idx.
01808 */
01809 static void sqliteViewResetAll(sqlite3 *db, int idx){
01810   HashElem *i;
01811   if( !DbHasProperty(db, idx, DB_UnresetViews) ) return;
01812   for(i=sqliteHashFirst(&db->aDb[idx].pSchema->tblHash); i;i=sqliteHashNext(i)){
01813     Table *pTab = sqliteHashData(i);
01814     if( pTab->pSelect ){
01815       sqliteResetColumnNames(pTab);
01816     }
01817   }
01818   DbClearProperty(db, idx, DB_UnresetViews);
01819 }
01820 #else
01821 # define sqliteViewResetAll(A,B)
01822 #endif /* SQLITE_OMIT_VIEW */
01823 
01824 /*
01825 ** This function is called by the VDBE to adjust the internal schema
01826 ** used by SQLite when the btree layer moves a table root page. The
01827 ** root-page of a table or index in database iDb has changed from iFrom
01828 ** to iTo.
01829 **
01830 ** Ticket #1728:  The symbol table might still contain information
01831 ** on tables and/or indices that are the process of being deleted.
01832 ** If you are unlucky, one of those deleted indices or tables might
01833 ** have the same rootpage number as the real table or index that is
01834 ** being moved.  So we cannot stop searching after the first match 
01835 ** because the first match might be for one of the deleted indices
01836 ** or tables and not the table/index that is actually being moved.
01837 ** We must continue looping until all tables and indices with
01838 ** rootpage==iFrom have been converted to have a rootpage of iTo
01839 ** in order to be certain that we got the right one.
01840 */
01841 #ifndef SQLITE_OMIT_AUTOVACUUM
01842 void sqlite3RootPageMoved(Db *pDb, int iFrom, int iTo){
01843   HashElem *pElem;
01844   Hash *pHash;
01845 
01846   pHash = &pDb->pSchema->tblHash;
01847   for(pElem=sqliteHashFirst(pHash); pElem; pElem=sqliteHashNext(pElem)){
01848     Table *pTab = sqliteHashData(pElem);
01849     if( pTab->tnum==iFrom ){
01850       pTab->tnum = iTo;
01851     }
01852   }
01853   pHash = &pDb->pSchema->idxHash;
01854   for(pElem=sqliteHashFirst(pHash); pElem; pElem=sqliteHashNext(pElem)){
01855     Index *pIdx = sqliteHashData(pElem);
01856     if( pIdx->tnum==iFrom ){
01857       pIdx->tnum = iTo;
01858     }
01859   }
01860 }
01861 #endif
01862 
01863 /*
01864 ** Write code to erase the table with root-page iTable from database iDb.
01865 ** Also write code to modify the sqlite_master table and internal schema
01866 ** if a root-page of another table is moved by the btree-layer whilst
01867 ** erasing iTable (this can happen with an auto-vacuum database).
01868 */ 
01869 static void destroyRootPage(Parse *pParse, int iTable, int iDb){
01870   Vdbe *v = sqlite3GetVdbe(pParse);
01871   int r1 = sqlite3GetTempReg(pParse);
01872   sqlite3VdbeAddOp3(v, OP_Destroy, iTable, r1, iDb);
01873 #ifndef SQLITE_OMIT_AUTOVACUUM
01874   /* OP_Destroy stores an in integer r1. If this integer
01875   ** is non-zero, then it is the root page number of a table moved to
01876   ** location iTable. The following code modifies the sqlite_master table to
01877   ** reflect this.
01878   **
01879   ** The "#%d" in the SQL is a special constant that means whatever value
01880   ** is on the top of the stack.  See sqlite3RegisterExpr().
01881   */
01882   sqlite3NestedParse(pParse, 
01883      "UPDATE %Q.%s SET rootpage=%d WHERE #%d AND rootpage=#%d",
01884      pParse->db->aDb[iDb].zName, SCHEMA_TABLE(iDb), iTable, r1, r1);
01885 #endif
01886   sqlite3ReleaseTempReg(pParse, r1);
01887 }
01888 
01889 /*
01890 ** Write VDBE code to erase table pTab and all associated indices on disk.
01891 ** Code to update the sqlite_master tables and internal schema definitions
01892 ** in case a root-page belonging to another table is moved by the btree layer
01893 ** is also added (this can happen with an auto-vacuum database).
01894 */
01895 static void destroyTable(Parse *pParse, Table *pTab){
01896 #ifdef SQLITE_OMIT_AUTOVACUUM
01897   Index *pIdx;
01898   int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
01899   destroyRootPage(pParse, pTab->tnum, iDb);
01900   for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
01901     destroyRootPage(pParse, pIdx->tnum, iDb);
01902   }
01903 #else
01904   /* If the database may be auto-vacuum capable (if SQLITE_OMIT_AUTOVACUUM
01905   ** is not defined), then it is important to call OP_Destroy on the
01906   ** table and index root-pages in order, starting with the numerically 
01907   ** largest root-page number. This guarantees that none of the root-pages
01908   ** to be destroyed is relocated by an earlier OP_Destroy. i.e. if the
01909   ** following were coded:
01910   **
01911   ** OP_Destroy 4 0
01912   ** ...
01913   ** OP_Destroy 5 0
01914   **
01915   ** and root page 5 happened to be the largest root-page number in the
01916   ** database, then root page 5 would be moved to page 4 by the 
01917   ** "OP_Destroy 4 0" opcode. The subsequent "OP_Destroy 5 0" would hit
01918   ** a free-list page.
01919   */
01920   int iTab = pTab->tnum;
01921   int iDestroyed = 0;
01922 
01923   while( 1 ){
01924     Index *pIdx;
01925     int iLargest = 0;
01926 
01927     if( iDestroyed==0 || iTab<iDestroyed ){
01928       iLargest = iTab;
01929     }
01930     for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
01931       int iIdx = pIdx->tnum;
01932       assert( pIdx->pSchema==pTab->pSchema );
01933       if( (iDestroyed==0 || (iIdx<iDestroyed)) && iIdx>iLargest ){
01934         iLargest = iIdx;
01935       }
01936     }
01937     if( iLargest==0 ){
01938       return;
01939     }else{
01940       int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
01941       destroyRootPage(pParse, iLargest, iDb);
01942       iDestroyed = iLargest;
01943     }
01944   }
01945 #endif
01946 }
01947 
01948 /*
01949 ** This routine is called to do the work of a DROP TABLE statement.
01950 ** pName is the name of the table to be dropped.
01951 */
01952 void sqlite3DropTable(Parse *pParse, SrcList *pName, int isView, int noErr){
01953   Table *pTab;
01954   Vdbe *v;
01955   sqlite3 *db = pParse->db;
01956   int iDb;
01957 
01958   if( pParse->nErr || db->mallocFailed ){
01959     goto exit_drop_table;
01960   }
01961   assert( pName->nSrc==1 );
01962   pTab = sqlite3LocateTable(pParse, isView, 
01963                             pName->a[0].zName, pName->a[0].zDatabase);
01964 
01965   if( pTab==0 ){
01966     if( noErr ){
01967       sqlite3ErrorClear(pParse);
01968     }
01969     goto exit_drop_table;
01970   }
01971   iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
01972   assert( iDb>=0 && iDb<db->nDb );
01973 
01974   /* If pTab is a virtual table, call ViewGetColumnNames() to ensure
01975   ** it is initialized.
01976   */
01977   if( IsVirtual(pTab) && sqlite3ViewGetColumnNames(pParse, pTab) ){
01978     goto exit_drop_table;
01979   }
01980 #ifndef SQLITE_OMIT_AUTHORIZATION
01981   {
01982     int code;
01983     const char *zTab = SCHEMA_TABLE(iDb);
01984     const char *zDb = db->aDb[iDb].zName;
01985     const char *zArg2 = 0;
01986     if( sqlite3AuthCheck(pParse, SQLITE_DELETE, zTab, 0, zDb)){
01987       goto exit_drop_table;
01988     }
01989     if( isView ){
01990       if( !OMIT_TEMPDB && iDb==1 ){
01991         code = SQLITE_DROP_TEMP_VIEW;
01992       }else{
01993         code = SQLITE_DROP_VIEW;
01994       }
01995 #ifndef SQLITE_OMIT_VIRTUALTABLE
01996     }else if( IsVirtual(pTab) ){
01997       code = SQLITE_DROP_VTABLE;
01998       zArg2 = pTab->pMod->zName;
01999 #endif
02000     }else{
02001       if( !OMIT_TEMPDB && iDb==1 ){
02002         code = SQLITE_DROP_TEMP_TABLE;
02003       }else{
02004         code = SQLITE_DROP_TABLE;
02005       }
02006     }
02007     if( sqlite3AuthCheck(pParse, code, pTab->zName, zArg2, zDb) ){
02008       goto exit_drop_table;
02009     }
02010     if( sqlite3AuthCheck(pParse, SQLITE_DELETE, pTab->zName, 0, zDb) ){
02011       goto exit_drop_table;
02012     }
02013   }
02014 #endif
02015   if( sqlite3StrNICmp(pTab->zName, "sqlite_", 7)==0 ){
02016     sqlite3ErrorMsg(pParse, "table %s may not be dropped", pTab->zName);
02017     goto exit_drop_table;
02018   }
02019 
02020 #ifndef SQLITE_OMIT_VIEW
02021   /* Ensure DROP TABLE is not used on a view, and DROP VIEW is not used
02022   ** on a table.
02023   */
02024   if( isView && pTab->pSelect==0 ){
02025     sqlite3ErrorMsg(pParse, "use DROP TABLE to delete table %s", pTab->zName);
02026     goto exit_drop_table;
02027   }
02028   if( !isView && pTab->pSelect ){
02029     sqlite3ErrorMsg(pParse, "use DROP VIEW to delete view %s", pTab->zName);
02030     goto exit_drop_table;
02031   }
02032 #endif
02033 
02034   /* Generate code to remove the table from the master table
02035   ** on disk.
02036   */
02037   v = sqlite3GetVdbe(pParse);
02038   if( v ){
02039     Trigger *pTrigger;
02040     Db *pDb = &db->aDb[iDb];
02041     sqlite3BeginWriteOperation(pParse, 1, iDb);
02042 
02043 #ifndef SQLITE_OMIT_VIRTUALTABLE
02044     if( IsVirtual(pTab) ){
02045       Vdbe *v = sqlite3GetVdbe(pParse);
02046       if( v ){
02047         sqlite3VdbeAddOp0(v, OP_VBegin);
02048       }
02049     }
02050 #endif
02051 
02052     /* Drop all triggers associated with the table being dropped. Code
02053     ** is generated to remove entries from sqlite_master and/or
02054     ** sqlite_temp_master if required.
02055     */
02056     pTrigger = pTab->pTrigger;
02057     while( pTrigger ){
02058       assert( pTrigger->pSchema==pTab->pSchema || 
02059           pTrigger->pSchema==db->aDb[1].pSchema );
02060       sqlite3DropTriggerPtr(pParse, pTrigger);
02061       pTrigger = pTrigger->pNext;
02062     }
02063 
02064 #ifndef SQLITE_OMIT_AUTOINCREMENT
02065     /* Remove any entries of the sqlite_sequence table associated with
02066     ** the table being dropped. This is done before the table is dropped
02067     ** at the btree level, in case the sqlite_sequence table needs to
02068     ** move as a result of the drop (can happen in auto-vacuum mode).
02069     */
02070     if( pTab->tabFlags & TF_Autoincrement ){
02071       sqlite3NestedParse(pParse,
02072         "DELETE FROM %s.sqlite_sequence WHERE name=%Q",
02073         pDb->zName, pTab->zName
02074       );
02075     }
02076 #endif
02077 
02078     /* Drop all SQLITE_MASTER table and index entries that refer to the
02079     ** table. The program name loops through the master table and deletes
02080     ** every row that refers to a table of the same name as the one being
02081     ** dropped. Triggers are handled seperately because a trigger can be
02082     ** created in the temp database that refers to a table in another
02083     ** database.
02084     */
02085     sqlite3NestedParse(pParse, 
02086         "DELETE FROM %Q.%s WHERE tbl_name=%Q and type!='trigger'",
02087         pDb->zName, SCHEMA_TABLE(iDb), pTab->zName);
02088 
02089     /* Drop any statistics from the sqlite_stat1 table, if it exists */
02090     if( sqlite3FindTable(db, "sqlite_stat1", db->aDb[iDb].zName) ){
02091       sqlite3NestedParse(pParse,
02092         "DELETE FROM %Q.sqlite_stat1 WHERE tbl=%Q", pDb->zName, pTab->zName
02093       );
02094     }
02095 
02096     if( !isView && !IsVirtual(pTab) ){
02097       destroyTable(pParse, pTab);
02098     }
02099 
02100     /* Remove the table entry from SQLite's internal schema and modify
02101     ** the schema cookie.
02102     */
02103     if( IsVirtual(pTab) ){
02104       sqlite3VdbeAddOp4(v, OP_VDestroy, iDb, 0, 0, pTab->zName, 0);
02105     }
02106     sqlite3VdbeAddOp4(v, OP_DropTable, iDb, 0, 0, pTab->zName, 0);
02107     sqlite3ChangeCookie(pParse, iDb);
02108   }
02109   sqliteViewResetAll(db, iDb);
02110 
02111 exit_drop_table:
02112   sqlite3SrcListDelete(db, pName);
02113 }
02114 
02115 /*
02116 ** This routine is called to create a new foreign key on the table
02117 ** currently under construction.  pFromCol determines which columns
02118 ** in the current table point to the foreign key.  If pFromCol==0 then
02119 ** connect the key to the last column inserted.  pTo is the name of
02120 ** the table referred to.  pToCol is a list of tables in the other
02121 ** pTo table that the foreign key points to.  flags contains all
02122 ** information about the conflict resolution algorithms specified
02123 ** in the ON DELETE, ON UPDATE and ON INSERT clauses.
02124 **
02125 ** An FKey structure is created and added to the table currently
02126 ** under construction in the pParse->pNewTable field.  The new FKey
02127 ** is not linked into db->aFKey at this point - that does not happen
02128 ** until sqlite3EndTable().
02129 **
02130 ** The foreign key is set for IMMEDIATE processing.  A subsequent call
02131 ** to sqlite3DeferForeignKey() might change this to DEFERRED.
02132 */
02133 void sqlite3CreateForeignKey(
02134   Parse *pParse,       /* Parsing context */
02135   ExprList *pFromCol,  /* Columns in this table that point to other table */
02136   Token *pTo,          /* Name of the other table */
02137   ExprList *pToCol,    /* Columns in the other table */
02138   int flags            /* Conflict resolution algorithms. */
02139 ){
02140   sqlite3 *db = pParse->db;
02141 #ifndef SQLITE_OMIT_FOREIGN_KEY
02142   FKey *pFKey = 0;
02143   Table *p = pParse->pNewTable;
02144   int nByte;
02145   int i;
02146   int nCol;
02147   char *z;
02148 
02149   assert( pTo!=0 );
02150   if( p==0 || pParse->nErr || IN_DECLARE_VTAB ) goto fk_end;
02151   if( pFromCol==0 ){
02152     int iCol = p->nCol-1;
02153     if( iCol<0 ) goto fk_end;
02154     if( pToCol && pToCol->nExpr!=1 ){
02155       sqlite3ErrorMsg(pParse, "foreign key on %s"
02156          " should reference only one column of table %T",
02157          p->aCol[iCol].zName, pTo);
02158       goto fk_end;
02159     }
02160     nCol = 1;
02161   }else if( pToCol && pToCol->nExpr!=pFromCol->nExpr ){
02162     sqlite3ErrorMsg(pParse,
02163         "number of columns in foreign key does not match the number of "
02164         "columns in the referenced table");
02165     goto fk_end;
02166   }else{
02167     nCol = pFromCol->nExpr;
02168   }
02169   nByte = sizeof(*pFKey) + nCol*sizeof(pFKey->aCol[0]) + pTo->n + 1;
02170   if( pToCol ){
02171     for(i=0; i<pToCol->nExpr; i++){
02172       nByte += strlen(pToCol->a[i].zName) + 1;
02173     }
02174   }
02175   pFKey = sqlite3DbMallocZero(db, nByte );
02176   if( pFKey==0 ){
02177     goto fk_end;
02178   }
02179   pFKey->pFrom = p;
02180   pFKey->pNextFrom = p->pFKey;
02181   z = (char*)&pFKey[1];
02182   pFKey->aCol = (struct sColMap*)z;
02183   z += sizeof(struct sColMap)*nCol;
02184   pFKey->zTo = z;
02185   memcpy(z, pTo->z, pTo->n);
02186   z[pTo->n] = 0;
02187   z += pTo->n+1;
02188   pFKey->pNextTo = 0;
02189   pFKey->nCol = nCol;
02190   if( pFromCol==0 ){
02191     pFKey->aCol[0].iFrom = p->nCol-1;
02192   }else{
02193     for(i=0; i<nCol; i++){
02194       int j;
02195       for(j=0; j<p->nCol; j++){
02196         if( sqlite3StrICmp(p->aCol[j].zName, pFromCol->a[i].zName)==0 ){
02197           pFKey->aCol[i].iFrom = j;
02198           break;
02199         }
02200       }
02201       if( j>=p->nCol ){
02202         sqlite3ErrorMsg(pParse, 
02203           "unknown column \"%s\" in foreign key definition", 
02204           pFromCol->a[i].zName);
02205         goto fk_end;
02206       }
02207     }
02208   }
02209   if( pToCol ){
02210     for(i=0; i<nCol; i++){
02211       int n = strlen(pToCol->a[i].zName);
02212       pFKey->aCol[i].zCol = z;
02213       memcpy(z, pToCol->a[i].zName, n);
02214       z[n] = 0;
02215       z += n+1;
02216     }
02217   }
02218   pFKey->isDeferred = 0;
02219   pFKey->deleteConf = flags & 0xff;
02220   pFKey->updateConf = (flags >> 8 ) & 0xff;
02221   pFKey->insertConf = (flags >> 16 ) & 0xff;
02222 
02223   /* Link the foreign key to the table as the last step.
02224   */
02225   p->pFKey = pFKey;
02226   pFKey = 0;
02227 
02228 fk_end:
02229   sqlite3DbFree(db, pFKey);
02230 #endif /* !defined(SQLITE_OMIT_FOREIGN_KEY) */
02231   sqlite3ExprListDelete(db, pFromCol);
02232   sqlite3ExprListDelete(db, pToCol);
02233 }
02234 
02235 /*
02236 ** This routine is called when an INITIALLY IMMEDIATE or INITIALLY DEFERRED
02237 ** clause is seen as part of a foreign key definition.  The isDeferred
02238 ** parameter is 1 for INITIALLY DEFERRED and 0 for INITIALLY IMMEDIATE.
02239 ** The behavior of the most recently created foreign key is adjusted
02240 ** accordingly.
02241 */
02242 void sqlite3DeferForeignKey(Parse *pParse, int isDeferred){
02243 #ifndef SQLITE_OMIT_FOREIGN_KEY
02244   Table *pTab;
02245   FKey *pFKey;
02246   if( (pTab = pParse->pNewTable)==0 || (pFKey = pTab->pFKey)==0 ) return;
02247   pFKey->isDeferred = isDeferred;
02248 #endif
02249 }
02250 
02251 /*
02252 ** Generate code that will erase and refill index *pIdx.  This is
02253 ** used to initialize a newly created index or to recompute the
02254 ** content of an index in response to a REINDEX command.
02255 **
02256 ** if memRootPage is not negative, it means that the index is newly
02257 ** created.  The register specified by memRootPage contains the
02258 ** root page number of the index.  If memRootPage is negative, then
02259 ** the index already exists and must be cleared before being refilled and
02260 ** the root page number of the index is taken from pIndex->tnum.
02261 */
02262 static void sqlite3RefillIndex(Parse *pParse, Index *pIndex, int memRootPage){
02263   Table *pTab = pIndex->pTable;  /* The table that is indexed */
02264   int iTab = pParse->nTab;       /* Btree cursor used for pTab */
02265   int iIdx = pParse->nTab+1;     /* Btree cursor used for pIndex */
02266   int addr1;                     /* Address of top of loop */
02267   int tnum;                      /* Root page of index */
02268   Vdbe *v;                       /* Generate code into this virtual machine */
02269   KeyInfo *pKey;                 /* KeyInfo for index */
02270   int regIdxKey;                 /* Registers containing the index key */
02271   int regRecord;                 /* Register holding assemblied index record */
02272   sqlite3 *db = pParse->db;      /* The database connection */
02273   int iDb = sqlite3SchemaToIndex(db, pIndex->pSchema);
02274 
02275 #ifndef SQLITE_OMIT_AUTHORIZATION
02276   if( sqlite3AuthCheck(pParse, SQLITE_REINDEX, pIndex->zName, 0,
02277       db->aDb[iDb].zName ) ){
02278     return;
02279   }
02280 #endif
02281 
02282   /* Require a write-lock on the table to perform this operation */
02283   sqlite3TableLock(pParse, iDb, pTab->tnum, 1, pTab->zName);
02284 
02285   v = sqlite3GetVdbe(pParse);
02286   if( v==0 ) return;
02287   if( memRootPage>=0 ){
02288     tnum = memRootPage;
02289   }else{
02290     tnum = pIndex->tnum;
02291     sqlite3VdbeAddOp2(v, OP_Clear, tnum, iDb);
02292   }
02293   pKey = sqlite3IndexKeyinfo(pParse, pIndex);
02294   sqlite3VdbeAddOp4(v, OP_OpenWrite, iIdx, tnum, iDb, 
02295                     (char *)pKey, P4_KEYINFO_HANDOFF);
02296   if( memRootPage>=0 ){
02297     sqlite3VdbeChangeP5(v, 1);
02298   }
02299   sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead);
02300   addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iTab, 0);
02301   regRecord = sqlite3GetTempReg(pParse);
02302   regIdxKey = sqlite3GenerateIndexKey(pParse, pIndex, iTab, regRecord, 1);
02303   if( pIndex->onError!=OE_None ){
02304     int j1, j2;
02305     int regRowid;
02306 
02307     regRowid = regIdxKey + pIndex->nColumn;
02308     j1 = sqlite3VdbeAddOp3(v, OP_IsNull, regIdxKey, 0, pIndex->nColumn);
02309     j2 = sqlite3VdbeAddOp4(v, OP_IsUnique, iIdx,
02310                            0, regRowid, SQLITE_INT_TO_PTR(regRecord), P4_INT32);
02311     sqlite3VdbeAddOp4(v, OP_Halt, SQLITE_CONSTRAINT, OE_Abort, 0,
02312                     "indexed columns are not unique", P4_STATIC);
02313     sqlite3VdbeJumpHere(v, j1);
02314     sqlite3VdbeJumpHere(v, j2);
02315   }
02316   sqlite3VdbeAddOp2(v, OP_IdxInsert, iIdx, regRecord);
02317   sqlite3ReleaseTempReg(pParse, regRecord);
02318   sqlite3VdbeAddOp2(v, OP_Next, iTab, addr1+1);
02319   sqlite3VdbeJumpHere(v, addr1);
02320   sqlite3VdbeAddOp1(v, OP_Close, iTab);
02321   sqlite3VdbeAddOp1(v, OP_Close, iIdx);
02322 }
02323 
02324 /*
02325 ** Create a new index for an SQL table.  pName1.pName2 is the name of the index 
02326 ** and pTblList is the name of the table that is to be indexed.  Both will 
02327 ** be NULL for a primary key or an index that is created to satisfy a
02328 ** UNIQUE constraint.  If pTable and pIndex are NULL, use pParse->pNewTable
02329 ** as the table to be indexed.  pParse->pNewTable is a table that is
02330 ** currently being constructed by a CREATE TABLE statement.
02331 **
02332 ** pList is a list of columns to be indexed.  pList will be NULL if this
02333 ** is a primary key or unique-constraint on the most recent column added
02334 ** to the table currently under construction.  
02335 */
02336 void sqlite3CreateIndex(
02337   Parse *pParse,     /* All information about this parse */
02338   Token *pName1,     /* First part of index name. May be NULL */
02339   Token *pName2,     /* Second part of index name. May be NULL */
02340   SrcList *pTblName, /* Table to index. Use pParse->pNewTable if 0 */
02341   ExprList *pList,   /* A list of columns to be indexed */
02342   int onError,       /* OE_Abort, OE_Ignore, OE_Replace, or OE_None */
02343   Token *pStart,     /* The CREATE token that begins this statement */
02344   Token *pEnd,       /* The ")" that closes the CREATE INDEX statement */
02345   int sortOrder,     /* Sort order of primary key when pList==NULL */
02346   int ifNotExist     /* Omit error if index already exists */
02347 ){
02348   Table *pTab = 0;     /* Table to be indexed */
02349   Index *pIndex = 0;   /* The index to be created */
02350   char *zName = 0;     /* Name of the index */
02351   int nName;           /* Number of characters in zName */
02352   int i, j;
02353   Token nullId;        /* Fake token for an empty ID list */
02354   DbFixer sFix;        /* For assigning database names to pTable */
02355   int sortOrderMask;   /* 1 to honor DESC in index.  0 to ignore. */
02356   sqlite3 *db = pParse->db;
02357   Db *pDb;             /* The specific table containing the indexed database */
02358   int iDb;             /* Index of the database that is being written */
02359   Token *pName = 0;    /* Unqualified name of the index to create */
02360   struct ExprList_item *pListItem; /* For looping over pList */
02361   int nCol;
02362   int nExtra = 0;
02363   char *zExtra;
02364 
02365   if( pParse->nErr || db->mallocFailed || IN_DECLARE_VTAB ){
02366     goto exit_create_index;
02367   }
02368 
02369   /*
02370   ** Find the table that is to be indexed.  Return early if not found.
02371   */
02372   if( pTblName!=0 ){
02373 
02374     /* Use the two-part index name to determine the database 
02375     ** to search for the table. 'Fix' the table name to this db
02376     ** before looking up the table.
02377     */
02378     assert( pName1 && pName2 );
02379     iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pName);
02380     if( iDb<0 ) goto exit_create_index;
02381 
02382 #ifndef SQLITE_OMIT_TEMPDB
02383     /* If the index name was unqualified, check if the the table
02384     ** is a temp table. If so, set the database to 1. Do not do this
02385     ** if initialising a database schema.
02386     */
02387     if( !db->init.busy ){
02388       pTab = sqlite3SrcListLookup(pParse, pTblName);
02389       if( pName2 && pName2->n==0 && pTab && pTab->pSchema==db->aDb[1].pSchema ){
02390         iDb = 1;
02391       }
02392     }
02393 #endif
02394 
02395     if( sqlite3FixInit(&sFix, pParse, iDb, "index", pName) &&
02396         sqlite3FixSrcList(&sFix, pTblName)
02397     ){
02398       /* Because the parser constructs pTblName from a single identifier,
02399       ** sqlite3FixSrcList can never fail. */
02400       assert(0);
02401     }
02402     pTab = sqlite3LocateTable(pParse, 0, pTblName->a[0].zName, 
02403         pTblName->a[0].zDatabase);
02404     if( !pTab || db->mallocFailed ) goto exit_create_index;
02405     assert( db->aDb[iDb].pSchema==pTab->pSchema );
02406   }else{
02407     assert( pName==0 );
02408     pTab = pParse->pNewTable;
02409     if( !pTab ) goto exit_create_index;
02410     iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
02411   }
02412   pDb = &db->aDb[iDb];
02413 
02414   if( pTab==0 || pParse->nErr ) goto exit_create_index;
02415   if( sqlite3StrNICmp(pTab->zName, "sqlite_", 7)==0 ){
02416     sqlite3ErrorMsg(pParse, "table %s may not be indexed", pTab->zName);
02417     goto exit_create_index;
02418   }
02419 #ifndef SQLITE_OMIT_VIEW
02420   if( pTab->pSelect ){
02421     sqlite3ErrorMsg(pParse, "views may not be indexed");
02422     goto exit_create_index;
02423   }
02424 #endif
02425 #ifndef SQLITE_OMIT_VIRTUALTABLE
02426   if( IsVirtual(pTab) ){
02427     sqlite3ErrorMsg(pParse, "virtual tables may not be indexed");
02428     goto exit_create_index;
02429   }
02430 #endif
02431 
02432   /*
02433   ** Find the name of the index.  Make sure there is not already another
02434   ** index or table with the same name.  
02435   **
02436   ** Exception:  If we are reading the names of permanent indices from the
02437   ** sqlite_master table (because some other process changed the schema) and
02438   ** one of the index names collides with the name of a temporary table or
02439   ** index, then we will continue to process this index.
02440   **
02441   ** If pName==0 it means that we are
02442   ** dealing with a primary key or UNIQUE constraint.  We have to invent our
02443   ** own name.
02444   */
02445   if( pName ){
02446     zName = sqlite3NameFromToken(db, pName);
02447     if( SQLITE_OK!=sqlite3ReadSchema(pParse) ) goto exit_create_index;
02448     if( zName==0 ) goto exit_create_index;
02449     if( SQLITE_OK!=sqlite3CheckObjectName(pParse, zName) ){
02450       goto exit_create_index;
02451     }
02452     if( !db->init.busy ){
02453       if( SQLITE_OK!=sqlite3ReadSchema(pParse) ) goto exit_create_index;
02454       if( sqlite3FindTable(db, zName, 0)!=0 ){
02455         sqlite3ErrorMsg(pParse, "there is already a table named %s", zName);
02456         goto exit_create_index;
02457       }
02458     }
02459     if( sqlite3FindIndex(db, zName, pDb->zName)!=0 ){
02460       if( !ifNotExist ){
02461         sqlite3ErrorMsg(pParse, "index %s already exists", zName);
02462       }
02463       goto exit_create_index;
02464     }
02465   }else{
02466     int n;
02467     Index *pLoop;
02468     for(pLoop=pTab->pIndex, n=1; pLoop; pLoop=pLoop->pNext, n++){}
02469     zName = sqlite3MPrintf(db, "sqlite_autoindex_%s_%d", pTab->zName, n);
02470     if( zName==0 ){
02471       goto exit_create_index;
02472     }
02473   }
02474 
02475   /* Check for authorization to create an index.
02476   */
02477 #ifndef SQLITE_OMIT_AUTHORIZATION
02478   {
02479     const char *zDb = pDb->zName;
02480     if( sqlite3AuthCheck(pParse, SQLITE_INSERT, SCHEMA_TABLE(iDb), 0, zDb) ){
02481       goto exit_create_index;
02482     }
02483     i = SQLITE_CREATE_INDEX;
02484     if( !OMIT_TEMPDB && iDb==1 ) i = SQLITE_CREATE_TEMP_INDEX;
02485     if( sqlite3AuthCheck(pParse, i, zName, pTab->zName, zDb) ){
02486       goto exit_create_index;
02487     }
02488   }
02489 #endif
02490 
02491   /* If pList==0, it means this routine was called to make a primary
02492   ** key out of the last column added to the table under construction.
02493   ** So create a fake list to simulate this.
02494   */
02495   if( pList==0 ){
02496     nullId.z = (u8*)pTab->aCol[pTab->nCol-1].zName;
02497     nullId.n = strlen((char*)nullId.z);
02498     pList = sqlite3ExprListAppend(pParse, 0, 0, &nullId);
02499     if( pList==0 ) goto exit_create_index;
02500     pList->a[0].sortOrder = sortOrder;
02501   }
02502 
02503   /* Figure out how many bytes of space are required to store explicitly
02504   ** specified collation sequence names.
02505   */
02506   for(i=0; i<pList->nExpr; i++){
02507     Expr *pExpr;
02508     CollSeq *pColl;
02509     if( (pExpr = pList->a[i].pExpr)!=0 && (pColl = pExpr->pColl)!=0 ){
02510       nExtra += (1 + strlen(pColl->zName));
02511     }
02512   }
02513 
02514   /* 
02515   ** Allocate the index structure. 
02516   */
02517   nName = strlen(zName);
02518   nCol = pList->nExpr;
02519   pIndex = sqlite3DbMallocZero(db, 
02520       sizeof(Index) +              /* Index structure  */
02521       sizeof(int)*nCol +           /* Index.aiColumn   */
02522       sizeof(int)*(nCol+1) +       /* Index.aiRowEst   */
02523       sizeof(char *)*nCol +        /* Index.azColl     */
02524       sizeof(u8)*nCol +            /* Index.aSortOrder */
02525       nName + 1 +                  /* Index.zName      */
02526       nExtra                       /* Collation sequence names */
02527   );
02528   if( db->mallocFailed ){
02529     goto exit_create_index;
02530   }
02531   pIndex->azColl = (char**)(&pIndex[1]);
02532   pIndex->aiColumn = (int *)(&pIndex->azColl[nCol]);
02533   pIndex->aiRowEst = (unsigned *)(&pIndex->aiColumn[nCol]);
02534   pIndex->aSortOrder = (u8 *)(&pIndex->aiRowEst[nCol+1]);
02535   pIndex->zName = (char *)(&pIndex->aSortOrder[nCol]);
02536   zExtra = (char *)(&pIndex->zName[nName+1]);
02537   memcpy(pIndex->zName, zName, nName+1);
02538   pIndex->pTable = pTab;
02539   pIndex->nColumn = pList->nExpr;
02540   pIndex->onError = onError;
02541   pIndex->autoIndex = pName==0;
02542   pIndex->pSchema = db->aDb[iDb].pSchema;
02543 
02544   /* Check to see if we should honor DESC requests on index columns
02545   */
02546   if( pDb->pSchema->file_format>=4 ){
02547     sortOrderMask = -1;   /* Honor DESC */
02548   }else{
02549     sortOrderMask = 0;    /* Ignore DESC */
02550   }
02551 
02552   /* Scan the names of the columns of the table to be indexed and
02553   ** load the column indices into the Index structure.  Report an error
02554   ** if any column is not found.
02555   */
02556   for(i=0, pListItem=pList->a; i<pList->nExpr; i++, pListItem++){
02557     const char *zColName = pListItem->zName;
02558     Column *pTabCol;
02559     int requestedSortOrder;
02560     char *zColl;                   /* Collation sequence name */
02561 
02562     for(j=0, pTabCol=pTab->aCol; j<pTab->nCol; j++, pTabCol++){
02563       if( sqlite3StrICmp(zColName, pTabCol->zName)==0 ) break;
02564     }
02565     if( j>=pTab->nCol ){
02566       sqlite3ErrorMsg(pParse, "table %s has no column named %s",
02567         pTab->zName, zColName);
02568       goto exit_create_index;
02569     }
02570     /* TODO:  Add a test to make sure that the same column is not named
02571     ** more than once within the same index.  Only the first instance of
02572     ** the column will ever be used by the optimizer.  Note that using the
02573     ** same column more than once cannot be an error because that would 
02574     ** break backwards compatibility - it needs to be a warning.
02575     */
02576     pIndex->aiColumn[i] = j;
02577     if( pListItem->pExpr && pListItem->pExpr->pColl ){
02578       assert( pListItem->pExpr->pColl );
02579       zColl = zExtra;
02580       sqlite3_snprintf(nExtra, zExtra, "%s", pListItem->pExpr->pColl->zName);
02581       zExtra += (strlen(zColl) + 1);
02582     }else{
02583       zColl = pTab->aCol[j].zColl;
02584       if( !zColl ){
02585         zColl = db->pDfltColl->zName;
02586       }
02587     }
02588     if( !db->init.busy && !sqlite3LocateCollSeq(pParse, zColl, -1) ){
02589       goto exit_create_index;
02590     }
02591     pIndex->azColl[i] = zColl;
02592     requestedSortOrder = pListItem->sortOrder & sortOrderMask;
02593     pIndex->aSortOrder[i] = requestedSortOrder;
02594   }
02595   sqlite3DefaultRowEst(pIndex);
02596 
02597   if( pTab==pParse->pNewTable ){
02598     /* This routine has been called to create an automatic index as a
02599     ** result of a PRIMARY KEY or UNIQUE clause on a column definition, or
02600     ** a PRIMARY KEY or UNIQUE clause following the column definitions.
02601     ** i.e. one of:
02602     **
02603     ** CREATE TABLE t(x PRIMARY KEY, y);
02604     ** CREATE TABLE t(x, y, UNIQUE(x, y));
02605     **
02606     ** Either way, check to see if the table already has such an index. If
02607     ** so, don't bother creating this one. This only applies to
02608     ** automatically created indices. Users can do as they wish with
02609     ** explicit indices.
02610     */
02611     Index *pIdx;
02612     for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
02613       int k;
02614       assert( pIdx->onError!=OE_None );
02615       assert( pIdx->autoIndex );
02616       assert( pIndex->onError!=OE_None );
02617 
02618       if( pIdx->nColumn!=pIndex->nColumn ) continue;
02619       for(k=0; k<pIdx->nColumn; k++){
02620         const char *z1 = pIdx->azColl[k];
02621         const char *z2 = pIndex->azColl[k];
02622         if( pIdx->aiColumn[k]!=pIndex->aiColumn[k] ) break;
02623         if( pIdx->aSortOrder[k]!=pIndex->aSortOrder[k] ) break;
02624         if( z1!=z2 && sqlite3StrICmp(z1, z2) ) break;
02625       }
02626       if( k==pIdx->nColumn ){
02627         if( pIdx->onError!=pIndex->onError ){
02628           /* This constraint creates the same index as a previous
02629           ** constraint specified somewhere in the CREATE TABLE statement.
02630           ** However the ON CONFLICT clauses are different. If both this 
02631           ** constraint and the previous equivalent constraint have explicit
02632           ** ON CONFLICT clauses this is an error. Otherwise, use the
02633           ** explicitly specified behaviour for the index.
02634           */
02635           if( !(pIdx->onError==OE_Default || pIndex->onError==OE_Default) ){
02636             sqlite3ErrorMsg(pParse, 
02637                 "conflicting ON CONFLICT clauses specified", 0);
02638           }
02639           if( pIdx->onError==OE_Default ){
02640             pIdx->onError = pIndex->onError;
02641           }
02642         }
02643         goto exit_create_index;
02644       }
02645     }
02646   }
02647 
02648   /* Link the new Index structure to its table and to the other
02649   ** in-memory database structures. 
02650   */
02651   if( db->init.busy ){
02652     Index *p;
02653     p = sqlite3HashInsert(&pIndex->pSchema->idxHash, 
02654                          pIndex->zName, strlen(pIndex->zName)+1, pIndex);
02655     if( p ){
02656       assert( p==pIndex );  /* Malloc must have failed */
02657       db->mallocFailed = 1;
02658       goto exit_create_index;
02659     }
02660     db->flags |= SQLITE_InternChanges;
02661     if( pTblName!=0 ){
02662       pIndex->tnum = db->init.newTnum;
02663     }
02664   }
02665 
02666   /* If the db->init.busy is 0 then create the index on disk.  This
02667   ** involves writing the index into the master table and filling in the
02668   ** index with the current table contents.
02669   **
02670   ** The db->init.busy is 0 when the user first enters a CREATE INDEX 
02671   ** command.  db->init.busy is 1 when a database is opened and 
02672   ** CREATE INDEX statements are read out of the master table.  In
02673   ** the latter case the index already exists on disk, which is why
02674   ** we don't want to recreate it.
02675   **
02676   ** If pTblName==0 it means this index is generated as a primary key
02677   ** or UNIQUE constraint of a CREATE TABLE statement.  Since the table
02678   ** has just been created, it contains no data and the index initialization
02679   ** step can be skipped.
02680   */
02681   else if( db->init.busy==0 ){
02682     Vdbe *v;
02683     char *zStmt;
02684     int iMem = ++pParse->nMem;
02685 
02686     v = sqlite3GetVdbe(pParse);
02687     if( v==0 ) goto exit_create_index;
02688 
02689 
02690     /* Create the rootpage for the index
02691     */
02692     sqlite3BeginWriteOperation(pParse, 1, iDb);
02693     sqlite3VdbeAddOp2(v, OP_CreateIndex, iDb, iMem);
02694 
02695     /* Gather the complete text of the CREATE INDEX statement into
02696     ** the zStmt variable
02697     */
02698     if( pStart && pEnd ){
02699       /* A named index with an explicit CREATE INDEX statement */
02700       zStmt = sqlite3MPrintf(db, "CREATE%s INDEX %.*s",
02701         onError==OE_None ? "" : " UNIQUE",
02702         pEnd->z - pName->z + 1,
02703         pName->z);
02704     }else{
02705       /* An automatic index created by a PRIMARY KEY or UNIQUE constraint */
02706       /* zStmt = sqlite3MPrintf(""); */
02707       zStmt = 0;
02708     }
02709 
02710     /* Add an entry in sqlite_master for this index
02711     */
02712     sqlite3NestedParse(pParse, 
02713         "INSERT INTO %Q.%s VALUES('index',%Q,%Q,#%d,%Q);",
02714         db->aDb[iDb].zName, SCHEMA_TABLE(iDb),
02715         pIndex->zName,
02716         pTab->zName,
02717         iMem,
02718         zStmt
02719     );
02720     sqlite3DbFree(db, zStmt);
02721 
02722     /* Fill the index with data and reparse the schema. Code an OP_Expire
02723     ** to invalidate all pre-compiled statements.
02724     */
02725     if( pTblName ){
02726       sqlite3RefillIndex(pParse, pIndex, iMem);
02727       sqlite3ChangeCookie(pParse, iDb);
02728       sqlite3VdbeAddOp4(v, OP_ParseSchema, iDb, 0, 0,
02729          sqlite3MPrintf(db, "name='%q'", pIndex->zName), P4_DYNAMIC);
02730       sqlite3VdbeAddOp1(v, OP_Expire, 0);
02731     }
02732   }
02733 
02734   /* When adding an index to the list of indices for a table, make
02735   ** sure all indices labeled OE_Replace come after all those labeled
02736   ** OE_Ignore.  This is necessary for the correct operation of UPDATE
02737   ** and INSERT.
02738   */
02739   if( db->init.busy || pTblName==0 ){
02740     if( onError!=OE_Replace || pTab->pIndex==0
02741          || pTab->pIndex->onError==OE_Replace){
02742       pIndex->pNext = pTab->pIndex;
02743       pTab->pIndex = pIndex;
02744     }else{
02745       Index *pOther = pTab->pIndex;
02746       while( pOther->pNext && pOther->pNext->onError!=OE_Replace ){
02747         pOther = pOther->pNext;
02748       }
02749       pIndex->pNext = pOther->pNext;
02750       pOther->pNext = pIndex;
02751     }
02752     pIndex = 0;
02753   }
02754 
02755   /* Clean up before exiting */
02756 exit_create_index:
02757   if( pIndex ){
02758     freeIndex(pIndex);
02759   }
02760   sqlite3ExprListDelete(db, pList);
02761   sqlite3SrcListDelete(db, pTblName);
02762   sqlite3DbFree(db, zName);
02763   return;
02764 }
02765 
02766 /*
02767 ** Generate code to make sure the file format number is at least minFormat.
02768 ** The generated code will increase the file format number if necessary.
02769 */
02770 void sqlite3MinimumFileFormat(Parse *pParse, int iDb, int minFormat){
02771   Vdbe *v;
02772   v = sqlite3GetVdbe(pParse);
02773   if( v ){
02774     int r1 = sqlite3GetTempReg(pParse);
02775     int r2 = sqlite3GetTempReg(pParse);
02776     int j1;
02777     sqlite3VdbeAddOp3(v, OP_ReadCookie, iDb, r1, 1);
02778     sqlite3VdbeUsesBtree(v, iDb);
02779     sqlite3VdbeAddOp2(v, OP_Integer, minFormat, r2);
02780     j1 = sqlite3VdbeAddOp3(v, OP_Ge, r2, 0, r1);
02781     sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, 1, r2);
02782     sqlite3VdbeJumpHere(v, j1);
02783     sqlite3ReleaseTempReg(pParse, r1);
02784     sqlite3ReleaseTempReg(pParse, r2);
02785   }
02786 }
02787 
02788 /*
02789 ** Fill the Index.aiRowEst[] array with default information - information
02790 ** to be used when we have not run the ANALYZE command.
02791 **
02792 ** aiRowEst[0] is suppose to contain the number of elements in the index.
02793 ** Since we do not know, guess 1 million.  aiRowEst[1] is an estimate of the
02794 ** number of rows in the table that match any particular value of the
02795 ** first column of the index.  aiRowEst[2] is an estimate of the number
02796 ** of rows that match any particular combiniation of the first 2 columns
02797 ** of the index.  And so forth.  It must always be the case that
02798 *
02799 **           aiRowEst[N]<=aiRowEst[N-1]
02800 **           aiRowEst[N]>=1
02801 **
02802 ** Apart from that, we have little to go on besides intuition as to
02803 ** how aiRowEst[] should be initialized.  The numbers generated here
02804 ** are based on typical values found in actual indices.
02805 */
02806 void sqlite3DefaultRowEst(Index *pIdx){
02807   unsigned *a = pIdx->aiRowEst;
02808   int i;
02809   assert( a!=0 );
02810   a[0] = 1000000;
02811   for(i=pIdx->nColumn; i>=5; i--){
02812     a[i] = 5;
02813   }
02814   while( i>=1 ){
02815     a[i] = 11 - i;
02816     i--;
02817   }
02818   if( pIdx->onError!=OE_None ){
02819     a[pIdx->nColumn] = 1;
02820   }
02821 }
02822 
02823 /*
02824 ** This routine will drop an existing named index.  This routine
02825 ** implements the DROP INDEX statement.
02826 */
02827 void sqlite3DropIndex(Parse *pParse, SrcList *pName, int ifExists){
02828   Index *pIndex;
02829   Vdbe *v;
02830   sqlite3 *db = pParse->db;
02831   int iDb;
02832 
02833   if( pParse->nErr || db->mallocFailed ){
02834     goto exit_drop_index;
02835   }
02836   assert( pName->nSrc==1 );
02837   if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
02838     goto exit_drop_index;
02839   }
02840   pIndex = sqlite3FindIndex(db, pName->a[0].zName, pName->a[0].zDatabase);
02841   if( pIndex==0 ){
02842     if( !ifExists ){
02843       sqlite3ErrorMsg(pParse, "no such index: %S", pName, 0);
02844     }
02845     pParse->checkSchema = 1;
02846     goto exit_drop_index;
02847   }
02848   if( pIndex->autoIndex ){
02849     sqlite3ErrorMsg(pParse, "index associated with UNIQUE "
02850       "or PRIMARY KEY constraint cannot be dropped", 0);
02851     goto exit_drop_index;
02852   }
02853   iDb = sqlite3SchemaToIndex(db, pIndex->pSchema);
02854 #ifndef SQLITE_OMIT_AUTHORIZATION
02855   {
02856     int code = SQLITE_DROP_INDEX;
02857     Table *pTab = pIndex->pTable;
02858     const char *zDb = db->aDb[iDb].zName;
02859     const char *zTab = SCHEMA_TABLE(iDb);
02860     if( sqlite3AuthCheck(pParse, SQLITE_DELETE, zTab, 0, zDb) ){
02861       goto exit_drop_index;
02862     }
02863     if( !OMIT_TEMPDB && iDb ) code = SQLITE_DROP_TEMP_INDEX;
02864     if( sqlite3AuthCheck(pParse, code, pIndex->zName, pTab->zName, zDb) ){
02865       goto exit_drop_index;
02866     }
02867   }
02868 #endif
02869 
02870   /* Generate code to remove the index and from the master table */
02871   v = sqlite3GetVdbe(pParse);
02872   if( v ){
02873     sqlite3BeginWriteOperation(pParse, 1, iDb);
02874     sqlite3NestedParse(pParse,
02875        "DELETE FROM %Q.%s WHERE name=%Q",
02876        db->aDb[iDb].zName, SCHEMA_TABLE(iDb),
02877        pIndex->zName
02878     );
02879     if( sqlite3FindTable(db, "sqlite_stat1", db->aDb[iDb].zName) ){
02880       sqlite3NestedParse(pParse,
02881         "DELETE FROM %Q.sqlite_stat1 WHERE idx=%Q",
02882         db->aDb[iDb].zName, pIndex->zName
02883       );
02884     }
02885     sqlite3ChangeCookie(pParse, iDb);
02886     destroyRootPage(pParse, pIndex->tnum, iDb);
02887     sqlite3VdbeAddOp4(v, OP_DropIndex, iDb, 0, 0, pIndex->zName, 0);
02888   }
02889 
02890 exit_drop_index:
02891   sqlite3SrcListDelete(db, pName);
02892 }
02893 
02894 /*
02895 ** pArray is a pointer to an array of objects.  Each object in the
02896 ** array is szEntry bytes in size.  This routine allocates a new
02897 ** object on the end of the array.
02898 **
02899 ** *pnEntry is the number of entries already in use.  *pnAlloc is
02900 ** the previously allocated size of the array.  initSize is the
02901 ** suggested initial array size allocation.
02902 **
02903 ** The index of the new entry is returned in *pIdx.
02904 **
02905 ** This routine returns a pointer to the array of objects.  This
02906 ** might be the same as the pArray parameter or it might be a different
02907 ** pointer if the array was resized.
02908 */
02909 void *sqlite3ArrayAllocate(
02910   sqlite3 *db,      /* Connection to notify of malloc failures */
02911   void *pArray,     /* Array of objects.  Might be reallocated */
02912   int szEntry,      /* Size of each object in the array */
02913   int initSize,     /* Suggested initial allocation, in elements */
02914   int *pnEntry,     /* Number of objects currently in use */
02915   int *pnAlloc,     /* Current size of the allocation, in elements */
02916   int *pIdx         /* Write the index of a new slot here */
02917 ){
02918   char *z;
02919   if( *pnEntry >= *pnAlloc ){
02920     void *pNew;
02921     int newSize;
02922     newSize = (*pnAlloc)*2 + initSize;
02923     pNew = sqlite3DbRealloc(db, pArray, newSize*szEntry);
02924     if( pNew==0 ){
02925       *pIdx = -1;
02926       return pArray;
02927     }
02928     *pnAlloc = newSize;
02929     pArray = pNew;
02930   }
02931   z = (char*)pArray;
02932   memset(&z[*pnEntry * szEntry], 0, szEntry);
02933   *pIdx = *pnEntry;
02934   ++*pnEntry;
02935   return pArray;
02936 }
02937 
02938 /*
02939 ** Append a new element to the given IdList.  Create a new IdList if
02940 ** need be.
02941 **
02942 ** A new IdList is returned, or NULL if malloc() fails.
02943 */
02944 IdList *sqlite3IdListAppend(sqlite3 *db, IdList *pList, Token *pToken){
02945   int i;
02946   if( pList==0 ){
02947     pList = sqlite3DbMallocZero(db, sizeof(IdList) );
02948     if( pList==0 ) return 0;
02949     pList->nAlloc = 0;
02950   }
02951   pList->a = sqlite3ArrayAllocate(
02952       db,
02953       pList->a,
02954       sizeof(pList->a[0]),
02955       5,
02956       &pList->nId,
02957       &pList->nAlloc,
02958       &i
02959   );
02960   if( i<0 ){
02961     sqlite3IdListDelete(db, pList);
02962     return 0;
02963   }
02964   pList->a[i].zName = sqlite3NameFromToken(db, pToken);
02965   return pList;
02966 }
02967 
02968 /*
02969 ** Delete an IdList.
02970 */
02971 void sqlite3IdListDelete(sqlite3 *db, IdList *pList){
02972   int i;
02973   if( pList==0 ) return;
02974   for(i=0; i<pList->nId; i++){
02975     sqlite3DbFree(db, pList->a[i].zName);
02976   }
02977   sqlite3DbFree(db, pList->a);
02978   sqlite3DbFree(db, pList);
02979 }
02980 
02981 /*
02982 ** Return the index in pList of the identifier named zId.  Return -1
02983 ** if not found.
02984 */
02985 int sqlite3IdListIndex(IdList *pList, const char *zName){
02986   int i;
02987   if( pList==0 ) return -1;
02988   for(i=0; i<pList->nId; i++){
02989     if( sqlite3StrICmp(pList->a[i].zName, zName)==0 ) return i;
02990   }
02991   return -1;
02992 }
02993 
02994 /*
02995 ** Expand the space allocated for the given SrcList object by
02996 ** creating nExtra new slots beginning at iStart.  iStart is zero based.
02997 ** New slots are zeroed.
02998 **
02999 ** For example, suppose a SrcList initially contains two entries: A,B.
03000 ** To append 3 new entries onto the end, do this:
03001 **
03002 **    sqlite3SrcListEnlarge(db, pSrclist, 3, 2);
03003 **
03004 ** After the call above it would contain:  A, B, nil, nil, nil.
03005 ** If the iStart argument had been 1 instead of 2, then the result
03006 ** would have been:  A, nil, nil, nil, B.  To prepend the new slots,
03007 ** the iStart value would be 0.  The result then would
03008 ** be: nil, nil, nil, A, B.
03009 **
03010 ** If a memory allocation fails the SrcList is unchanged.  The
03011 ** db->mallocFailed flag will be set to true.
03012 */
03013 SrcList *sqlite3SrcListEnlarge(
03014   sqlite3 *db,       /* Database connection to notify of OOM errors */
03015   SrcList *pSrc,     /* The SrcList to be enlarged */
03016   int nExtra,        /* Number of new slots to add to pSrc->a[] */
03017   int iStart         /* Index in pSrc->a[] of first new slot */
03018 ){
03019   int i;
03020 
03021   /* Sanity checking on calling parameters */
03022   assert( iStart>=0 );
03023   assert( nExtra>=1 );
03024   if( pSrc==0 || iStart>pSrc->nSrc ){
03025     assert( db->mallocFailed );
03026     return pSrc;
03027   }
03028 
03029   /* Allocate additional space if needed */
03030   if( pSrc->nSrc+nExtra>pSrc->nAlloc ){
03031     SrcList *pNew;
03032     int nAlloc = pSrc->nSrc+nExtra;
03033     pNew = sqlite3DbRealloc(db, pSrc,
03034                sizeof(*pSrc) + (nAlloc-1)*sizeof(pSrc->a[0]) );
03035     if( pNew==0 ){
03036       assert( db->mallocFailed );
03037       return pSrc;
03038     }
03039     pSrc = pNew;
03040     pSrc->nAlloc = nAlloc;
03041   }
03042 
03043   /* Move existing slots that come after the newly inserted slots
03044   ** out of the way */
03045   for(i=pSrc->nSrc-1; i>=iStart; i--){
03046     pSrc->a[i+nExtra] = pSrc->a[i];
03047   }
03048   pSrc->nSrc += nExtra;
03049 
03050   /* Zero the newly allocated slots */
03051   memset(&pSrc->a[iStart], 0, sizeof(pSrc->a[0])*nExtra);
03052   for(i=iStart; i<iStart+nExtra; i++){
03053     pSrc->a[i].iCursor = -1;
03054   }
03055 
03056   /* Return a pointer to the enlarged SrcList */
03057   return pSrc;
03058 }
03059 
03060 
03061 /*
03062 ** Append a new table name to the given SrcList.  Create a new SrcList if
03063 ** need be.  A new entry is created in the SrcList even if pToken is NULL.
03064 **
03065 ** A SrcList is returned, or NULL if there is an OOM error.  The returned
03066 ** SrcList might be the same as the SrcList that was input or it might be
03067 ** a new one.  If an OOM error does occurs, then the prior value of pList
03068 ** that is input to this routine is automatically freed.
03069 **
03070 ** If pDatabase is not null, it means that the table has an optional
03071 ** database name prefix.  Like this:  "database.table".  The pDatabase
03072 ** points to the table name and the pTable points to the database name.
03073 ** The SrcList.a[].zName field is filled with the table name which might
03074 ** come from pTable (if pDatabase is NULL) or from pDatabase.  
03075 ** SrcList.a[].zDatabase is filled with the database name from pTable,
03076 ** or with NULL if no database is specified.
03077 **
03078 ** In other words, if call like this:
03079 **
03080 **         sqlite3SrcListAppend(D,A,B,0);
03081 **
03082 ** Then B is a table name and the database name is unspecified.  If called
03083 ** like this:
03084 **
03085 **         sqlite3SrcListAppend(D,A,B,C);
03086 **
03087 ** Then C is the table name and B is the database name.
03088 */
03089 SrcList *sqlite3SrcListAppend(
03090   sqlite3 *db,        /* Connection to notify of malloc failures */
03091   SrcList *pList,     /* Append to this SrcList. NULL creates a new SrcList */
03092   Token *pTable,      /* Table to append */
03093   Token *pDatabase    /* Database of the table */
03094 ){
03095   struct SrcList_item *pItem;
03096   if( pList==0 ){
03097     pList = sqlite3DbMallocZero(db, sizeof(SrcList) );
03098     if( pList==0 ) return 0;
03099     pList->nAlloc = 1;
03100   }
03101   pList = sqlite3SrcListEnlarge(db, pList, 1, pList->nSrc);
03102   if( db->mallocFailed ){
03103     sqlite3SrcListDelete(db, pList);
03104     return 0;
03105   }
03106   pItem = &pList->a[pList->nSrc-1];
03107   if( pDatabase && pDatabase->z==0 ){
03108     pDatabase = 0;
03109   }
03110   if( pDatabase && pTable ){
03111     Token *pTemp = pDatabase;
03112     pDatabase = pTable;
03113     pTable = pTemp;
03114   }
03115   pItem->zName = sqlite3NameFromToken(db, pTable);
03116   pItem->zDatabase = sqlite3NameFromToken(db, pDatabase);
03117   return pList;
03118 }
03119 
03120 /*
03121 ** Assign VdbeCursor index numbers to all tables in a SrcList
03122 */
03123 void sqlite3SrcListAssignCursors(Parse *pParse, SrcList *pList){
03124   int i;
03125   struct SrcList_item *pItem;
03126   assert(pList || pParse->db->mallocFailed );
03127   if( pList ){
03128     for(i=0, pItem=pList->a; i<pList->nSrc; i++, pItem++){
03129       if( pItem->iCursor>=0 ) break;
03130       pItem->iCursor = pParse->nTab++;
03131       if( pItem->pSelect ){
03132         sqlite3SrcListAssignCursors(pParse, pItem->pSelect->pSrc);
03133       }
03134     }
03135   }
03136 }
03137 
03138 /*
03139 ** Delete an entire SrcList including all its substructure.
03140 */
03141 void sqlite3SrcListDelete(sqlite3 *db, SrcList *pList){
03142   int i;
03143   struct SrcList_item *pItem;
03144   if( pList==0 ) return;
03145   for(pItem=pList->a, i=0; i<pList->nSrc; i++, pItem++){
03146     sqlite3DbFree(db, pItem->zDatabase);
03147     sqlite3DbFree(db, pItem->zName);
03148     sqlite3DbFree(db, pItem->zAlias);
03149     sqlite3DbFree(db, pItem->zIndex);
03150     sqlite3DeleteTable(pItem->pTab);
03151     sqlite3SelectDelete(db, pItem->pSelect);
03152     sqlite3ExprDelete(db, pItem->pOn);
03153     sqlite3IdListDelete(db, pItem->pUsing);
03154   }
03155   sqlite3DbFree(db, pList);
03156 }
03157 
03158 /*
03159 ** This routine is called by the parser to add a new term to the
03160 ** end of a growing FROM clause.  The "p" parameter is the part of
03161 ** the FROM clause that has already been constructed.  "p" is NULL
03162 ** if this is the first term of the FROM clause.  pTable and pDatabase
03163 ** are the name of the table and database named in the FROM clause term.
03164 ** pDatabase is NULL if the database name qualifier is missing - the
03165 ** usual case.  If the term has a alias, then pAlias points to the
03166 ** alias token.  If the term is a subquery, then pSubquery is the
03167 ** SELECT statement that the subquery encodes.  The pTable and
03168 ** pDatabase parameters are NULL for subqueries.  The pOn and pUsing
03169 ** parameters are the content of the ON and USING clauses.
03170 **
03171 ** Return a new SrcList which encodes is the FROM with the new
03172 ** term added.
03173 */
03174 SrcList *sqlite3SrcListAppendFromTerm(
03175   Parse *pParse,          /* Parsing context */
03176   SrcList *p,             /* The left part of the FROM clause already seen */
03177   Token *pTable,          /* Name of the table to add to the FROM clause */
03178   Token *pDatabase,       /* Name of the database containing pTable */
03179   Token *pAlias,          /* The right-hand side of the AS subexpression */
03180   Select *pSubquery,      /* A subquery used in place of a table name */
03181   Expr *pOn,              /* The ON clause of a join */
03182   IdList *pUsing          /* The USING clause of a join */
03183 ){
03184   struct SrcList_item *pItem;
03185   sqlite3 *db = pParse->db;
03186   p = sqlite3SrcListAppend(db, p, pTable, pDatabase);
03187   if( p==0 || p->nSrc==0 ){
03188     sqlite3ExprDelete(db, pOn);
03189     sqlite3IdListDelete(db, pUsing);
03190     sqlite3SelectDelete(db, pSubquery);
03191     return p;
03192   }
03193   pItem = &p->a[p->nSrc-1];
03194   if( pAlias && pAlias->n ){
03195     pItem->zAlias = sqlite3NameFromToken(db, pAlias);
03196   }
03197   pItem->pSelect = pSubquery;
03198   pItem->pOn = pOn;
03199   pItem->pUsing = pUsing;
03200   return p;
03201 }
03202 
03203 /*
03204 ** Add an INDEXED BY or NOT INDEXED clause to the most recently added 
03205 ** element of the source-list passed as the second argument.
03206 */
03207 void sqlite3SrcListIndexedBy(Parse *pParse, SrcList *p, Token *pIndexedBy){
03208   if( pIndexedBy && p && p->nSrc>0 ){
03209     struct SrcList_item *pItem = &p->a[p->nSrc-1];
03210     assert( pItem->notIndexed==0 && pItem->zIndex==0 );
03211     if( pIndexedBy->n==1 && !pIndexedBy->z ){
03212       /* A "NOT INDEXED" clause was supplied. See parse.y 
03213       ** construct "indexed_opt" for details. */
03214       pItem->notIndexed = 1;
03215     }else{
03216       pItem->zIndex = sqlite3NameFromToken(pParse->db, pIndexedBy);
03217     }
03218   }
03219 }
03220 
03221 /*
03222 ** When building up a FROM clause in the parser, the join operator
03223 ** is initially attached to the left operand.  But the code generator
03224 ** expects the join operator to be on the right operand.  This routine
03225 ** Shifts all join operators from left to right for an entire FROM
03226 ** clause.
03227 **
03228 ** Example: Suppose the join is like this:
03229 **
03230 **           A natural cross join B
03231 **
03232 ** The operator is "natural cross join".  The A and B operands are stored
03233 ** in p->a[0] and p->a[1], respectively.  The parser initially stores the
03234 ** operator with A.  This routine shifts that operator over to B.
03235 */
03236 void sqlite3SrcListShiftJoinType(SrcList *p){
03237   if( p && p->a ){
03238     int i;
03239     for(i=p->nSrc-1; i>0; i--){
03240       p->a[i].jointype = p->a[i-1].jointype;
03241     }
03242     p->a[0].jointype = 0;
03243   }
03244 }
03245 
03246 /*
03247 ** Begin a transaction
03248 */
03249 void sqlite3BeginTransaction(Parse *pParse, int type){
03250   sqlite3 *db;
03251   Vdbe *v;
03252   int i;
03253 
03254   if( pParse==0 || (db=pParse->db)==0 || db->aDb[0].pBt==0 ) return;
03255   if( pParse->nErr || db->mallocFailed ) return;
03256   if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, "BEGIN", 0, 0) ) return;
03257 
03258   v = sqlite3GetVdbe(pParse);
03259   if( !v ) return;
03260   if( type!=TK_DEFERRED ){
03261     for(i=0; i<db->nDb; i++){
03262       sqlite3VdbeAddOp2(v, OP_Transaction, i, (type==TK_EXCLUSIVE)+1);
03263       sqlite3VdbeUsesBtree(v, i);
03264     }
03265   }
03266   sqlite3VdbeAddOp2(v, OP_AutoCommit, 0, 0);
03267 }
03268 
03269 /*
03270 ** Commit a transaction
03271 */
03272 void sqlite3CommitTransaction(Parse *pParse){
03273   sqlite3 *db;
03274   Vdbe *v;
03275 
03276   if( pParse==0 || (db=pParse->db)==0 || db->aDb[0].pBt==0 ) return;
03277   if( pParse->nErr || db->mallocFailed ) return;
03278   if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, "COMMIT", 0, 0) ) return;
03279 
03280   v = sqlite3GetVdbe(pParse);
03281   if( v ){
03282     sqlite3VdbeAddOp2(v, OP_AutoCommit, 1, 0);
03283   }
03284 }
03285 
03286 /*
03287 ** Rollback a transaction
03288 */
03289 void sqlite3RollbackTransaction(Parse *pParse){
03290   sqlite3 *db;
03291   Vdbe *v;
03292 
03293   if( pParse==0 || (db=pParse->db)==0 || db->aDb[0].pBt==0 ) return;
03294   if( pParse->nErr || db->mallocFailed ) return;
03295   if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, "ROLLBACK", 0, 0) ) return;
03296 
03297   v = sqlite3GetVdbe(pParse);
03298   if( v ){
03299     sqlite3VdbeAddOp2(v, OP_AutoCommit, 1, 1);
03300   }
03301 }
03302 
03303 /*
03304 ** Make sure the TEMP database is open and available for use.  Return
03305 ** the number of errors.  Leave any error messages in the pParse structure.
03306 */
03307 int sqlite3OpenTempDatabase(Parse *pParse){
03308   sqlite3 *db = pParse->db;
03309   if( db->aDb[1].pBt==0 && !pParse->explain ){
03310     int rc;
03311     static const int flags = 
03312           SQLITE_OPEN_READWRITE |
03313           SQLITE_OPEN_CREATE |
03314           SQLITE_OPEN_EXCLUSIVE |
03315           SQLITE_OPEN_DELETEONCLOSE |
03316           SQLITE_OPEN_TEMP_DB;
03317 
03318     rc = sqlite3BtreeFactory(db, 0, 0, SQLITE_DEFAULT_CACHE_SIZE, flags,
03319                                  &db->aDb[1].pBt);
03320     if( rc!=SQLITE_OK ){
03321       sqlite3ErrorMsg(pParse, "unable to open a temporary database "
03322         "file for storing temporary tables");
03323       pParse->rc = rc;
03324       return 1;
03325     }
03326     assert( (db->flags & SQLITE_InTrans)==0 || db->autoCommit );
03327     assert( db->aDb[1].pSchema );
03328     sqlite3PagerJournalMode(sqlite3BtreePager(db->aDb[1].pBt),
03329                             db->dfltJournalMode);
03330   }
03331   return 0;
03332 }
03333 
03334 /*
03335 ** Generate VDBE code that will verify the schema cookie and start
03336 ** a read-transaction for all named database files.
03337 **
03338 ** It is important that all schema cookies be verified and all
03339 ** read transactions be started before anything else happens in
03340 ** the VDBE program.  But this routine can be called after much other
03341 ** code has been generated.  So here is what we do:
03342 **
03343 ** The first time this routine is called, we code an OP_Goto that
03344 ** will jump to a subroutine at the end of the program.  Then we
03345 ** record every database that needs its schema verified in the
03346 ** pParse->cookieMask field.  Later, after all other code has been
03347 ** generated, the subroutine that does the cookie verifications and
03348 ** starts the transactions will be coded and the OP_Goto P2 value
03349 ** will be made to point to that subroutine.  The generation of the
03350 ** cookie verification subroutine code happens in sqlite3FinishCoding().
03351 **
03352 ** If iDb<0 then code the OP_Goto only - don't set flag to verify the
03353 ** schema on any databases.  This can be used to position the OP_Goto
03354 ** early in the code, before we know if any database tables will be used.
03355 */
03356 void sqlite3CodeVerifySchema(Parse *pParse, int iDb){
03357   sqlite3 *db;
03358   Vdbe *v;
03359   int mask;
03360 
03361   v = sqlite3GetVdbe(pParse);
03362   if( v==0 ) return;  /* This only happens if there was a prior error */
03363   db = pParse->db;
03364   if( pParse->cookieGoto==0 ){
03365     pParse->cookieGoto = sqlite3VdbeAddOp2(v, OP_Goto, 0, 0)+1;
03366   }
03367   if( iDb>=0 ){
03368     assert( iDb<db->nDb );
03369     assert( db->aDb[iDb].pBt!=0 || iDb==1 );
03370     assert( iDb<SQLITE_MAX_ATTACHED+2 );
03371     mask = 1<<iDb;
03372     if( (pParse->cookieMask & mask)==0 ){
03373       pParse->cookieMask |= mask;
03374       pParse->cookieValue[iDb] = db->aDb[iDb].pSchema->schema_cookie;
03375       if( !OMIT_TEMPDB && iDb==1 ){
03376         sqlite3OpenTempDatabase(pParse);
03377       }
03378     }
03379   }
03380 }
03381 
03382 /*
03383 ** Generate VDBE code that prepares for doing an operation that
03384 ** might change the database.
03385 **
03386 ** This routine starts a new transaction if we are not already within
03387 ** a transaction.  If we are already within a transaction, then a checkpoint
03388 ** is set if the setStatement parameter is true.  A checkpoint should
03389 ** be set for operations that might fail (due to a constraint) part of
03390 ** the way through and which will need to undo some writes without having to
03391 ** rollback the whole transaction.  For operations where all constraints
03392 ** can be checked before any changes are made to the database, it is never
03393 ** necessary to undo a write and the checkpoint should not be set.
03394 **
03395 ** Only database iDb and the temp database are made writable by this call.
03396 ** If iDb==0, then the main and temp databases are made writable.   If
03397 ** iDb==1 then only the temp database is made writable.  If iDb>1 then the
03398 ** specified auxiliary database and the temp database are made writable.
03399 */
03400 void sqlite3BeginWriteOperation(Parse *pParse, int setStatement, int iDb){
03401   Vdbe *v = sqlite3GetVdbe(pParse);
03402   if( v==0 ) return;
03403   sqlite3CodeVerifySchema(pParse, iDb);
03404   pParse->writeMask |= 1<<iDb;
03405   if( setStatement && pParse->nested==0 ){
03406     sqlite3VdbeAddOp1(v, OP_Statement, iDb);
03407   }
03408   if( (OMIT_TEMPDB || iDb!=1) && pParse->db->aDb[1].pBt!=0 ){
03409     sqlite3BeginWriteOperation(pParse, setStatement, 1);
03410   }
03411 }
03412 
03413 /*
03414 ** Check to see if pIndex uses the collating sequence pColl.  Return
03415 ** true if it does and false if it does not.
03416 */
03417 #ifndef SQLITE_OMIT_REINDEX
03418 static int collationMatch(const char *zColl, Index *pIndex){
03419   int i;
03420   for(i=0; i<pIndex->nColumn; i++){
03421     const char *z = pIndex->azColl[i];
03422     if( z==zColl || (z && zColl && 0==sqlite3StrICmp(z, zColl)) ){
03423       return 1;
03424     }
03425   }
03426   return 0;
03427 }
03428 #endif
03429 
03430 /*
03431 ** Recompute all indices of pTab that use the collating sequence pColl.
03432 ** If pColl==0 then recompute all indices of pTab.
03433 */
03434 #ifndef SQLITE_OMIT_REINDEX
03435 static void reindexTable(Parse *pParse, Table *pTab, char const *zColl){
03436   Index *pIndex;              /* An index associated with pTab */
03437 
03438   for(pIndex=pTab->pIndex; pIndex; pIndex=pIndex->pNext){
03439     if( zColl==0 || collationMatch(zColl, pIndex) ){
03440       int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
03441       sqlite3BeginWriteOperation(pParse, 0, iDb);
03442       sqlite3RefillIndex(pParse, pIndex, -1);
03443     }
03444   }
03445 }
03446 #endif
03447 
03448 /*
03449 ** Recompute all indices of all tables in all databases where the
03450 ** indices use the collating sequence pColl.  If pColl==0 then recompute
03451 ** all indices everywhere.
03452 */
03453 #ifndef SQLITE_OMIT_REINDEX
03454 static void reindexDatabases(Parse *pParse, char const *zColl){
03455   Db *pDb;                    /* A single database */
03456   int iDb;                    /* The database index number */
03457   sqlite3 *db = pParse->db;   /* The database connection */
03458   HashElem *k;                /* For looping over tables in pDb */
03459   Table *pTab;                /* A table in the database */
03460 
03461   for(iDb=0, pDb=db->aDb; iDb<db->nDb; iDb++, pDb++){
03462     assert( pDb!=0 );
03463     for(k=sqliteHashFirst(&pDb->pSchema->tblHash);  k; k=sqliteHashNext(k)){
03464       pTab = (Table*)sqliteHashData(k);
03465       reindexTable(pParse, pTab, zColl);
03466     }
03467   }
03468 }
03469 #endif
03470 
03471 /*
03472 ** Generate code for the REINDEX command.
03473 **
03474 **        REINDEX                            -- 1
03475 **        REINDEX  <collation>               -- 2
03476 **        REINDEX  ?<database>.?<tablename>  -- 3
03477 **        REINDEX  ?<database>.?<indexname>  -- 4
03478 **
03479 ** Form 1 causes all indices in all attached databases to be rebuilt.
03480 ** Form 2 rebuilds all indices in all databases that use the named
03481 ** collating function.  Forms 3 and 4 rebuild the named index or all
03482 ** indices associated with the named table.
03483 */
03484 #ifndef SQLITE_OMIT_REINDEX
03485 void sqlite3Reindex(Parse *pParse, Token *pName1, Token *pName2){
03486   CollSeq *pColl;             /* Collating sequence to be reindexed, or NULL */
03487   char *z;                    /* Name of a table or index */
03488   const char *zDb;            /* Name of the database */
03489   Table *pTab;                /* A table in the database */
03490   Index *pIndex;              /* An index associated with pTab */
03491   int iDb;                    /* The database index number */
03492   sqlite3 *db = pParse->db;   /* The database connection */
03493   Token *pObjName;            /* Name of the table or index to be reindexed */
03494 
03495   /* Read the database schema. If an error occurs, leave an error message
03496   ** and code in pParse and return NULL. */
03497   if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
03498     return;
03499   }
03500 
03501   if( pName1==0 || pName1->z==0 ){
03502     reindexDatabases(pParse, 0);
03503     return;
03504   }else if( pName2==0 || pName2->z==0 ){
03505     char *zColl;
03506     assert( pName1->z );
03507     zColl = sqlite3NameFromToken(pParse->db, pName1);
03508     if( !zColl ) return;
03509     pColl = sqlite3FindCollSeq(db, ENC(db), zColl, -1, 0);
03510     if( pColl ){
03511       if( zColl ){
03512         reindexDatabases(pParse, zColl);
03513         sqlite3DbFree(db, zColl);
03514       }
03515       return;
03516     }
03517     sqlite3DbFree(db, zColl);
03518   }
03519   iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pObjName);
03520   if( iDb<0 ) return;
03521   z = sqlite3NameFromToken(db, pObjName);
03522   if( z==0 ) return;
03523   zDb = db->aDb[iDb].zName;
03524   pTab = sqlite3FindTable(db, z, zDb);
03525   if( pTab ){
03526     reindexTable(pParse, pTab, 0);
03527     sqlite3DbFree(db, z);
03528     return;
03529   }
03530   pIndex = sqlite3FindIndex(db, z, zDb);
03531   sqlite3DbFree(db, z);
03532   if( pIndex ){
03533     sqlite3BeginWriteOperation(pParse, 0, iDb);
03534     sqlite3RefillIndex(pParse, pIndex, -1);
03535     return;
03536   }
03537   sqlite3ErrorMsg(pParse, "unable to identify the object to be reindexed");
03538 }
03539 #endif
03540 
03541 /*
03542 ** Return a dynamicly allocated KeyInfo structure that can be used
03543 ** with OP_OpenRead or OP_OpenWrite to access database index pIdx.
03544 **
03545 ** If successful, a pointer to the new structure is returned. In this case
03546 ** the caller is responsible for calling sqlite3DbFree(db, ) on the returned 
03547 ** pointer. If an error occurs (out of memory or missing collation 
03548 ** sequence), NULL is returned and the state of pParse updated to reflect
03549 ** the error.
03550 */
03551 KeyInfo *sqlite3IndexKeyinfo(Parse *pParse, Index *pIdx){
03552   int i;
03553   int nCol = pIdx->nColumn;
03554   int nBytes = sizeof(KeyInfo) + (nCol-1)*sizeof(CollSeq*) + nCol;
03555   sqlite3 *db = pParse->db;
03556   KeyInfo *pKey = (KeyInfo *)sqlite3DbMallocZero(db, nBytes);
03557 
03558   if( pKey ){
03559     pKey->db = pParse->db;
03560     pKey->aSortOrder = (u8 *)&(pKey->aColl[nCol]);
03561     assert( &pKey->aSortOrder[nCol]==&(((u8 *)pKey)[nBytes]) );
03562     for(i=0; i<nCol; i++){
03563       char *zColl = pIdx->azColl[i];
03564       assert( zColl );
03565       pKey->aColl[i] = sqlite3LocateCollSeq(pParse, zColl, -1);
03566       pKey->aSortOrder[i] = pIdx->aSortOrder[i];
03567     }
03568     pKey->nField = nCol;
03569   }
03570 
03571   if( pParse->nErr ){
03572     sqlite3DbFree(db, pKey);
03573     pKey = 0;
03574   }
03575   return pKey;
03576 }

ContextLogger2—ContextLogger2 Logger Daemon Internals—Generated on Mon May 2 13:49:52 2011 by Doxygen 1.6.1