insert.c

Go to the documentation of this file.
00001 /*
00002 ** 2001 September 15
00003 **
00004 ** The author disclaims copyright to this source code.  In place of
00005 ** a legal notice, here is a blessing:
00006 **
00007 **    May you do good and not evil.
00008 **    May you find forgiveness for yourself and forgive others.
00009 **    May you share freely, never taking more than you give.
00010 **
00011 *************************************************************************
00012 ** This file contains C code routines that are called by the parser
00013 ** to handle INSERT statements in SQLite.
00014 **
00015 ** $Id: insert.c,v 1.251 2008/11/03 20:55:07 drh Exp $
00016 */
00017 #include "sqliteInt.h"
00018 
00019 /*
00020 ** Set P4 of the most recently inserted opcode to a column affinity
00021 ** string for index pIdx. A column affinity string has one character
00022 ** for each column in the table, according to the affinity of the column:
00023 **
00024 **  Character      Column affinity
00025 **  ------------------------------
00026 **  'a'            TEXT
00027 **  'b'            NONE
00028 **  'c'            NUMERIC
00029 **  'd'            INTEGER
00030 **  'e'            REAL
00031 **
00032 ** An extra 'b' is appended to the end of the string to cover the
00033 ** rowid that appears as the last column in every index.
00034 */
00035 void sqlite3IndexAffinityStr(Vdbe *v, Index *pIdx){
00036   if( !pIdx->zColAff ){
00037     /* The first time a column affinity string for a particular index is
00038     ** required, it is allocated and populated here. It is then stored as
00039     ** a member of the Index structure for subsequent use.
00040     **
00041     ** The column affinity string will eventually be deleted by
00042     ** sqliteDeleteIndex() when the Index structure itself is cleaned
00043     ** up.
00044     */
00045     int n;
00046     Table *pTab = pIdx->pTable;
00047     sqlite3 *db = sqlite3VdbeDb(v);
00048     pIdx->zColAff = (char *)sqlite3Malloc(pIdx->nColumn+2);
00049     if( !pIdx->zColAff ){
00050       db->mallocFailed = 1;
00051       return;
00052     }
00053     for(n=0; n<pIdx->nColumn; n++){
00054       pIdx->zColAff[n] = pTab->aCol[pIdx->aiColumn[n]].affinity;
00055     }
00056     pIdx->zColAff[n++] = SQLITE_AFF_NONE;
00057     pIdx->zColAff[n] = 0;
00058   }
00059  
00060   sqlite3VdbeChangeP4(v, -1, pIdx->zColAff, 0);
00061 }
00062 
00063 /*
00064 ** Set P4 of the most recently inserted opcode to a column affinity
00065 ** string for table pTab. A column affinity string has one character
00066 ** for each column indexed by the index, according to the affinity of the
00067 ** column:
00068 **
00069 **  Character      Column affinity
00070 **  ------------------------------
00071 **  'a'            TEXT
00072 **  'b'            NONE
00073 **  'c'            NUMERIC
00074 **  'd'            INTEGER
00075 **  'e'            REAL
00076 */
00077 void sqlite3TableAffinityStr(Vdbe *v, Table *pTab){
00078   /* The first time a column affinity string for a particular table
00079   ** is required, it is allocated and populated here. It is then 
00080   ** stored as a member of the Table structure for subsequent use.
00081   **
00082   ** The column affinity string will eventually be deleted by
00083   ** sqlite3DeleteTable() when the Table structure itself is cleaned up.
00084   */
00085   if( !pTab->zColAff ){
00086     char *zColAff;
00087     int i;
00088     sqlite3 *db = sqlite3VdbeDb(v);
00089 
00090     zColAff = (char *)sqlite3Malloc(pTab->nCol+1);
00091     if( !zColAff ){
00092       db->mallocFailed = 1;
00093       return;
00094     }
00095 
00096     for(i=0; i<pTab->nCol; i++){
00097       zColAff[i] = pTab->aCol[i].affinity;
00098     }
00099     zColAff[pTab->nCol] = '\0';
00100 
00101     pTab->zColAff = zColAff;
00102   }
00103 
00104   sqlite3VdbeChangeP4(v, -1, pTab->zColAff, 0);
00105 }
00106 
00107 /*
00108 ** Return non-zero if the table pTab in database iDb or any of its indices
00109 ** have been opened at any point in the VDBE program beginning at location
00110 ** iStartAddr throught the end of the program.  This is used to see if 
00111 ** a statement of the form  "INSERT INTO <iDb, pTab> SELECT ..." can 
00112 ** run without using temporary table for the results of the SELECT. 
00113 */
00114 static int readsTable(Vdbe *v, int iStartAddr, int iDb, Table *pTab){
00115   int i;
00116   int iEnd = sqlite3VdbeCurrentAddr(v);
00117   for(i=iStartAddr; i<iEnd; i++){
00118     VdbeOp *pOp = sqlite3VdbeGetOp(v, i);
00119     assert( pOp!=0 );
00120     if( pOp->opcode==OP_OpenRead && pOp->p3==iDb ){
00121       Index *pIndex;
00122       int tnum = pOp->p2;
00123       if( tnum==pTab->tnum ){
00124         return 1;
00125       }
00126       for(pIndex=pTab->pIndex; pIndex; pIndex=pIndex->pNext){
00127         if( tnum==pIndex->tnum ){
00128           return 1;
00129         }
00130       }
00131     }
00132 #ifndef SQLITE_OMIT_VIRTUALTABLE
00133     if( pOp->opcode==OP_VOpen && pOp->p4.pVtab==pTab->pVtab ){
00134       assert( pOp->p4.pVtab!=0 );
00135       assert( pOp->p4type==P4_VTAB );
00136       return 1;
00137     }
00138 #endif
00139   }
00140   return 0;
00141 }
00142 
00143 #ifndef SQLITE_OMIT_AUTOINCREMENT
00144 /*
00145 ** Write out code to initialize the autoincrement logic.  This code
00146 ** looks up the current autoincrement value in the sqlite_sequence
00147 ** table and stores that value in a register.  Code generated by
00148 ** autoIncStep() will keep that register holding the largest
00149 ** rowid value.  Code generated by autoIncEnd() will write the new
00150 ** largest value of the counter back into the sqlite_sequence table.
00151 **
00152 ** This routine returns the index of the mem[] cell that contains
00153 ** the maximum rowid counter.
00154 **
00155 ** Three consecutive registers are allocated by this routine.  The
00156 ** first two hold the name of the target table and the maximum rowid 
00157 ** inserted into the target table, respectively.
00158 ** The third holds the rowid in sqlite_sequence where we will
00159 ** write back the revised maximum rowid.  This routine returns the
00160 ** index of the second of these three registers.
00161 */
00162 static int autoIncBegin(
00163   Parse *pParse,      /* Parsing context */
00164   int iDb,            /* Index of the database holding pTab */
00165   Table *pTab         /* The table we are writing to */
00166 ){
00167   int memId = 0;      /* Register holding maximum rowid */
00168   if( pTab->tabFlags & TF_Autoincrement ){
00169     Vdbe *v = pParse->pVdbe;
00170     Db *pDb = &pParse->db->aDb[iDb];
00171     int iCur = pParse->nTab;
00172     int addr;               /* Address of the top of the loop */
00173     assert( v );
00174     pParse->nMem++;         /* Holds name of table */
00175     memId = ++pParse->nMem;
00176     pParse->nMem++;
00177     sqlite3OpenTable(pParse, iCur, iDb, pDb->pSchema->pSeqTab, OP_OpenRead);
00178     addr = sqlite3VdbeCurrentAddr(v);
00179     sqlite3VdbeAddOp4(v, OP_String8, 0, memId-1, 0, pTab->zName, 0);
00180     sqlite3VdbeAddOp2(v, OP_Rewind, iCur, addr+9);
00181     sqlite3VdbeAddOp3(v, OP_Column, iCur, 0, memId);
00182     sqlite3VdbeAddOp3(v, OP_Ne, memId-1, addr+7, memId);
00183     sqlite3VdbeChangeP5(v, SQLITE_JUMPIFNULL);
00184     sqlite3VdbeAddOp2(v, OP_Rowid, iCur, memId+1);
00185     sqlite3VdbeAddOp3(v, OP_Column, iCur, 1, memId);
00186     sqlite3VdbeAddOp2(v, OP_Goto, 0, addr+9);
00187     sqlite3VdbeAddOp2(v, OP_Next, iCur, addr+2);
00188     sqlite3VdbeAddOp2(v, OP_Integer, 0, memId);
00189     sqlite3VdbeAddOp2(v, OP_Close, iCur, 0);
00190   }
00191   return memId;
00192 }
00193 
00194 /*
00195 ** Update the maximum rowid for an autoincrement calculation.
00196 **
00197 ** This routine should be called when the top of the stack holds a
00198 ** new rowid that is about to be inserted.  If that new rowid is
00199 ** larger than the maximum rowid in the memId memory cell, then the
00200 ** memory cell is updated.  The stack is unchanged.
00201 */
00202 static void autoIncStep(Parse *pParse, int memId, int regRowid){
00203   if( memId>0 ){
00204     sqlite3VdbeAddOp2(pParse->pVdbe, OP_MemMax, memId, regRowid);
00205   }
00206 }
00207 
00208 /*
00209 ** After doing one or more inserts, the maximum rowid is stored
00210 ** in reg[memId].  Generate code to write this value back into the
00211 ** the sqlite_sequence table.
00212 */
00213 static void autoIncEnd(
00214   Parse *pParse,     /* The parsing context */
00215   int iDb,           /* Index of the database holding pTab */
00216   Table *pTab,       /* Table we are inserting into */
00217   int memId          /* Memory cell holding the maximum rowid */
00218 ){
00219   if( pTab->tabFlags & TF_Autoincrement ){
00220     int iCur = pParse->nTab;
00221     Vdbe *v = pParse->pVdbe;
00222     Db *pDb = &pParse->db->aDb[iDb];
00223     int j1;
00224     int iRec = ++pParse->nMem;    /* Memory cell used for record */
00225 
00226     assert( v );
00227     sqlite3OpenTable(pParse, iCur, iDb, pDb->pSchema->pSeqTab, OP_OpenWrite);
00228     j1 = sqlite3VdbeAddOp1(v, OP_NotNull, memId+1);
00229     sqlite3VdbeAddOp2(v, OP_NewRowid, iCur, memId+1);
00230     sqlite3VdbeJumpHere(v, j1);
00231     sqlite3VdbeAddOp3(v, OP_MakeRecord, memId-1, 2, iRec);
00232     sqlite3VdbeAddOp3(v, OP_Insert, iCur, iRec, memId+1);
00233     sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
00234     sqlite3VdbeAddOp1(v, OP_Close, iCur);
00235   }
00236 }
00237 #else
00238 /*
00239 ** If SQLITE_OMIT_AUTOINCREMENT is defined, then the three routines
00240 ** above are all no-ops
00241 */
00242 # define autoIncBegin(A,B,C) (0)
00243 # define autoIncStep(A,B,C)
00244 # define autoIncEnd(A,B,C,D)
00245 #endif /* SQLITE_OMIT_AUTOINCREMENT */
00246 
00247 
00248 /* Forward declaration */
00249 static int xferOptimization(
00250   Parse *pParse,        /* Parser context */
00251   Table *pDest,         /* The table we are inserting into */
00252   Select *pSelect,      /* A SELECT statement to use as the data source */
00253   int onError,          /* How to handle constraint errors */
00254   int iDbDest           /* The database of pDest */
00255 );
00256 
00257 /*
00258 ** This routine is call to handle SQL of the following forms:
00259 **
00260 **    insert into TABLE (IDLIST) values(EXPRLIST)
00261 **    insert into TABLE (IDLIST) select
00262 **
00263 ** The IDLIST following the table name is always optional.  If omitted,
00264 ** then a list of all columns for the table is substituted.  The IDLIST
00265 ** appears in the pColumn parameter.  pColumn is NULL if IDLIST is omitted.
00266 **
00267 ** The pList parameter holds EXPRLIST in the first form of the INSERT
00268 ** statement above, and pSelect is NULL.  For the second form, pList is
00269 ** NULL and pSelect is a pointer to the select statement used to generate
00270 ** data for the insert.
00271 **
00272 ** The code generated follows one of four templates.  For a simple
00273 ** select with data coming from a VALUES clause, the code executes
00274 ** once straight down through.  Pseudo-code follows (we call this
00275 ** the "1st template"):
00276 **
00277 **         open write cursor to <table> and its indices
00278 **         puts VALUES clause expressions onto the stack
00279 **         write the resulting record into <table>
00280 **         cleanup
00281 **
00282 ** The three remaining templates assume the statement is of the form
00283 **
00284 **   INSERT INTO <table> SELECT ...
00285 **
00286 ** If the SELECT clause is of the restricted form "SELECT * FROM <table2>" -
00287 ** in other words if the SELECT pulls all columns from a single table
00288 ** and there is no WHERE or LIMIT or GROUP BY or ORDER BY clauses, and
00289 ** if <table2> and <table1> are distinct tables but have identical
00290 ** schemas, including all the same indices, then a special optimization
00291 ** is invoked that copies raw records from <table2> over to <table1>.
00292 ** See the xferOptimization() function for the implementation of this
00293 ** template.  This is the 2nd template.
00294 **
00295 **         open a write cursor to <table>
00296 **         open read cursor on <table2>
00297 **         transfer all records in <table2> over to <table>
00298 **         close cursors
00299 **         foreach index on <table>
00300 **           open a write cursor on the <table> index
00301 **           open a read cursor on the corresponding <table2> index
00302 **           transfer all records from the read to the write cursors
00303 **           close cursors
00304 **         end foreach
00305 **
00306 ** The 3rd template is for when the second template does not apply
00307 ** and the SELECT clause does not read from <table> at any time.
00308 ** The generated code follows this template:
00309 **
00310 **         EOF <- 0
00311 **         X <- A
00312 **         goto B
00313 **      A: setup for the SELECT
00314 **         loop over the rows in the SELECT
00315 **           load values into registers R..R+n
00316 **           yield X
00317 **         end loop
00318 **         cleanup after the SELECT
00319 **         EOF <- 1
00320 **         yield X
00321 **         goto A
00322 **      B: open write cursor to <table> and its indices
00323 **      C: yield X
00324 **         if EOF goto D
00325 **         insert the select result into <table> from R..R+n
00326 **         goto C
00327 **      D: cleanup
00328 **
00329 ** The 4th template is used if the insert statement takes its
00330 ** values from a SELECT but the data is being inserted into a table
00331 ** that is also read as part of the SELECT.  In the third form,
00332 ** we have to use a intermediate table to store the results of
00333 ** the select.  The template is like this:
00334 **
00335 **         EOF <- 0
00336 **         X <- A
00337 **         goto B
00338 **      A: setup for the SELECT
00339 **         loop over the tables in the SELECT
00340 **           load value into register R..R+n
00341 **           yield X
00342 **         end loop
00343 **         cleanup after the SELECT
00344 **         EOF <- 1
00345 **         yield X
00346 **         halt-error
00347 **      B: open temp table
00348 **      L: yield X
00349 **         if EOF goto M
00350 **         insert row from R..R+n into temp table
00351 **         goto L
00352 **      M: open write cursor to <table> and its indices
00353 **         rewind temp table
00354 **      C: loop over rows of intermediate table
00355 **           transfer values form intermediate table into <table>
00356 **         end loop
00357 **      D: cleanup
00358 */
00359 void sqlite3Insert(
00360   Parse *pParse,        /* Parser context */
00361   SrcList *pTabList,    /* Name of table into which we are inserting */
00362   ExprList *pList,      /* List of values to be inserted */
00363   Select *pSelect,      /* A SELECT statement to use as the data source */
00364   IdList *pColumn,      /* Column names corresponding to IDLIST. */
00365   int onError           /* How to handle constraint errors */
00366 ){
00367   sqlite3 *db;          /* The main database structure */
00368   Table *pTab;          /* The table to insert into.  aka TABLE */
00369   char *zTab;           /* Name of the table into which we are inserting */
00370   const char *zDb;      /* Name of the database holding this table */
00371   int i, j, idx;        /* Loop counters */
00372   Vdbe *v;              /* Generate code into this virtual machine */
00373   Index *pIdx;          /* For looping over indices of the table */
00374   int nColumn;          /* Number of columns in the data */
00375   int nHidden = 0;      /* Number of hidden columns if TABLE is virtual */
00376   int baseCur = 0;      /* VDBE Cursor number for pTab */
00377   int keyColumn = -1;   /* Column that is the INTEGER PRIMARY KEY */
00378   int endOfLoop;        /* Label for the end of the insertion loop */
00379   int useTempTable = 0; /* Store SELECT results in intermediate table */
00380   int srcTab = 0;       /* Data comes from this temporary cursor if >=0 */
00381   int addrInsTop = 0;   /* Jump to label "D" */
00382   int addrCont = 0;     /* Top of insert loop. Label "C" in templates 3 and 4 */
00383   int addrSelect = 0;   /* Address of coroutine that implements the SELECT */
00384   SelectDest dest;      /* Destination for SELECT on rhs of INSERT */
00385   int newIdx = -1;      /* Cursor for the NEW pseudo-table */
00386   int iDb;              /* Index of database holding TABLE */
00387   Db *pDb;              /* The database containing table being inserted into */
00388   int appendFlag = 0;   /* True if the insert is likely to be an append */
00389 
00390   /* Register allocations */
00391   int regFromSelect;    /* Base register for data coming from SELECT */
00392   int regAutoinc = 0;   /* Register holding the AUTOINCREMENT counter */
00393   int regRowCount = 0;  /* Memory cell used for the row counter */
00394   int regIns;           /* Block of regs holding rowid+data being inserted */
00395   int regRowid;         /* registers holding insert rowid */
00396   int regData;          /* register holding first column to insert */
00397   int regRecord;        /* Holds the assemblied row record */
00398   int regEof;           /* Register recording end of SELECT data */
00399   int *aRegIdx = 0;     /* One register allocated to each index */
00400 
00401 
00402 #ifndef SQLITE_OMIT_TRIGGER
00403   int isView;                 /* True if attempting to insert into a view */
00404   int triggers_exist = 0;     /* True if there are FOR EACH ROW triggers */
00405 #endif
00406 
00407   db = pParse->db;
00408   if( pParse->nErr || db->mallocFailed ){
00409     goto insert_cleanup;
00410   }
00411 
00412   /* Locate the table into which we will be inserting new information.
00413   */
00414   assert( pTabList->nSrc==1 );
00415   zTab = pTabList->a[0].zName;
00416   if( zTab==0 ) goto insert_cleanup;
00417   pTab = sqlite3SrcListLookup(pParse, pTabList);
00418   if( pTab==0 ){
00419     goto insert_cleanup;
00420   }
00421   iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
00422   assert( iDb<db->nDb );
00423   pDb = &db->aDb[iDb];
00424   zDb = pDb->zName;
00425   if( sqlite3AuthCheck(pParse, SQLITE_INSERT, pTab->zName, 0, zDb) ){
00426     goto insert_cleanup;
00427   }
00428 
00429   /* Figure out if we have any triggers and if the table being
00430   ** inserted into is a view
00431   */
00432 #ifndef SQLITE_OMIT_TRIGGER
00433   triggers_exist = sqlite3TriggersExist(pParse, pTab, TK_INSERT, 0);
00434   isView = pTab->pSelect!=0;
00435 #else
00436 # define triggers_exist 0
00437 # define isView 0
00438 #endif
00439 #ifdef SQLITE_OMIT_VIEW
00440 # undef isView
00441 # define isView 0
00442 #endif
00443 
00444   /* Ensure that:
00445   *  (a) the table is not read-only, 
00446   *  (b) that if it is a view then ON INSERT triggers exist
00447   */
00448   if( sqlite3IsReadOnly(pParse, pTab, triggers_exist) ){
00449     goto insert_cleanup;
00450   }
00451   assert( pTab!=0 );
00452 
00453   /* If pTab is really a view, make sure it has been initialized.
00454   ** ViewGetColumnNames() is a no-op if pTab is not a view (or virtual 
00455   ** module table).
00456   */
00457   if( sqlite3ViewGetColumnNames(pParse, pTab) ){
00458     goto insert_cleanup;
00459   }
00460 
00461   /* Allocate a VDBE
00462   */
00463   v = sqlite3GetVdbe(pParse);
00464   if( v==0 ) goto insert_cleanup;
00465   if( pParse->nested==0 ) sqlite3VdbeCountChanges(v);
00466   sqlite3BeginWriteOperation(pParse, pSelect || triggers_exist, iDb);
00467 
00468   /* if there are row triggers, allocate a temp table for new.* references. */
00469   if( triggers_exist ){
00470     newIdx = pParse->nTab++;
00471   }
00472 
00473 #ifndef SQLITE_OMIT_XFER_OPT
00474   /* If the statement is of the form
00475   **
00476   **       INSERT INTO <table1> SELECT * FROM <table2>;
00477   **
00478   ** Then special optimizations can be applied that make the transfer
00479   ** very fast and which reduce fragmentation of indices.
00480   **
00481   ** This is the 2nd template.
00482   */
00483   if( pColumn==0 && xferOptimization(pParse, pTab, pSelect, onError, iDb) ){
00484     assert( !triggers_exist );
00485     assert( pList==0 );
00486     goto insert_cleanup;
00487   }
00488 #endif /* SQLITE_OMIT_XFER_OPT */
00489 
00490   /* If this is an AUTOINCREMENT table, look up the sequence number in the
00491   ** sqlite_sequence table and store it in memory cell regAutoinc.
00492   */
00493   regAutoinc = autoIncBegin(pParse, iDb, pTab);
00494 
00495   /* Figure out how many columns of data are supplied.  If the data
00496   ** is coming from a SELECT statement, then generate a co-routine that
00497   ** produces a single row of the SELECT on each invocation.  The
00498   ** co-routine is the common header to the 3rd and 4th templates.
00499   */
00500   if( pSelect ){
00501     /* Data is coming from a SELECT.  Generate code to implement that SELECT
00502     ** as a co-routine.  The code is common to both the 3rd and 4th
00503     ** templates:
00504     **
00505     **         EOF <- 0
00506     **         X <- A
00507     **         goto B
00508     **      A: setup for the SELECT
00509     **         loop over the tables in the SELECT
00510     **           load value into register R..R+n
00511     **           yield X
00512     **         end loop
00513     **         cleanup after the SELECT
00514     **         EOF <- 1
00515     **         yield X
00516     **         halt-error
00517     **
00518     ** On each invocation of the co-routine, it puts a single row of the
00519     ** SELECT result into registers dest.iMem...dest.iMem+dest.nMem-1.
00520     ** (These output registers are allocated by sqlite3Select().)  When
00521     ** the SELECT completes, it sets the EOF flag stored in regEof.
00522     */
00523     int rc, j1;
00524 
00525     regEof = ++pParse->nMem;
00526     sqlite3VdbeAddOp2(v, OP_Integer, 0, regEof);      /* EOF <- 0 */
00527     VdbeComment((v, "SELECT eof flag"));
00528     sqlite3SelectDestInit(&dest, SRT_Coroutine, ++pParse->nMem);
00529     addrSelect = sqlite3VdbeCurrentAddr(v)+2;
00530     sqlite3VdbeAddOp2(v, OP_Integer, addrSelect-1, dest.iParm);
00531     j1 = sqlite3VdbeAddOp2(v, OP_Goto, 0, 0);
00532     VdbeComment((v, "Jump over SELECT coroutine"));
00533 
00534     /* Resolve the expressions in the SELECT statement and execute it. */
00535     rc = sqlite3Select(pParse, pSelect, &dest);
00536     if( rc || pParse->nErr || db->mallocFailed ){
00537       goto insert_cleanup;
00538     }
00539     sqlite3VdbeAddOp2(v, OP_Integer, 1, regEof);         /* EOF <- 1 */
00540     sqlite3VdbeAddOp1(v, OP_Yield, dest.iParm);   /* yield X */
00541     sqlite3VdbeAddOp2(v, OP_Halt, SQLITE_INTERNAL, OE_Abort);
00542     VdbeComment((v, "End of SELECT coroutine"));
00543     sqlite3VdbeJumpHere(v, j1);                          /* label B: */
00544 
00545     regFromSelect = dest.iMem;
00546     assert( pSelect->pEList );
00547     nColumn = pSelect->pEList->nExpr;
00548     assert( dest.nMem==nColumn );
00549 
00550     /* Set useTempTable to TRUE if the result of the SELECT statement
00551     ** should be written into a temporary table (template 4).  Set to
00552     ** FALSE if each* row of the SELECT can be written directly into
00553     ** the destination table (template 3).
00554     **
00555     ** A temp table must be used if the table being updated is also one
00556     ** of the tables being read by the SELECT statement.  Also use a 
00557     ** temp table in the case of row triggers.
00558     */
00559     if( triggers_exist || readsTable(v, addrSelect, iDb, pTab) ){
00560       useTempTable = 1;
00561     }
00562 
00563     if( useTempTable ){
00564       /* Invoke the coroutine to extract information from the SELECT
00565       ** and add it to a transient table srcTab.  The code generated
00566       ** here is from the 4th template:
00567       **
00568       **      B: open temp table
00569       **      L: yield X
00570       **         if EOF goto M
00571       **         insert row from R..R+n into temp table
00572       **         goto L
00573       **      M: ...
00574       */
00575       int regRec;      /* Register to hold packed record */
00576       int regRowid;    /* Register to hold temp table ROWID */
00577       int addrTop;     /* Label "L" */
00578       int addrIf;      /* Address of jump to M */
00579 
00580       srcTab = pParse->nTab++;
00581       regRec = sqlite3GetTempReg(pParse);
00582       regRowid = sqlite3GetTempReg(pParse);
00583       sqlite3VdbeAddOp2(v, OP_OpenEphemeral, srcTab, nColumn);
00584       addrTop = sqlite3VdbeAddOp1(v, OP_Yield, dest.iParm);
00585       addrIf = sqlite3VdbeAddOp1(v, OP_If, regEof);
00586       sqlite3VdbeAddOp3(v, OP_MakeRecord, regFromSelect, nColumn, regRec);
00587       sqlite3VdbeAddOp2(v, OP_NewRowid, srcTab, regRowid);
00588       sqlite3VdbeAddOp3(v, OP_Insert, srcTab, regRec, regRowid);
00589       sqlite3VdbeAddOp2(v, OP_Goto, 0, addrTop);
00590       sqlite3VdbeJumpHere(v, addrIf);
00591       sqlite3ReleaseTempReg(pParse, regRec);
00592       sqlite3ReleaseTempReg(pParse, regRowid);
00593     }
00594   }else{
00595     /* This is the case if the data for the INSERT is coming from a VALUES
00596     ** clause
00597     */
00598     NameContext sNC;
00599     memset(&sNC, 0, sizeof(sNC));
00600     sNC.pParse = pParse;
00601     srcTab = -1;
00602     assert( useTempTable==0 );
00603     nColumn = pList ? pList->nExpr : 0;
00604     for(i=0; i<nColumn; i++){
00605       if( sqlite3ResolveExprNames(&sNC, pList->a[i].pExpr) ){
00606         goto insert_cleanup;
00607       }
00608     }
00609   }
00610 
00611   /* Make sure the number of columns in the source data matches the number
00612   ** of columns to be inserted into the table.
00613   */
00614   if( IsVirtual(pTab) ){
00615     for(i=0; i<pTab->nCol; i++){
00616       nHidden += (IsHiddenColumn(&pTab->aCol[i]) ? 1 : 0);
00617     }
00618   }
00619   if( pColumn==0 && nColumn && nColumn!=(pTab->nCol-nHidden) ){
00620     sqlite3ErrorMsg(pParse, 
00621        "table %S has %d columns but %d values were supplied",
00622        pTabList, 0, pTab->nCol, nColumn);
00623     goto insert_cleanup;
00624   }
00625   if( pColumn!=0 && nColumn!=pColumn->nId ){
00626     sqlite3ErrorMsg(pParse, "%d values for %d columns", nColumn, pColumn->nId);
00627     goto insert_cleanup;
00628   }
00629 
00630   /* If the INSERT statement included an IDLIST term, then make sure
00631   ** all elements of the IDLIST really are columns of the table and 
00632   ** remember the column indices.
00633   **
00634   ** If the table has an INTEGER PRIMARY KEY column and that column
00635   ** is named in the IDLIST, then record in the keyColumn variable
00636   ** the index into IDLIST of the primary key column.  keyColumn is
00637   ** the index of the primary key as it appears in IDLIST, not as
00638   ** is appears in the original table.  (The index of the primary
00639   ** key in the original table is pTab->iPKey.)
00640   */
00641   if( pColumn ){
00642     for(i=0; i<pColumn->nId; i++){
00643       pColumn->a[i].idx = -1;
00644     }
00645     for(i=0; i<pColumn->nId; i++){
00646       for(j=0; j<pTab->nCol; j++){
00647         if( sqlite3StrICmp(pColumn->a[i].zName, pTab->aCol[j].zName)==0 ){
00648           pColumn->a[i].idx = j;
00649           if( j==pTab->iPKey ){
00650             keyColumn = i;
00651           }
00652           break;
00653         }
00654       }
00655       if( j>=pTab->nCol ){
00656         if( sqlite3IsRowid(pColumn->a[i].zName) ){
00657           keyColumn = i;
00658         }else{
00659           sqlite3ErrorMsg(pParse, "table %S has no column named %s",
00660               pTabList, 0, pColumn->a[i].zName);
00661           pParse->nErr++;
00662           goto insert_cleanup;
00663         }
00664       }
00665     }
00666   }
00667 
00668   /* If there is no IDLIST term but the table has an integer primary
00669   ** key, the set the keyColumn variable to the primary key column index
00670   ** in the original table definition.
00671   */
00672   if( pColumn==0 && nColumn>0 ){
00673     keyColumn = pTab->iPKey;
00674   }
00675 
00676   /* Open the temp table for FOR EACH ROW triggers
00677   */
00678   if( triggers_exist ){
00679     sqlite3VdbeAddOp2(v, OP_SetNumColumns, 0, pTab->nCol);
00680     sqlite3VdbeAddOp2(v, OP_OpenPseudo, newIdx, 0);
00681   }
00682     
00683   /* Initialize the count of rows to be inserted
00684   */
00685   if( db->flags & SQLITE_CountRows ){
00686     regRowCount = ++pParse->nMem;
00687     sqlite3VdbeAddOp2(v, OP_Integer, 0, regRowCount);
00688   }
00689 
00690   /* If this is not a view, open the table and and all indices */
00691   if( !isView ){
00692     int nIdx;
00693     int i;
00694 
00695     baseCur = pParse->nTab;
00696     nIdx = sqlite3OpenTableAndIndices(pParse, pTab, baseCur, OP_OpenWrite);
00697     aRegIdx = sqlite3DbMallocRaw(db, sizeof(int)*(nIdx+1));
00698     if( aRegIdx==0 ){
00699       goto insert_cleanup;
00700     }
00701     for(i=0; i<nIdx; i++){
00702       aRegIdx[i] = ++pParse->nMem;
00703     }
00704   }
00705 
00706   /* This is the top of the main insertion loop */
00707   if( useTempTable ){
00708     /* This block codes the top of loop only.  The complete loop is the
00709     ** following pseudocode (template 4):
00710     **
00711     **         rewind temp table
00712     **      C: loop over rows of intermediate table
00713     **           transfer values form intermediate table into <table>
00714     **         end loop
00715     **      D: ...
00716     */
00717     addrInsTop = sqlite3VdbeAddOp1(v, OP_Rewind, srcTab);
00718     addrCont = sqlite3VdbeCurrentAddr(v);
00719   }else if( pSelect ){
00720     /* This block codes the top of loop only.  The complete loop is the
00721     ** following pseudocode (template 3):
00722     **
00723     **      C: yield X
00724     **         if EOF goto D
00725     **         insert the select result into <table> from R..R+n
00726     **         goto C
00727     **      D: ...
00728     */
00729     addrCont = sqlite3VdbeAddOp1(v, OP_Yield, dest.iParm);
00730     addrInsTop = sqlite3VdbeAddOp1(v, OP_If, regEof);
00731   }
00732 
00733   /* Allocate registers for holding the rowid of the new row,
00734   ** the content of the new row, and the assemblied row record.
00735   */
00736   regRecord = ++pParse->nMem;
00737   regRowid = regIns = pParse->nMem+1;
00738   pParse->nMem += pTab->nCol + 1;
00739   if( IsVirtual(pTab) ){
00740     regRowid++;
00741     pParse->nMem++;
00742   }
00743   regData = regRowid+1;
00744 
00745   /* Run the BEFORE and INSTEAD OF triggers, if there are any
00746   */
00747   endOfLoop = sqlite3VdbeMakeLabel(v);
00748   if( triggers_exist & TRIGGER_BEFORE ){
00749     int regRowid;
00750     int regCols;
00751     int regRec;
00752 
00753     /* build the NEW.* reference row.  Note that if there is an INTEGER
00754     ** PRIMARY KEY into which a NULL is being inserted, that NULL will be
00755     ** translated into a unique ID for the row.  But on a BEFORE trigger,
00756     ** we do not know what the unique ID will be (because the insert has
00757     ** not happened yet) so we substitute a rowid of -1
00758     */
00759     regRowid = sqlite3GetTempReg(pParse);
00760     if( keyColumn<0 ){
00761       sqlite3VdbeAddOp2(v, OP_Integer, -1, regRowid);
00762     }else if( useTempTable ){
00763       sqlite3VdbeAddOp3(v, OP_Column, srcTab, keyColumn, regRowid);
00764     }else{
00765       int j1;
00766       assert( pSelect==0 );  /* Otherwise useTempTable is true */
00767       sqlite3ExprCode(pParse, pList->a[keyColumn].pExpr, regRowid);
00768       j1 = sqlite3VdbeAddOp1(v, OP_NotNull, regRowid);
00769       sqlite3VdbeAddOp2(v, OP_Integer, -1, regRowid);
00770       sqlite3VdbeJumpHere(v, j1);
00771       sqlite3VdbeAddOp1(v, OP_MustBeInt, regRowid);
00772     }
00773 
00774     /* Cannot have triggers on a virtual table. If it were possible,
00775     ** this block would have to account for hidden column.
00776     */
00777     assert(!IsVirtual(pTab));
00778 
00779     /* Create the new column data
00780     */
00781     regCols = sqlite3GetTempRange(pParse, pTab->nCol);
00782     for(i=0; i<pTab->nCol; i++){
00783       if( pColumn==0 ){
00784         j = i;
00785       }else{
00786         for(j=0; j<pColumn->nId; j++){
00787           if( pColumn->a[j].idx==i ) break;
00788         }
00789       }
00790       if( pColumn && j>=pColumn->nId ){
00791         sqlite3ExprCode(pParse, pTab->aCol[i].pDflt, regCols+i);
00792       }else if( useTempTable ){
00793         sqlite3VdbeAddOp3(v, OP_Column, srcTab, j, regCols+i); 
00794       }else{
00795         assert( pSelect==0 ); /* Otherwise useTempTable is true */
00796         sqlite3ExprCodeAndCache(pParse, pList->a[j].pExpr, regCols+i);
00797       }
00798     }
00799     regRec = sqlite3GetTempReg(pParse);
00800     sqlite3VdbeAddOp3(v, OP_MakeRecord, regCols, pTab->nCol, regRec);
00801 
00802     /* If this is an INSERT on a view with an INSTEAD OF INSERT trigger,
00803     ** do not attempt any conversions before assembling the record.
00804     ** If this is a real table, attempt conversions as required by the
00805     ** table column affinities.
00806     */
00807     if( !isView ){
00808       sqlite3TableAffinityStr(v, pTab);
00809     }
00810     sqlite3VdbeAddOp3(v, OP_Insert, newIdx, regRec, regRowid);
00811     sqlite3ReleaseTempReg(pParse, regRec);
00812     sqlite3ReleaseTempReg(pParse, regRowid);
00813     sqlite3ReleaseTempRange(pParse, regCols, pTab->nCol);
00814 
00815     /* Fire BEFORE or INSTEAD OF triggers */
00816     if( sqlite3CodeRowTrigger(pParse, TK_INSERT, 0, TRIGGER_BEFORE, pTab, 
00817         newIdx, -1, onError, endOfLoop, 0, 0) ){
00818       goto insert_cleanup;
00819     }
00820   }
00821 
00822   /* Push the record number for the new entry onto the stack.  The
00823   ** record number is a randomly generate integer created by NewRowid
00824   ** except when the table has an INTEGER PRIMARY KEY column, in which
00825   ** case the record number is the same as that column. 
00826   */
00827   if( !isView ){
00828     if( IsVirtual(pTab) ){
00829       /* The row that the VUpdate opcode will delete: none */
00830       sqlite3VdbeAddOp2(v, OP_Null, 0, regIns);
00831     }
00832     if( keyColumn>=0 ){
00833       if( useTempTable ){
00834         sqlite3VdbeAddOp3(v, OP_Column, srcTab, keyColumn, regRowid);
00835       }else if( pSelect ){
00836         sqlite3VdbeAddOp2(v, OP_SCopy, regFromSelect+keyColumn, regRowid);
00837       }else{
00838         VdbeOp *pOp;
00839         sqlite3ExprCode(pParse, pList->a[keyColumn].pExpr, regRowid);
00840         pOp = sqlite3VdbeGetOp(v, sqlite3VdbeCurrentAddr(v) - 1);
00841         if( pOp && pOp->opcode==OP_Null && !IsVirtual(pTab) ){
00842           appendFlag = 1;
00843           pOp->opcode = OP_NewRowid;
00844           pOp->p1 = baseCur;
00845           pOp->p2 = regRowid;
00846           pOp->p3 = regAutoinc;
00847         }
00848       }
00849       /* If the PRIMARY KEY expression is NULL, then use OP_NewRowid
00850       ** to generate a unique primary key value.
00851       */
00852       if( !appendFlag ){
00853         int j1;
00854         if( !IsVirtual(pTab) ){
00855           j1 = sqlite3VdbeAddOp1(v, OP_NotNull, regRowid);
00856           sqlite3VdbeAddOp3(v, OP_NewRowid, baseCur, regRowid, regAutoinc);
00857           sqlite3VdbeJumpHere(v, j1);
00858         }else{
00859           j1 = sqlite3VdbeCurrentAddr(v);
00860           sqlite3VdbeAddOp2(v, OP_IsNull, regRowid, j1+2);
00861         }
00862         sqlite3VdbeAddOp1(v, OP_MustBeInt, regRowid);
00863       }
00864     }else if( IsVirtual(pTab) ){
00865       sqlite3VdbeAddOp2(v, OP_Null, 0, regRowid);
00866     }else{
00867       sqlite3VdbeAddOp3(v, OP_NewRowid, baseCur, regRowid, regAutoinc);
00868       appendFlag = 1;
00869     }
00870     autoIncStep(pParse, regAutoinc, regRowid);
00871 
00872     /* Push onto the stack, data for all columns of the new entry, beginning
00873     ** with the first column.
00874     */
00875     nHidden = 0;
00876     for(i=0; i<pTab->nCol; i++){
00877       int iRegStore = regRowid+1+i;
00878       if( i==pTab->iPKey ){
00879         /* The value of the INTEGER PRIMARY KEY column is always a NULL.
00880         ** Whenever this column is read, the record number will be substituted
00881         ** in its place.  So will fill this column with a NULL to avoid
00882         ** taking up data space with information that will never be used. */
00883         sqlite3VdbeAddOp2(v, OP_Null, 0, iRegStore);
00884         continue;
00885       }
00886       if( pColumn==0 ){
00887         if( IsHiddenColumn(&pTab->aCol[i]) ){
00888           assert( IsVirtual(pTab) );
00889           j = -1;
00890           nHidden++;
00891         }else{
00892           j = i - nHidden;
00893         }
00894       }else{
00895         for(j=0; j<pColumn->nId; j++){
00896           if( pColumn->a[j].idx==i ) break;
00897         }
00898       }
00899       if( j<0 || nColumn==0 || (pColumn && j>=pColumn->nId) ){
00900         sqlite3ExprCode(pParse, pTab->aCol[i].pDflt, iRegStore);
00901       }else if( useTempTable ){
00902         sqlite3VdbeAddOp3(v, OP_Column, srcTab, j, iRegStore); 
00903       }else if( pSelect ){
00904         sqlite3VdbeAddOp2(v, OP_SCopy, regFromSelect+j, iRegStore);
00905       }else{
00906         sqlite3ExprCode(pParse, pList->a[j].pExpr, iRegStore);
00907       }
00908     }
00909 
00910     /* Generate code to check constraints and generate index keys and
00911     ** do the insertion.
00912     */
00913 #ifndef SQLITE_OMIT_VIRTUALTABLE
00914     if( IsVirtual(pTab) ){
00915       sqlite3VtabMakeWritable(pParse, pTab);
00916       sqlite3VdbeAddOp4(v, OP_VUpdate, 1, pTab->nCol+2, regIns,
00917                      (const char*)pTab->pVtab, P4_VTAB);
00918     }else
00919 #endif
00920     {
00921       sqlite3GenerateConstraintChecks(
00922           pParse,
00923           pTab,
00924           baseCur,
00925           regIns,
00926           aRegIdx,
00927           keyColumn>=0,
00928           0,
00929           onError,
00930           endOfLoop
00931       );
00932       sqlite3CompleteInsertion(
00933           pParse,
00934           pTab,
00935           baseCur,
00936           regIns,
00937           aRegIdx,
00938           0,
00939           0,
00940           (triggers_exist & TRIGGER_AFTER)!=0 ? newIdx : -1,
00941           appendFlag
00942        );
00943     }
00944   }
00945 
00946   /* Update the count of rows that are inserted
00947   */
00948   if( (db->flags & SQLITE_CountRows)!=0 ){
00949     sqlite3VdbeAddOp2(v, OP_AddImm, regRowCount, 1);
00950   }
00951 
00952   if( triggers_exist ){
00953     /* Code AFTER triggers */
00954     if( sqlite3CodeRowTrigger(pParse, TK_INSERT, 0, TRIGGER_AFTER, pTab,
00955           newIdx, -1, onError, endOfLoop, 0, 0) ){
00956       goto insert_cleanup;
00957     }
00958   }
00959 
00960   /* The bottom of the main insertion loop, if the data source
00961   ** is a SELECT statement.
00962   */
00963   sqlite3VdbeResolveLabel(v, endOfLoop);
00964   if( useTempTable ){
00965     sqlite3VdbeAddOp2(v, OP_Next, srcTab, addrCont);
00966     sqlite3VdbeJumpHere(v, addrInsTop);
00967     sqlite3VdbeAddOp1(v, OP_Close, srcTab);
00968   }else if( pSelect ){
00969     sqlite3VdbeAddOp2(v, OP_Goto, 0, addrCont);
00970     sqlite3VdbeJumpHere(v, addrInsTop);
00971   }
00972 
00973   if( !IsVirtual(pTab) && !isView ){
00974     /* Close all tables opened */
00975     sqlite3VdbeAddOp1(v, OP_Close, baseCur);
00976     for(idx=1, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, idx++){
00977       sqlite3VdbeAddOp1(v, OP_Close, idx+baseCur);
00978     }
00979   }
00980 
00981   /* Update the sqlite_sequence table by storing the content of the
00982   ** counter value in memory regAutoinc back into the sqlite_sequence
00983   ** table.
00984   */
00985   autoIncEnd(pParse, iDb, pTab, regAutoinc);
00986 
00987   /*
00988   ** Return the number of rows inserted. If this routine is 
00989   ** generating code because of a call to sqlite3NestedParse(), do not
00990   ** invoke the callback function.
00991   */
00992   if( db->flags & SQLITE_CountRows && pParse->nested==0 && !pParse->trigStack ){
00993     sqlite3VdbeAddOp2(v, OP_ResultRow, regRowCount, 1);
00994     sqlite3VdbeSetNumCols(v, 1);
00995     sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "rows inserted", SQLITE_STATIC);
00996   }
00997 
00998 insert_cleanup:
00999   sqlite3SrcListDelete(db, pTabList);
01000   sqlite3ExprListDelete(db, pList);
01001   sqlite3SelectDelete(db, pSelect);
01002   sqlite3IdListDelete(db, pColumn);
01003   sqlite3DbFree(db, aRegIdx);
01004 }
01005 
01006 /*
01007 ** Generate code to do constraint checks prior to an INSERT or an UPDATE.
01008 **
01009 ** The input is a range of consecutive registers as follows:
01010 **
01011 **    1.  The rowid of the row to be updated before the update.  This
01012 **        value is omitted unless we are doing an UPDATE that involves a
01013 **        change to the record number or writing to a virtual table.
01014 **
01015 **    2.  The rowid of the row after the update.
01016 **
01017 **    3.  The data in the first column of the entry after the update.
01018 **
01019 **    i.  Data from middle columns...
01020 **
01021 **    N.  The data in the last column of the entry after the update.
01022 **
01023 ** The regRowid parameter is the index of the register containing (2).
01024 **
01025 ** The old rowid shown as entry (1) above is omitted unless both isUpdate
01026 ** and rowidChng are 1.  isUpdate is true for UPDATEs and false for
01027 ** INSERTs.  RowidChng means that the new rowid is explicitly specified by
01028 ** the update or insert statement.  If rowidChng is false, it means that
01029 ** the rowid is computed automatically in an insert or that the rowid value
01030 ** is not modified by the update.
01031 **
01032 ** The code generated by this routine store new index entries into
01033 ** registers identified by aRegIdx[].  No index entry is created for
01034 ** indices where aRegIdx[i]==0.  The order of indices in aRegIdx[] is
01035 ** the same as the order of indices on the linked list of indices
01036 ** attached to the table.
01037 **
01038 ** This routine also generates code to check constraints.  NOT NULL,
01039 ** CHECK, and UNIQUE constraints are all checked.  If a constraint fails,
01040 ** then the appropriate action is performed.  There are five possible
01041 ** actions: ROLLBACK, ABORT, FAIL, REPLACE, and IGNORE.
01042 **
01043 **  Constraint type  Action       What Happens
01044 **  ---------------  ----------   ----------------------------------------
01045 **  any              ROLLBACK     The current transaction is rolled back and
01046 **                                sqlite3_exec() returns immediately with a
01047 **                                return code of SQLITE_CONSTRAINT.
01048 **
01049 **  any              ABORT        Back out changes from the current command
01050 **                                only (do not do a complete rollback) then
01051 **                                cause sqlite3_exec() to return immediately
01052 **                                with SQLITE_CONSTRAINT.
01053 **
01054 **  any              FAIL         Sqlite_exec() returns immediately with a
01055 **                                return code of SQLITE_CONSTRAINT.  The
01056 **                                transaction is not rolled back and any
01057 **                                prior changes are retained.
01058 **
01059 **  any              IGNORE       The record number and data is popped from
01060 **                                the stack and there is an immediate jump
01061 **                                to label ignoreDest.
01062 **
01063 **  NOT NULL         REPLACE      The NULL value is replace by the default
01064 **                                value for that column.  If the default value
01065 **                                is NULL, the action is the same as ABORT.
01066 **
01067 **  UNIQUE           REPLACE      The other row that conflicts with the row
01068 **                                being inserted is removed.
01069 **
01070 **  CHECK            REPLACE      Illegal.  The results in an exception.
01071 **
01072 ** Which action to take is determined by the overrideError parameter.
01073 ** Or if overrideError==OE_Default, then the pParse->onError parameter
01074 ** is used.  Or if pParse->onError==OE_Default then the onError value
01075 ** for the constraint is used.
01076 **
01077 ** The calling routine must open a read/write cursor for pTab with
01078 ** cursor number "baseCur".  All indices of pTab must also have open
01079 ** read/write cursors with cursor number baseCur+i for the i-th cursor.
01080 ** Except, if there is no possibility of a REPLACE action then
01081 ** cursors do not need to be open for indices where aRegIdx[i]==0.
01082 */
01083 void sqlite3GenerateConstraintChecks(
01084   Parse *pParse,      /* The parser context */
01085   Table *pTab,        /* the table into which we are inserting */
01086   int baseCur,        /* Index of a read/write cursor pointing at pTab */
01087   int regRowid,       /* Index of the range of input registers */
01088   int *aRegIdx,       /* Register used by each index.  0 for unused indices */
01089   int rowidChng,      /* True if the rowid might collide with existing entry */
01090   int isUpdate,       /* True for UPDATE, False for INSERT */
01091   int overrideError,  /* Override onError to this if not OE_Default */
01092   int ignoreDest      /* Jump to this label on an OE_Ignore resolution */
01093 ){
01094   int i;
01095   Vdbe *v;
01096   int nCol;
01097   int onError;
01098   int j1, j2, j3;     /* Addresses of jump instructions */
01099   int regData;        /* Register containing first data column */
01100   int iCur;
01101   Index *pIdx;
01102   int seenReplace = 0;
01103   int hasTwoRowids = (isUpdate && rowidChng);
01104 
01105   v = sqlite3GetVdbe(pParse);
01106   assert( v!=0 );
01107   assert( pTab->pSelect==0 );  /* This table is not a VIEW */
01108   nCol = pTab->nCol;
01109   regData = regRowid + 1;
01110 
01111 
01112   /* Test all NOT NULL constraints.
01113   */
01114   for(i=0; i<nCol; i++){
01115     if( i==pTab->iPKey ){
01116       continue;
01117     }
01118     onError = pTab->aCol[i].notNull;
01119     if( onError==OE_None ) continue;
01120     if( overrideError!=OE_Default ){
01121       onError = overrideError;
01122     }else if( onError==OE_Default ){
01123       onError = OE_Abort;
01124     }
01125     if( onError==OE_Replace && pTab->aCol[i].pDflt==0 ){
01126       onError = OE_Abort;
01127     }
01128     j1 = sqlite3VdbeAddOp1(v, OP_NotNull, regData+i);
01129     assert( onError==OE_Rollback || onError==OE_Abort || onError==OE_Fail
01130         || onError==OE_Ignore || onError==OE_Replace );
01131     switch( onError ){
01132       case OE_Rollback:
01133       case OE_Abort:
01134       case OE_Fail: {
01135         char *zMsg;
01136         sqlite3VdbeAddOp2(v, OP_Halt, SQLITE_CONSTRAINT, onError);
01137         zMsg = sqlite3MPrintf(pParse->db, "%s.%s may not be NULL",
01138                               pTab->zName, pTab->aCol[i].zName);
01139         sqlite3VdbeChangeP4(v, -1, zMsg, P4_DYNAMIC);
01140         break;
01141       }
01142       case OE_Ignore: {
01143         sqlite3VdbeAddOp2(v, OP_Goto, 0, ignoreDest);
01144         break;
01145       }
01146       case OE_Replace: {
01147         sqlite3ExprCode(pParse, pTab->aCol[i].pDflt, regData+i);
01148         break;
01149       }
01150     }
01151     sqlite3VdbeJumpHere(v, j1);
01152   }
01153 
01154   /* Test all CHECK constraints
01155   */
01156 #ifndef SQLITE_OMIT_CHECK
01157   if( pTab->pCheck && (pParse->db->flags & SQLITE_IgnoreChecks)==0 ){
01158     int allOk = sqlite3VdbeMakeLabel(v);
01159     pParse->ckBase = regData;
01160     sqlite3ExprIfTrue(pParse, pTab->pCheck, allOk, SQLITE_JUMPIFNULL);
01161     onError = overrideError!=OE_Default ? overrideError : OE_Abort;
01162     if( onError==OE_Ignore ){
01163       sqlite3VdbeAddOp2(v, OP_Goto, 0, ignoreDest);
01164     }else{
01165       sqlite3VdbeAddOp2(v, OP_Halt, SQLITE_CONSTRAINT, onError);
01166     }
01167     sqlite3VdbeResolveLabel(v, allOk);
01168   }
01169 #endif /* !defined(SQLITE_OMIT_CHECK) */
01170 
01171   /* If we have an INTEGER PRIMARY KEY, make sure the primary key
01172   ** of the new record does not previously exist.  Except, if this
01173   ** is an UPDATE and the primary key is not changing, that is OK.
01174   */
01175   if( rowidChng ){
01176     onError = pTab->keyConf;
01177     if( overrideError!=OE_Default ){
01178       onError = overrideError;
01179     }else if( onError==OE_Default ){
01180       onError = OE_Abort;
01181     }
01182     
01183     if( onError!=OE_Replace || pTab->pIndex ){
01184       if( isUpdate ){
01185         j2 = sqlite3VdbeAddOp3(v, OP_Eq, regRowid, 0, regRowid-1);
01186       }
01187       j3 = sqlite3VdbeAddOp3(v, OP_NotExists, baseCur, 0, regRowid);
01188       switch( onError ){
01189         default: {
01190           onError = OE_Abort;
01191           /* Fall thru into the next case */
01192         }
01193         case OE_Rollback:
01194         case OE_Abort:
01195         case OE_Fail: {
01196           sqlite3VdbeAddOp4(v, OP_Halt, SQLITE_CONSTRAINT, onError, 0,
01197                            "PRIMARY KEY must be unique", P4_STATIC);
01198           break;
01199         }
01200         case OE_Replace: {
01201           sqlite3GenerateRowIndexDelete(pParse, pTab, baseCur, 0);
01202           seenReplace = 1;
01203           break;
01204         }
01205         case OE_Ignore: {
01206           assert( seenReplace==0 );
01207           sqlite3VdbeAddOp2(v, OP_Goto, 0, ignoreDest);
01208           break;
01209         }
01210       }
01211       sqlite3VdbeJumpHere(v, j3);
01212       if( isUpdate ){
01213         sqlite3VdbeJumpHere(v, j2);
01214       }
01215     }
01216   }
01217 
01218   /* Test all UNIQUE constraints by creating entries for each UNIQUE
01219   ** index and making sure that duplicate entries do not already exist.
01220   ** Add the new records to the indices as we go.
01221   */
01222   for(iCur=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, iCur++){
01223     int regIdx;
01224     int regR;
01225 
01226     if( aRegIdx[iCur]==0 ) continue;  /* Skip unused indices */
01227 
01228     /* Create a key for accessing the index entry */
01229     regIdx = sqlite3GetTempRange(pParse, pIdx->nColumn+1);
01230     for(i=0; i<pIdx->nColumn; i++){
01231       int idx = pIdx->aiColumn[i];
01232       if( idx==pTab->iPKey ){
01233         sqlite3VdbeAddOp2(v, OP_SCopy, regRowid, regIdx+i);
01234       }else{
01235         sqlite3VdbeAddOp2(v, OP_SCopy, regData+idx, regIdx+i);
01236       }
01237     }
01238     sqlite3VdbeAddOp2(v, OP_SCopy, regRowid, regIdx+i);
01239     sqlite3VdbeAddOp3(v, OP_MakeRecord, regIdx, pIdx->nColumn+1, aRegIdx[iCur]);
01240     sqlite3IndexAffinityStr(v, pIdx);
01241     sqlite3ExprCacheAffinityChange(pParse, regIdx, pIdx->nColumn+1);
01242     sqlite3ReleaseTempRange(pParse, regIdx, pIdx->nColumn+1);
01243 
01244     /* Find out what action to take in case there is an indexing conflict */
01245     onError = pIdx->onError;
01246     if( onError==OE_None ) continue;  /* pIdx is not a UNIQUE index */
01247     if( overrideError!=OE_Default ){
01248       onError = overrideError;
01249     }else if( onError==OE_Default ){
01250       onError = OE_Abort;
01251     }
01252     if( seenReplace ){
01253       if( onError==OE_Ignore ) onError = OE_Replace;
01254       else if( onError==OE_Fail ) onError = OE_Abort;
01255     }
01256     
01257 
01258     /* Check to see if the new index entry will be unique */
01259     j2 = sqlite3VdbeAddOp3(v, OP_IsNull, regIdx, 0, pIdx->nColumn);
01260     regR = sqlite3GetTempReg(pParse);
01261     sqlite3VdbeAddOp2(v, OP_SCopy, regRowid-hasTwoRowids, regR);
01262     j3 = sqlite3VdbeAddOp4(v, OP_IsUnique, baseCur+iCur+1, 0,
01263                            regR, SQLITE_INT_TO_PTR(aRegIdx[iCur]),
01264                            P4_INT32);
01265 
01266     /* Generate code that executes if the new index entry is not unique */
01267     assert( onError==OE_Rollback || onError==OE_Abort || onError==OE_Fail
01268         || onError==OE_Ignore || onError==OE_Replace );
01269     switch( onError ){
01270       case OE_Rollback:
01271       case OE_Abort:
01272       case OE_Fail: {
01273         int j, n1, n2;
01274         char zErrMsg[200];
01275         sqlite3_snprintf(sizeof(zErrMsg), zErrMsg,
01276                          pIdx->nColumn>1 ? "columns " : "column ");
01277         n1 = strlen(zErrMsg);
01278         for(j=0; j<pIdx->nColumn && n1<sizeof(zErrMsg)-30; j++){
01279           char *zCol = pTab->aCol[pIdx->aiColumn[j]].zName;
01280           n2 = strlen(zCol);
01281           if( j>0 ){
01282             sqlite3_snprintf(sizeof(zErrMsg)-n1, &zErrMsg[n1], ", ");
01283             n1 += 2;
01284           }
01285           if( n1+n2>sizeof(zErrMsg)-30 ){
01286             sqlite3_snprintf(sizeof(zErrMsg)-n1, &zErrMsg[n1], "...");
01287             n1 += 3;
01288             break;
01289           }else{
01290             sqlite3_snprintf(sizeof(zErrMsg)-n1, &zErrMsg[n1], "%s", zCol);
01291             n1 += n2;
01292           }
01293         }
01294         sqlite3_snprintf(sizeof(zErrMsg)-n1, &zErrMsg[n1], 
01295             pIdx->nColumn>1 ? " are not unique" : " is not unique");
01296         sqlite3VdbeAddOp4(v, OP_Halt, SQLITE_CONSTRAINT, onError, 0, zErrMsg,0);
01297         break;
01298       }
01299       case OE_Ignore: {
01300         assert( seenReplace==0 );
01301         sqlite3VdbeAddOp2(v, OP_Goto, 0, ignoreDest);
01302         break;
01303       }
01304       case OE_Replace: {
01305         sqlite3GenerateRowDelete(pParse, pTab, baseCur, regR, 0);
01306         seenReplace = 1;
01307         break;
01308       }
01309     }
01310     sqlite3VdbeJumpHere(v, j2);
01311     sqlite3VdbeJumpHere(v, j3);
01312     sqlite3ReleaseTempReg(pParse, regR);
01313   }
01314 }
01315 
01316 /*
01317 ** This routine generates code to finish the INSERT or UPDATE operation
01318 ** that was started by a prior call to sqlite3GenerateConstraintChecks.
01319 ** A consecutive range of registers starting at regRowid contains the
01320 ** rowid and the content to be inserted.
01321 **
01322 ** The arguments to this routine should be the same as the first six
01323 ** arguments to sqlite3GenerateConstraintChecks.
01324 */
01325 void sqlite3CompleteInsertion(
01326   Parse *pParse,      /* The parser context */
01327   Table *pTab,        /* the table into which we are inserting */
01328   int baseCur,        /* Index of a read/write cursor pointing at pTab */
01329   int regRowid,       /* Range of content */
01330   int *aRegIdx,       /* Register used by each index.  0 for unused indices */
01331   int rowidChng,      /* True if the record number will change */
01332   int isUpdate,       /* True for UPDATE, False for INSERT */
01333   int newIdx,         /* Index of NEW table for triggers.  -1 if none */
01334   int appendBias      /* True if this is likely to be an append */
01335 ){
01336   int i;
01337   Vdbe *v;
01338   int nIdx;
01339   Index *pIdx;
01340   int pik_flags;
01341   int regData;
01342   int regRec;
01343 
01344   v = sqlite3GetVdbe(pParse);
01345   assert( v!=0 );
01346   assert( pTab->pSelect==0 );  /* This table is not a VIEW */
01347   for(nIdx=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, nIdx++){}
01348   for(i=nIdx-1; i>=0; i--){
01349     if( aRegIdx[i]==0 ) continue;
01350     sqlite3VdbeAddOp2(v, OP_IdxInsert, baseCur+i+1, aRegIdx[i]);
01351   }
01352   regData = regRowid + 1;
01353   regRec = sqlite3GetTempReg(pParse);
01354   sqlite3VdbeAddOp3(v, OP_MakeRecord, regData, pTab->nCol, regRec);
01355   sqlite3TableAffinityStr(v, pTab);
01356   sqlite3ExprCacheAffinityChange(pParse, regData, pTab->nCol);
01357 #ifndef SQLITE_OMIT_TRIGGER
01358   if( newIdx>=0 ){
01359     sqlite3VdbeAddOp3(v, OP_Insert, newIdx, regRec, regRowid);
01360   }
01361 #endif
01362   if( pParse->nested ){
01363     pik_flags = 0;
01364   }else{
01365     pik_flags = OPFLAG_NCHANGE;
01366     pik_flags |= (isUpdate?OPFLAG_ISUPDATE:OPFLAG_LASTROWID);
01367   }
01368   if( appendBias ){
01369     pik_flags |= OPFLAG_APPEND;
01370   }
01371   sqlite3VdbeAddOp3(v, OP_Insert, baseCur, regRec, regRowid);
01372   if( !pParse->nested ){
01373     sqlite3VdbeChangeP4(v, -1, pTab->zName, P4_STATIC);
01374   }
01375   sqlite3VdbeChangeP5(v, pik_flags);
01376 }
01377 
01378 /*
01379 ** Generate code that will open cursors for a table and for all
01380 ** indices of that table.  The "baseCur" parameter is the cursor number used
01381 ** for the table.  Indices are opened on subsequent cursors.
01382 **
01383 ** Return the number of indices on the table.
01384 */
01385 int sqlite3OpenTableAndIndices(
01386   Parse *pParse,   /* Parsing context */
01387   Table *pTab,     /* Table to be opened */
01388   int baseCur,     /* Cursor number assigned to the table */
01389   int op           /* OP_OpenRead or OP_OpenWrite */
01390 ){
01391   int i;
01392   int iDb;
01393   Index *pIdx;
01394   Vdbe *v;
01395 
01396   if( IsVirtual(pTab) ) return 0;
01397   iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
01398   v = sqlite3GetVdbe(pParse);
01399   assert( v!=0 );
01400   sqlite3OpenTable(pParse, baseCur, iDb, pTab, op);
01401   for(i=1, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, i++){
01402     KeyInfo *pKey = sqlite3IndexKeyinfo(pParse, pIdx);
01403     assert( pIdx->pSchema==pTab->pSchema );
01404     sqlite3VdbeAddOp4(v, op, i+baseCur, pIdx->tnum, iDb,
01405                       (char*)pKey, P4_KEYINFO_HANDOFF);
01406     VdbeComment((v, "%s", pIdx->zName));
01407   }
01408   if( pParse->nTab<=baseCur+i ){
01409     pParse->nTab = baseCur+i;
01410   }
01411   return i-1;
01412 }
01413 
01414 
01415 #ifdef SQLITE_TEST
01416 /*
01417 ** The following global variable is incremented whenever the
01418 ** transfer optimization is used.  This is used for testing
01419 ** purposes only - to make sure the transfer optimization really
01420 ** is happening when it is suppose to.
01421 */
01422 int sqlite3_xferopt_count;
01423 #endif /* SQLITE_TEST */
01424 
01425 
01426 #ifndef SQLITE_OMIT_XFER_OPT
01427 /*
01428 ** Check to collation names to see if they are compatible.
01429 */
01430 static int xferCompatibleCollation(const char *z1, const char *z2){
01431   if( z1==0 ){
01432     return z2==0;
01433   }
01434   if( z2==0 ){
01435     return 0;
01436   }
01437   return sqlite3StrICmp(z1, z2)==0;
01438 }
01439 
01440 
01441 /*
01442 ** Check to see if index pSrc is compatible as a source of data
01443 ** for index pDest in an insert transfer optimization.  The rules
01444 ** for a compatible index:
01445 **
01446 **    *   The index is over the same set of columns
01447 **    *   The same DESC and ASC markings occurs on all columns
01448 **    *   The same onError processing (OE_Abort, OE_Ignore, etc)
01449 **    *   The same collating sequence on each column
01450 */
01451 static int xferCompatibleIndex(Index *pDest, Index *pSrc){
01452   int i;
01453   assert( pDest && pSrc );
01454   assert( pDest->pTable!=pSrc->pTable );
01455   if( pDest->nColumn!=pSrc->nColumn ){
01456     return 0;   /* Different number of columns */
01457   }
01458   if( pDest->onError!=pSrc->onError ){
01459     return 0;   /* Different conflict resolution strategies */
01460   }
01461   for(i=0; i<pSrc->nColumn; i++){
01462     if( pSrc->aiColumn[i]!=pDest->aiColumn[i] ){
01463       return 0;   /* Different columns indexed */
01464     }
01465     if( pSrc->aSortOrder[i]!=pDest->aSortOrder[i] ){
01466       return 0;   /* Different sort orders */
01467     }
01468     if( pSrc->azColl[i]!=pDest->azColl[i] ){
01469       return 0;   /* Different collating sequences */
01470     }
01471   }
01472 
01473   /* If no test above fails then the indices must be compatible */
01474   return 1;
01475 }
01476 
01477 /*
01478 ** Attempt the transfer optimization on INSERTs of the form
01479 **
01480 **     INSERT INTO tab1 SELECT * FROM tab2;
01481 **
01482 ** This optimization is only attempted if
01483 **
01484 **    (1)  tab1 and tab2 have identical schemas including all the
01485 **         same indices and constraints
01486 **
01487 **    (2)  tab1 and tab2 are different tables
01488 **
01489 **    (3)  There must be no triggers on tab1
01490 **
01491 **    (4)  The result set of the SELECT statement is "*"
01492 **
01493 **    (5)  The SELECT statement has no WHERE, HAVING, ORDER BY, GROUP BY,
01494 **         or LIMIT clause.
01495 **
01496 **    (6)  The SELECT statement is a simple (not a compound) select that
01497 **         contains only tab2 in its FROM clause
01498 **
01499 ** This method for implementing the INSERT transfers raw records from
01500 ** tab2 over to tab1.  The columns are not decoded.  Raw records from
01501 ** the indices of tab2 are transfered to tab1 as well.  In so doing,
01502 ** the resulting tab1 has much less fragmentation.
01503 **
01504 ** This routine returns TRUE if the optimization is attempted.  If any
01505 ** of the conditions above fail so that the optimization should not
01506 ** be attempted, then this routine returns FALSE.
01507 */
01508 static int xferOptimization(
01509   Parse *pParse,        /* Parser context */
01510   Table *pDest,         /* The table we are inserting into */
01511   Select *pSelect,      /* A SELECT statement to use as the data source */
01512   int onError,          /* How to handle constraint errors */
01513   int iDbDest           /* The database of pDest */
01514 ){
01515   ExprList *pEList;                /* The result set of the SELECT */
01516   Table *pSrc;                     /* The table in the FROM clause of SELECT */
01517   Index *pSrcIdx, *pDestIdx;       /* Source and destination indices */
01518   struct SrcList_item *pItem;      /* An element of pSelect->pSrc */
01519   int i;                           /* Loop counter */
01520   int iDbSrc;                      /* The database of pSrc */
01521   int iSrc, iDest;                 /* Cursors from source and destination */
01522   int addr1, addr2;                /* Loop addresses */
01523   int emptyDestTest;               /* Address of test for empty pDest */
01524   int emptySrcTest;                /* Address of test for empty pSrc */
01525   Vdbe *v;                         /* The VDBE we are building */
01526   KeyInfo *pKey;                   /* Key information for an index */
01527   int regAutoinc;                  /* Memory register used by AUTOINC */
01528   int destHasUniqueIdx = 0;        /* True if pDest has a UNIQUE index */
01529   int regData, regRowid;           /* Registers holding data and rowid */
01530 
01531   if( pSelect==0 ){
01532     return 0;   /* Must be of the form  INSERT INTO ... SELECT ... */
01533   }
01534   if( pDest->pTrigger ){
01535     return 0;   /* tab1 must not have triggers */
01536   }
01537 #ifndef SQLITE_OMIT_VIRTUALTABLE
01538   if( pDest->tabFlags & TF_Virtual ){
01539     return 0;   /* tab1 must not be a virtual table */
01540   }
01541 #endif
01542   if( onError==OE_Default ){
01543     onError = OE_Abort;
01544   }
01545   if( onError!=OE_Abort && onError!=OE_Rollback ){
01546     return 0;   /* Cannot do OR REPLACE or OR IGNORE or OR FAIL */
01547   }
01548   assert(pSelect->pSrc);   /* allocated even if there is no FROM clause */
01549   if( pSelect->pSrc->nSrc!=1 ){
01550     return 0;   /* FROM clause must have exactly one term */
01551   }
01552   if( pSelect->pSrc->a[0].pSelect ){
01553     return 0;   /* FROM clause cannot contain a subquery */
01554   }
01555   if( pSelect->pWhere ){
01556     return 0;   /* SELECT may not have a WHERE clause */
01557   }
01558   if( pSelect->pOrderBy ){
01559     return 0;   /* SELECT may not have an ORDER BY clause */
01560   }
01561   /* Do not need to test for a HAVING clause.  If HAVING is present but
01562   ** there is no ORDER BY, we will get an error. */
01563   if( pSelect->pGroupBy ){
01564     return 0;   /* SELECT may not have a GROUP BY clause */
01565   }
01566   if( pSelect->pLimit ){
01567     return 0;   /* SELECT may not have a LIMIT clause */
01568   }
01569   assert( pSelect->pOffset==0 );  /* Must be so if pLimit==0 */
01570   if( pSelect->pPrior ){
01571     return 0;   /* SELECT may not be a compound query */
01572   }
01573   if( pSelect->selFlags & SF_Distinct ){
01574     return 0;   /* SELECT may not be DISTINCT */
01575   }
01576   pEList = pSelect->pEList;
01577   assert( pEList!=0 );
01578   if( pEList->nExpr!=1 ){
01579     return 0;   /* The result set must have exactly one column */
01580   }
01581   assert( pEList->a[0].pExpr );
01582   if( pEList->a[0].pExpr->op!=TK_ALL ){
01583     return 0;   /* The result set must be the special operator "*" */
01584   }
01585 
01586   /* At this point we have established that the statement is of the
01587   ** correct syntactic form to participate in this optimization.  Now
01588   ** we have to check the semantics.
01589   */
01590   pItem = pSelect->pSrc->a;
01591   pSrc = sqlite3LocateTable(pParse, 0, pItem->zName, pItem->zDatabase);
01592   if( pSrc==0 ){
01593     return 0;   /* FROM clause does not contain a real table */
01594   }
01595   if( pSrc==pDest ){
01596     return 0;   /* tab1 and tab2 may not be the same table */
01597   }
01598 #ifndef SQLITE_OMIT_VIRTUALTABLE
01599   if( pSrc->tabFlags & TF_Virtual ){
01600     return 0;   /* tab2 must not be a virtual table */
01601   }
01602 #endif
01603   if( pSrc->pSelect ){
01604     return 0;   /* tab2 may not be a view */
01605   }
01606   if( pDest->nCol!=pSrc->nCol ){
01607     return 0;   /* Number of columns must be the same in tab1 and tab2 */
01608   }
01609   if( pDest->iPKey!=pSrc->iPKey ){
01610     return 0;   /* Both tables must have the same INTEGER PRIMARY KEY */
01611   }
01612   for(i=0; i<pDest->nCol; i++){
01613     if( pDest->aCol[i].affinity!=pSrc->aCol[i].affinity ){
01614       return 0;    /* Affinity must be the same on all columns */
01615     }
01616     if( !xferCompatibleCollation(pDest->aCol[i].zColl, pSrc->aCol[i].zColl) ){
01617       return 0;    /* Collating sequence must be the same on all columns */
01618     }
01619     if( pDest->aCol[i].notNull && !pSrc->aCol[i].notNull ){
01620       return 0;    /* tab2 must be NOT NULL if tab1 is */
01621     }
01622   }
01623   for(pDestIdx=pDest->pIndex; pDestIdx; pDestIdx=pDestIdx->pNext){
01624     if( pDestIdx->onError!=OE_None ){
01625       destHasUniqueIdx = 1;
01626     }
01627     for(pSrcIdx=pSrc->pIndex; pSrcIdx; pSrcIdx=pSrcIdx->pNext){
01628       if( xferCompatibleIndex(pDestIdx, pSrcIdx) ) break;
01629     }
01630     if( pSrcIdx==0 ){
01631       return 0;    /* pDestIdx has no corresponding index in pSrc */
01632     }
01633   }
01634 #ifndef SQLITE_OMIT_CHECK
01635   if( pDest->pCheck && !sqlite3ExprCompare(pSrc->pCheck, pDest->pCheck) ){
01636     return 0;   /* Tables have different CHECK constraints.  Ticket #2252 */
01637   }
01638 #endif
01639 
01640   /* If we get this far, it means either:
01641   **
01642   **    *   We can always do the transfer if the table contains an
01643   **        an integer primary key
01644   **
01645   **    *   We can conditionally do the transfer if the destination
01646   **        table is empty.
01647   */
01648 #ifdef SQLITE_TEST
01649   sqlite3_xferopt_count++;
01650 #endif
01651   iDbSrc = sqlite3SchemaToIndex(pParse->db, pSrc->pSchema);
01652   v = sqlite3GetVdbe(pParse);
01653   sqlite3CodeVerifySchema(pParse, iDbSrc);
01654   iSrc = pParse->nTab++;
01655   iDest = pParse->nTab++;
01656   regAutoinc = autoIncBegin(pParse, iDbDest, pDest);
01657   sqlite3OpenTable(pParse, iDest, iDbDest, pDest, OP_OpenWrite);
01658   if( (pDest->iPKey<0 && pDest->pIndex!=0) || destHasUniqueIdx ){
01659     /* If tables do not have an INTEGER PRIMARY KEY and there
01660     ** are indices to be copied and the destination is not empty,
01661     ** we have to disallow the transfer optimization because the
01662     ** the rowids might change which will mess up indexing.
01663     **
01664     ** Or if the destination has a UNIQUE index and is not empty,
01665     ** we also disallow the transfer optimization because we cannot
01666     ** insure that all entries in the union of DEST and SRC will be
01667     ** unique.
01668     */
01669     addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iDest, 0);
01670     emptyDestTest = sqlite3VdbeAddOp2(v, OP_Goto, 0, 0);
01671     sqlite3VdbeJumpHere(v, addr1);
01672   }else{
01673     emptyDestTest = 0;
01674   }
01675   sqlite3OpenTable(pParse, iSrc, iDbSrc, pSrc, OP_OpenRead);
01676   emptySrcTest = sqlite3VdbeAddOp2(v, OP_Rewind, iSrc, 0);
01677   regData = sqlite3GetTempReg(pParse);
01678   regRowid = sqlite3GetTempReg(pParse);
01679   if( pDest->iPKey>=0 ){
01680     addr1 = sqlite3VdbeAddOp2(v, OP_Rowid, iSrc, regRowid);
01681     addr2 = sqlite3VdbeAddOp3(v, OP_NotExists, iDest, 0, regRowid);
01682     sqlite3VdbeAddOp4(v, OP_Halt, SQLITE_CONSTRAINT, onError, 0,
01683                       "PRIMARY KEY must be unique", P4_STATIC);
01684     sqlite3VdbeJumpHere(v, addr2);
01685     autoIncStep(pParse, regAutoinc, regRowid);
01686   }else if( pDest->pIndex==0 ){
01687     addr1 = sqlite3VdbeAddOp2(v, OP_NewRowid, iDest, regRowid);
01688   }else{
01689     addr1 = sqlite3VdbeAddOp2(v, OP_Rowid, iSrc, regRowid);
01690     assert( (pDest->tabFlags & TF_Autoincrement)==0 );
01691   }
01692   sqlite3VdbeAddOp2(v, OP_RowData, iSrc, regData);
01693   sqlite3VdbeAddOp3(v, OP_Insert, iDest, regData, regRowid);
01694   sqlite3VdbeChangeP5(v, OPFLAG_NCHANGE|OPFLAG_LASTROWID|OPFLAG_APPEND);
01695   sqlite3VdbeChangeP4(v, -1, pDest->zName, 0);
01696   sqlite3VdbeAddOp2(v, OP_Next, iSrc, addr1);
01697   autoIncEnd(pParse, iDbDest, pDest, regAutoinc);
01698   for(pDestIdx=pDest->pIndex; pDestIdx; pDestIdx=pDestIdx->pNext){
01699     for(pSrcIdx=pSrc->pIndex; pSrcIdx; pSrcIdx=pSrcIdx->pNext){
01700       if( xferCompatibleIndex(pDestIdx, pSrcIdx) ) break;
01701     }
01702     assert( pSrcIdx );
01703     sqlite3VdbeAddOp2(v, OP_Close, iSrc, 0);
01704     sqlite3VdbeAddOp2(v, OP_Close, iDest, 0);
01705     pKey = sqlite3IndexKeyinfo(pParse, pSrcIdx);
01706     sqlite3VdbeAddOp4(v, OP_OpenRead, iSrc, pSrcIdx->tnum, iDbSrc,
01707                       (char*)pKey, P4_KEYINFO_HANDOFF);
01708     VdbeComment((v, "%s", pSrcIdx->zName));
01709     pKey = sqlite3IndexKeyinfo(pParse, pDestIdx);
01710     sqlite3VdbeAddOp4(v, OP_OpenWrite, iDest, pDestIdx->tnum, iDbDest,
01711                       (char*)pKey, P4_KEYINFO_HANDOFF);
01712     VdbeComment((v, "%s", pDestIdx->zName));
01713     addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iSrc, 0);
01714     sqlite3VdbeAddOp2(v, OP_RowKey, iSrc, regData);
01715     sqlite3VdbeAddOp3(v, OP_IdxInsert, iDest, regData, 1);
01716     sqlite3VdbeAddOp2(v, OP_Next, iSrc, addr1+1);
01717     sqlite3VdbeJumpHere(v, addr1);
01718   }
01719   sqlite3VdbeJumpHere(v, emptySrcTest);
01720   sqlite3ReleaseTempReg(pParse, regRowid);
01721   sqlite3ReleaseTempReg(pParse, regData);
01722   sqlite3VdbeAddOp2(v, OP_Close, iSrc, 0);
01723   sqlite3VdbeAddOp2(v, OP_Close, iDest, 0);
01724   if( emptyDestTest ){
01725     sqlite3VdbeAddOp2(v, OP_Halt, SQLITE_OK, 0);
01726     sqlite3VdbeJumpHere(v, emptyDestTest);
01727     sqlite3VdbeAddOp2(v, OP_Close, iDest, 0);
01728     return 0;
01729   }else{
01730     return 1;
01731   }
01732 }
01733 #endif /* SQLITE_OMIT_XFER_OPT */
01734 
01735 /* Make sure "isView" gets undefined in case this file becomes part of
01736 ** the amalgamation - so that subsequent files do not see isView as a
01737 ** macro. */
01738 #undef isView

ContextLogger2—ContextLogger2 Logger Daemon Internals—Generated on Mon May 2 13:49:54 2011 by Doxygen 1.6.1