fts1_porter.c

Go to the documentation of this file.
00001 /*
00002 ** 2006 September 30
00003 **
00004 ** The author disclaims copyright to this source code.  In place of
00005 ** a legal notice, here is a blessing:
00006 **
00007 **    May you do good and not evil.
00008 **    May you find forgiveness for yourself and forgive others.
00009 **    May you share freely, never taking more than you give.
00010 **
00011 *************************************************************************
00012 ** Implementation of the full-text-search tokenizer that implements
00013 ** a Porter stemmer.
00014 */
00015 
00016 /*
00017 ** The code in this file is only compiled if:
00018 **
00019 **     * The FTS1 module is being built as an extension
00020 **       (in which case SQLITE_CORE is not defined), or
00021 **
00022 **     * The FTS1 module is being built into the core of
00023 **       SQLite (in which case SQLITE_ENABLE_FTS1 is defined).
00024 */
00025 #if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS1)
00026 
00027 
00028 #include <assert.h>
00029 #include <stdlib.h>
00030 #include <stdio.h>
00031 #include <string.h>
00032 #include <ctype.h>
00033 
00034 #include "fts1_tokenizer.h"
00035 
00036 /*
00037 ** Class derived from sqlite3_tokenizer
00038 */
00039 typedef struct porter_tokenizer {
00040   sqlite3_tokenizer base;      /* Base class */
00041 } porter_tokenizer;
00042 
00043 /*
00044 ** Class derived from sqlit3_tokenizer_cursor
00045 */
00046 typedef struct porter_tokenizer_cursor {
00047   sqlite3_tokenizer_cursor base;
00048   const char *zInput;          /* input we are tokenizing */
00049   int nInput;                  /* size of the input */
00050   int iOffset;                 /* current position in zInput */
00051   int iToken;                  /* index of next token to be returned */
00052   char *zToken;                /* storage for current token */
00053   int nAllocated;              /* space allocated to zToken buffer */
00054 } porter_tokenizer_cursor;
00055 
00056 
00057 /* Forward declaration */
00058 static const sqlite3_tokenizer_module porterTokenizerModule;
00059 
00060 
00061 /*
00062 ** Create a new tokenizer instance.
00063 */
00064 static int porterCreate(
00065   int argc, const char * const *argv,
00066   sqlite3_tokenizer **ppTokenizer
00067 ){
00068   porter_tokenizer *t;
00069   t = (porter_tokenizer *) calloc(sizeof(*t), 1);
00070   if( t==NULL ) return SQLITE_NOMEM;
00071 
00072   *ppTokenizer = &t->base;
00073   return SQLITE_OK;
00074 }
00075 
00076 /*
00077 ** Destroy a tokenizer
00078 */
00079 static int porterDestroy(sqlite3_tokenizer *pTokenizer){
00080   free(pTokenizer);
00081   return SQLITE_OK;
00082 }
00083 
00084 /*
00085 ** Prepare to begin tokenizing a particular string.  The input
00086 ** string to be tokenized is zInput[0..nInput-1].  A cursor
00087 ** used to incrementally tokenize this string is returned in 
00088 ** *ppCursor.
00089 */
00090 static int porterOpen(
00091   sqlite3_tokenizer *pTokenizer,         /* The tokenizer */
00092   const char *zInput, int nInput,        /* String to be tokenized */
00093   sqlite3_tokenizer_cursor **ppCursor    /* OUT: Tokenization cursor */
00094 ){
00095   porter_tokenizer_cursor *c;
00096 
00097   c = (porter_tokenizer_cursor *) malloc(sizeof(*c));
00098   if( c==NULL ) return SQLITE_NOMEM;
00099 
00100   c->zInput = zInput;
00101   if( zInput==0 ){
00102     c->nInput = 0;
00103   }else if( nInput<0 ){
00104     c->nInput = (int)strlen(zInput);
00105   }else{
00106     c->nInput = nInput;
00107   }
00108   c->iOffset = 0;                 /* start tokenizing at the beginning */
00109   c->iToken = 0;
00110   c->zToken = NULL;               /* no space allocated, yet. */
00111   c->nAllocated = 0;
00112 
00113   *ppCursor = &c->base;
00114   return SQLITE_OK;
00115 }
00116 
00117 /*
00118 ** Close a tokenization cursor previously opened by a call to
00119 ** porterOpen() above.
00120 */
00121 static int porterClose(sqlite3_tokenizer_cursor *pCursor){
00122   porter_tokenizer_cursor *c = (porter_tokenizer_cursor *) pCursor;
00123   free(c->zToken);
00124   free(c);
00125   return SQLITE_OK;
00126 }
00127 /*
00128 ** Vowel or consonant
00129 */
00130 static const char cType[] = {
00131    0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0,
00132    1, 1, 1, 2, 1
00133 };
00134 
00135 /*
00136 ** isConsonant() and isVowel() determine if their first character in
00137 ** the string they point to is a consonant or a vowel, according
00138 ** to Porter ruls.  
00139 **
00140 ** A consonate is any letter other than 'a', 'e', 'i', 'o', or 'u'.
00141 ** 'Y' is a consonant unless it follows another consonant,
00142 ** in which case it is a vowel.
00143 **
00144 ** In these routine, the letters are in reverse order.  So the 'y' rule
00145 ** is that 'y' is a consonant unless it is followed by another
00146 ** consonent.
00147 */
00148 static int isVowel(const char*);
00149 static int isConsonant(const char *z){
00150   int j;
00151   char x = *z;
00152   if( x==0 ) return 0;
00153   assert( x>='a' && x<='z' );
00154   j = cType[x-'a'];
00155   if( j<2 ) return j;
00156   return z[1]==0 || isVowel(z + 1);
00157 }
00158 static int isVowel(const char *z){
00159   int j;
00160   char x = *z;
00161   if( x==0 ) return 0;
00162   assert( x>='a' && x<='z' );
00163   j = cType[x-'a'];
00164   if( j<2 ) return 1-j;
00165   return isConsonant(z + 1);
00166 }
00167 
00168 /*
00169 ** Let any sequence of one or more vowels be represented by V and let
00170 ** C be sequence of one or more consonants.  Then every word can be
00171 ** represented as:
00172 **
00173 **           [C] (VC){m} [V]
00174 **
00175 ** In prose:  A word is an optional consonant followed by zero or
00176 ** vowel-consonant pairs followed by an optional vowel.  "m" is the
00177 ** number of vowel consonant pairs.  This routine computes the value
00178 ** of m for the first i bytes of a word.
00179 **
00180 ** Return true if the m-value for z is 1 or more.  In other words,
00181 ** return true if z contains at least one vowel that is followed
00182 ** by a consonant.
00183 **
00184 ** In this routine z[] is in reverse order.  So we are really looking
00185 ** for an instance of of a consonant followed by a vowel.
00186 */
00187 static int m_gt_0(const char *z){
00188   while( isVowel(z) ){ z++; }
00189   if( *z==0 ) return 0;
00190   while( isConsonant(z) ){ z++; }
00191   return *z!=0;
00192 }
00193 
00194 /* Like mgt0 above except we are looking for a value of m which is
00195 ** exactly 1
00196 */
00197 static int m_eq_1(const char *z){
00198   while( isVowel(z) ){ z++; }
00199   if( *z==0 ) return 0;
00200   while( isConsonant(z) ){ z++; }
00201   if( *z==0 ) return 0;
00202   while( isVowel(z) ){ z++; }
00203   if( *z==0 ) return 1;
00204   while( isConsonant(z) ){ z++; }
00205   return *z==0;
00206 }
00207 
00208 /* Like mgt0 above except we are looking for a value of m>1 instead
00209 ** or m>0
00210 */
00211 static int m_gt_1(const char *z){
00212   while( isVowel(z) ){ z++; }
00213   if( *z==0 ) return 0;
00214   while( isConsonant(z) ){ z++; }
00215   if( *z==0 ) return 0;
00216   while( isVowel(z) ){ z++; }
00217   if( *z==0 ) return 0;
00218   while( isConsonant(z) ){ z++; }
00219   return *z!=0;
00220 }
00221 
00222 /*
00223 ** Return TRUE if there is a vowel anywhere within z[0..n-1]
00224 */
00225 static int hasVowel(const char *z){
00226   while( isConsonant(z) ){ z++; }
00227   return *z!=0;
00228 }
00229 
00230 /*
00231 ** Return TRUE if the word ends in a double consonant.
00232 **
00233 ** The text is reversed here. So we are really looking at
00234 ** the first two characters of z[].
00235 */
00236 static int doubleConsonant(const char *z){
00237   return isConsonant(z) && z[0]==z[1] && isConsonant(z+1);
00238 }
00239 
00240 /*
00241 ** Return TRUE if the word ends with three letters which
00242 ** are consonant-vowel-consonent and where the final consonant
00243 ** is not 'w', 'x', or 'y'.
00244 **
00245 ** The word is reversed here.  So we are really checking the
00246 ** first three letters and the first one cannot be in [wxy].
00247 */
00248 static int star_oh(const char *z){
00249   return
00250     z[0]!=0 && isConsonant(z) &&
00251     z[0]!='w' && z[0]!='x' && z[0]!='y' &&
00252     z[1]!=0 && isVowel(z+1) &&
00253     z[2]!=0 && isConsonant(z+2);
00254 }
00255 
00256 /*
00257 ** If the word ends with zFrom and xCond() is true for the stem
00258 ** of the word that preceeds the zFrom ending, then change the 
00259 ** ending to zTo.
00260 **
00261 ** The input word *pz and zFrom are both in reverse order.  zTo
00262 ** is in normal order. 
00263 **
00264 ** Return TRUE if zFrom matches.  Return FALSE if zFrom does not
00265 ** match.  Not that TRUE is returned even if xCond() fails and
00266 ** no substitution occurs.
00267 */
00268 static int stem(
00269   char **pz,             /* The word being stemmed (Reversed) */
00270   const char *zFrom,     /* If the ending matches this... (Reversed) */
00271   const char *zTo,       /* ... change the ending to this (not reversed) */
00272   int (*xCond)(const char*)   /* Condition that must be true */
00273 ){
00274   char *z = *pz;
00275   while( *zFrom && *zFrom==*z ){ z++; zFrom++; }
00276   if( *zFrom!=0 ) return 0;
00277   if( xCond && !xCond(z) ) return 1;
00278   while( *zTo ){
00279     *(--z) = *(zTo++);
00280   }
00281   *pz = z;
00282   return 1;
00283 }
00284 
00285 /*
00286 ** This is the fallback stemmer used when the porter stemmer is
00287 ** inappropriate.  The input word is copied into the output with
00288 ** US-ASCII case folding.  If the input word is too long (more
00289 ** than 20 bytes if it contains no digits or more than 6 bytes if
00290 ** it contains digits) then word is truncated to 20 or 6 bytes
00291 ** by taking 10 or 3 bytes from the beginning and end.
00292 */
00293 static void copy_stemmer(const char *zIn, int nIn, char *zOut, int *pnOut){
00294   int i, mx, j;
00295   int hasDigit = 0;
00296   for(i=0; i<nIn; i++){
00297     int c = zIn[i];
00298     if( c>='A' && c<='Z' ){
00299       zOut[i] = c - 'A' + 'a';
00300     }else{
00301       if( c>='0' && c<='9' ) hasDigit = 1;
00302       zOut[i] = c;
00303     }
00304   }
00305   mx = hasDigit ? 3 : 10;
00306   if( nIn>mx*2 ){
00307     for(j=mx, i=nIn-mx; i<nIn; i++, j++){
00308       zOut[j] = zOut[i];
00309     }
00310     i = j;
00311   }
00312   zOut[i] = 0;
00313   *pnOut = i;
00314 }
00315 
00316 
00317 /*
00318 ** Stem the input word zIn[0..nIn-1].  Store the output in zOut.
00319 ** zOut is at least big enough to hold nIn bytes.  Write the actual
00320 ** size of the output word (exclusive of the '\0' terminator) into *pnOut.
00321 **
00322 ** Any upper-case characters in the US-ASCII character set ([A-Z])
00323 ** are converted to lower case.  Upper-case UTF characters are
00324 ** unchanged.
00325 **
00326 ** Words that are longer than about 20 bytes are stemmed by retaining
00327 ** a few bytes from the beginning and the end of the word.  If the
00328 ** word contains digits, 3 bytes are taken from the beginning and
00329 ** 3 bytes from the end.  For long words without digits, 10 bytes
00330 ** are taken from each end.  US-ASCII case folding still applies.
00331 ** 
00332 ** If the input word contains not digits but does characters not 
00333 ** in [a-zA-Z] then no stemming is attempted and this routine just 
00334 ** copies the input into the input into the output with US-ASCII
00335 ** case folding.
00336 **
00337 ** Stemming never increases the length of the word.  So there is
00338 ** no chance of overflowing the zOut buffer.
00339 */
00340 static void porter_stemmer(const char *zIn, int nIn, char *zOut, int *pnOut){
00341   int i, j, c;
00342   char zReverse[28];
00343   char *z, *z2;
00344   if( nIn<3 || nIn>=sizeof(zReverse)-7 ){
00345     /* The word is too big or too small for the porter stemmer.
00346     ** Fallback to the copy stemmer */
00347     copy_stemmer(zIn, nIn, zOut, pnOut);
00348     return;
00349   }
00350   for(i=0, j=sizeof(zReverse)-6; i<nIn; i++, j--){
00351     c = zIn[i];
00352     if( c>='A' && c<='Z' ){
00353       zReverse[j] = c + 'a' - 'A';
00354     }else if( c>='a' && c<='z' ){
00355       zReverse[j] = c;
00356     }else{
00357       /* The use of a character not in [a-zA-Z] means that we fallback
00358       ** to the copy stemmer */
00359       copy_stemmer(zIn, nIn, zOut, pnOut);
00360       return;
00361     }
00362   }
00363   memset(&zReverse[sizeof(zReverse)-5], 0, 5);
00364   z = &zReverse[j+1];
00365 
00366 
00367   /* Step 1a */
00368   if( z[0]=='s' ){
00369     if(
00370      !stem(&z, "sess", "ss", 0) &&
00371      !stem(&z, "sei", "i", 0)  &&
00372      !stem(&z, "ss", "ss", 0)
00373     ){
00374       z++;
00375     }
00376   }
00377 
00378   /* Step 1b */  
00379   z2 = z;
00380   if( stem(&z, "dee", "ee", m_gt_0) ){
00381     /* Do nothing.  The work was all in the test */
00382   }else if( 
00383      (stem(&z, "gni", "", hasVowel) || stem(&z, "de", "", hasVowel))
00384       && z!=z2
00385   ){
00386      if( stem(&z, "ta", "ate", 0) ||
00387          stem(&z, "lb", "ble", 0) ||
00388          stem(&z, "zi", "ize", 0) ){
00389        /* Do nothing.  The work was all in the test */
00390      }else if( doubleConsonant(z) && (*z!='l' && *z!='s' && *z!='z') ){
00391        z++;
00392      }else if( m_eq_1(z) && star_oh(z) ){
00393        *(--z) = 'e';
00394      }
00395   }
00396 
00397   /* Step 1c */
00398   if( z[0]=='y' && hasVowel(z+1) ){
00399     z[0] = 'i';
00400   }
00401 
00402   /* Step 2 */
00403   switch( z[1] ){
00404    case 'a':
00405      stem(&z, "lanoita", "ate", m_gt_0) ||
00406      stem(&z, "lanoit", "tion", m_gt_0);
00407      break;
00408    case 'c':
00409      stem(&z, "icne", "ence", m_gt_0) ||
00410      stem(&z, "icna", "ance", m_gt_0);
00411      break;
00412    case 'e':
00413      stem(&z, "rezi", "ize", m_gt_0);
00414      break;
00415    case 'g':
00416      stem(&z, "igol", "log", m_gt_0);
00417      break;
00418    case 'l':
00419      stem(&z, "ilb", "ble", m_gt_0) ||
00420      stem(&z, "illa", "al", m_gt_0) ||
00421      stem(&z, "iltne", "ent", m_gt_0) ||
00422      stem(&z, "ile", "e", m_gt_0) ||
00423      stem(&z, "ilsuo", "ous", m_gt_0);
00424      break;
00425    case 'o':
00426      stem(&z, "noitazi", "ize", m_gt_0) ||
00427      stem(&z, "noita", "ate", m_gt_0) ||
00428      stem(&z, "rota", "ate", m_gt_0);
00429      break;
00430    case 's':
00431      stem(&z, "msila", "al", m_gt_0) ||
00432      stem(&z, "ssenevi", "ive", m_gt_0) ||
00433      stem(&z, "ssenluf", "ful", m_gt_0) ||
00434      stem(&z, "ssensuo", "ous", m_gt_0);
00435      break;
00436    case 't':
00437      stem(&z, "itila", "al", m_gt_0) ||
00438      stem(&z, "itivi", "ive", m_gt_0) ||
00439      stem(&z, "itilib", "ble", m_gt_0);
00440      break;
00441   }
00442 
00443   /* Step 3 */
00444   switch( z[0] ){
00445    case 'e':
00446      stem(&z, "etaci", "ic", m_gt_0) ||
00447      stem(&z, "evita", "", m_gt_0)   ||
00448      stem(&z, "ezila", "al", m_gt_0);
00449      break;
00450    case 'i':
00451      stem(&z, "itici", "ic", m_gt_0);
00452      break;
00453    case 'l':
00454      stem(&z, "laci", "ic", m_gt_0) ||
00455      stem(&z, "luf", "", m_gt_0);
00456      break;
00457    case 's':
00458      stem(&z, "ssen", "", m_gt_0);
00459      break;
00460   }
00461 
00462   /* Step 4 */
00463   switch( z[1] ){
00464    case 'a':
00465      if( z[0]=='l' && m_gt_1(z+2) ){
00466        z += 2;
00467      }
00468      break;
00469    case 'c':
00470      if( z[0]=='e' && z[2]=='n' && (z[3]=='a' || z[3]=='e')  && m_gt_1(z+4)  ){
00471        z += 4;
00472      }
00473      break;
00474    case 'e':
00475      if( z[0]=='r' && m_gt_1(z+2) ){
00476        z += 2;
00477      }
00478      break;
00479    case 'i':
00480      if( z[0]=='c' && m_gt_1(z+2) ){
00481        z += 2;
00482      }
00483      break;
00484    case 'l':
00485      if( z[0]=='e' && z[2]=='b' && (z[3]=='a' || z[3]=='i') && m_gt_1(z+4) ){
00486        z += 4;
00487      }
00488      break;
00489    case 'n':
00490      if( z[0]=='t' ){
00491        if( z[2]=='a' ){
00492          if( m_gt_1(z+3) ){
00493            z += 3;
00494          }
00495        }else if( z[2]=='e' ){
00496          stem(&z, "tneme", "", m_gt_1) ||
00497          stem(&z, "tnem", "", m_gt_1) ||
00498          stem(&z, "tne", "", m_gt_1);
00499        }
00500      }
00501      break;
00502    case 'o':
00503      if( z[0]=='u' ){
00504        if( m_gt_1(z+2) ){
00505          z += 2;
00506        }
00507      }else if( z[3]=='s' || z[3]=='t' ){
00508        stem(&z, "noi", "", m_gt_1);
00509      }
00510      break;
00511    case 's':
00512      if( z[0]=='m' && z[2]=='i' && m_gt_1(z+3) ){
00513        z += 3;
00514      }
00515      break;
00516    case 't':
00517      stem(&z, "eta", "", m_gt_1) ||
00518      stem(&z, "iti", "", m_gt_1);
00519      break;
00520    case 'u':
00521      if( z[0]=='s' && z[2]=='o' && m_gt_1(z+3) ){
00522        z += 3;
00523      }
00524      break;
00525    case 'v':
00526    case 'z':
00527      if( z[0]=='e' && z[2]=='i' && m_gt_1(z+3) ){
00528        z += 3;
00529      }
00530      break;
00531   }
00532 
00533   /* Step 5a */
00534   if( z[0]=='e' ){
00535     if( m_gt_1(z+1) ){
00536       z++;
00537     }else if( m_eq_1(z+1) && !star_oh(z+1) ){
00538       z++;
00539     }
00540   }
00541 
00542   /* Step 5b */
00543   if( m_gt_1(z) && z[0]=='l' && z[1]=='l' ){
00544     z++;
00545   }
00546 
00547   /* z[] is now the stemmed word in reverse order.  Flip it back
00548   ** around into forward order and return.
00549   */
00550   *pnOut = i = strlen(z);
00551   zOut[i] = 0;
00552   while( *z ){
00553     zOut[--i] = *(z++);
00554   }
00555 }
00556 
00557 /*
00558 ** Characters that can be part of a token.  We assume any character
00559 ** whose value is greater than 0x80 (any UTF character) can be
00560 ** part of a token.  In other words, delimiters all must have
00561 ** values of 0x7f or lower.
00562 */
00563 static const char isIdChar[] = {
00564 /* x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 xA xB xC xD xE xF */
00565     1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0,  /* 3x */
00566     0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,  /* 4x */
00567     1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1,  /* 5x */
00568     0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,  /* 6x */
00569     1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0,  /* 7x */
00570 };
00571 #define idChar(C)  (((ch=C)&0x80)!=0 || (ch>0x2f && isIdChar[ch-0x30]))
00572 #define isDelim(C) (((ch=C)&0x80)==0 && (ch<0x30 || !isIdChar[ch-0x30]))
00573 
00574 /*
00575 ** Extract the next token from a tokenization cursor.  The cursor must
00576 ** have been opened by a prior call to porterOpen().
00577 */
00578 static int porterNext(
00579   sqlite3_tokenizer_cursor *pCursor,  /* Cursor returned by porterOpen */
00580   const char **pzToken,               /* OUT: *pzToken is the token text */
00581   int *pnBytes,                       /* OUT: Number of bytes in token */
00582   int *piStartOffset,                 /* OUT: Starting offset of token */
00583   int *piEndOffset,                   /* OUT: Ending offset of token */
00584   int *piPosition                     /* OUT: Position integer of token */
00585 ){
00586   porter_tokenizer_cursor *c = (porter_tokenizer_cursor *) pCursor;
00587   const char *z = c->zInput;
00588 
00589   while( c->iOffset<c->nInput ){
00590     int iStartOffset, ch;
00591 
00592     /* Scan past delimiter characters */
00593     while( c->iOffset<c->nInput && isDelim(z[c->iOffset]) ){
00594       c->iOffset++;
00595     }
00596 
00597     /* Count non-delimiter characters. */
00598     iStartOffset = c->iOffset;
00599     while( c->iOffset<c->nInput && !isDelim(z[c->iOffset]) ){
00600       c->iOffset++;
00601     }
00602 
00603     if( c->iOffset>iStartOffset ){
00604       int n = c->iOffset-iStartOffset;
00605       if( n>c->nAllocated ){
00606         c->nAllocated = n+20;
00607         c->zToken = realloc(c->zToken, c->nAllocated);
00608         if( c->zToken==NULL ) return SQLITE_NOMEM;
00609       }
00610       porter_stemmer(&z[iStartOffset], n, c->zToken, pnBytes);
00611       *pzToken = c->zToken;
00612       *piStartOffset = iStartOffset;
00613       *piEndOffset = c->iOffset;
00614       *piPosition = c->iToken++;
00615       return SQLITE_OK;
00616     }
00617   }
00618   return SQLITE_DONE;
00619 }
00620 
00621 /*
00622 ** The set of routines that implement the porter-stemmer tokenizer
00623 */
00624 static const sqlite3_tokenizer_module porterTokenizerModule = {
00625   0,
00626   porterCreate,
00627   porterDestroy,
00628   porterOpen,
00629   porterClose,
00630   porterNext,
00631 };
00632 
00633 /*
00634 ** Allocate a new porter tokenizer.  Return a pointer to the new
00635 ** tokenizer in *ppModule
00636 */
00637 void sqlite3Fts1PorterTokenizerModule(
00638   sqlite3_tokenizer_module const**ppModule
00639 ){
00640   *ppModule = &porterTokenizerModule;
00641 }
00642 
00643 #endif /* !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS1) */

ContextLogger2—ContextLogger2 Logger Daemon Internals—Generated on Mon May 2 13:49:53 2011 by Doxygen 1.6.1