lopcodes.h

Go to the documentation of this file.
00001 /*
00002 ** $Id: lopcodes.h,v 1.125.1.1 2007/12/27 13:02:25 roberto Exp $
00003 ** Opcodes for Lua virtual machine
00004 ** See Copyright Notice in lua.h
00005 */
00006 
00007 #ifndef lopcodes_h
00008 #define lopcodes_h
00009 
00010 #include "llimits.h"
00011 
00012 
00013 /*===========================================================================
00014   We assume that instructions are unsigned numbers.
00015   All instructions have an opcode in the first 6 bits.
00016   Instructions can have the following fields:
00017   `A' : 8 bits
00018   `B' : 9 bits
00019   `C' : 9 bits
00020   `Bx' : 18 bits (`B' and `C' together)
00021   `sBx' : signed Bx
00022 
00023   A signed argument is represented in excess K; that is, the number
00024   value is the unsigned value minus K. K is exactly the maximum value
00025   for that argument (so that -max is represented by 0, and +max is
00026   represented by 2*max), which is half the maximum for the corresponding
00027   unsigned argument.
00028 ===========================================================================*/
00029 
00030 
00031 enum OpMode {iABC, iABx, iAsBx};  /* basic instruction format */
00032 
00033 
00034 /*
00035 ** size and position of opcode arguments.
00036 */
00037 #define SIZE_C    9
00038 #define SIZE_B    9
00039 #define SIZE_Bx   (SIZE_C + SIZE_B)
00040 #define SIZE_A    8
00041 
00042 #define SIZE_OP   6
00043 
00044 #define POS_OP    0
00045 #define POS_A   (POS_OP + SIZE_OP)
00046 #define POS_C   (POS_A + SIZE_A)
00047 #define POS_B   (POS_C + SIZE_C)
00048 #define POS_Bx    POS_C
00049 
00050 
00051 /*
00052 ** limits for opcode arguments.
00053 ** we use (signed) int to manipulate most arguments,
00054 ** so they must fit in LUAI_BITSINT-1 bits (-1 for sign)
00055 */
00056 #if SIZE_Bx < LUAI_BITSINT-1
00057 #define MAXARG_Bx        ((1<<SIZE_Bx)-1)
00058 #define MAXARG_sBx        (MAXARG_Bx>>1)         /* `sBx' is signed */
00059 #else
00060 #define MAXARG_Bx        MAX_INT
00061 #define MAXARG_sBx        MAX_INT
00062 #endif
00063 
00064 
00065 #define MAXARG_A        ((1<<SIZE_A)-1)
00066 #define MAXARG_B        ((1<<SIZE_B)-1)
00067 #define MAXARG_C        ((1<<SIZE_C)-1)
00068 
00069 
00070 /* creates a mask with `n' 1 bits at position `p' */
00071 #define MASK1(n,p)  ((~((~(Instruction)0)<<n))<<p)
00072 
00073 /* creates a mask with `n' 0 bits at position `p' */
00074 #define MASK0(n,p)  (~MASK1(n,p))
00075 
00076 /*
00077 ** the following macros help to manipulate instructions
00078 */
00079 
00080 #define GET_OPCODE(i) (cast(OpCode, ((i)>>POS_OP) & MASK1(SIZE_OP,0)))
00081 #define SET_OPCODE(i,o) ((i) = (((i)&MASK0(SIZE_OP,POS_OP)) | \
00082     ((cast(Instruction, o)<<POS_OP)&MASK1(SIZE_OP,POS_OP))))
00083 
00084 #define GETARG_A(i) (cast(int, ((i)>>POS_A) & MASK1(SIZE_A,0)))
00085 #define SETARG_A(i,u) ((i) = (((i)&MASK0(SIZE_A,POS_A)) | \
00086     ((cast(Instruction, u)<<POS_A)&MASK1(SIZE_A,POS_A))))
00087 
00088 #define GETARG_B(i) (cast(int, ((i)>>POS_B) & MASK1(SIZE_B,0)))
00089 #define SETARG_B(i,b) ((i) = (((i)&MASK0(SIZE_B,POS_B)) | \
00090     ((cast(Instruction, b)<<POS_B)&MASK1(SIZE_B,POS_B))))
00091 
00092 #define GETARG_C(i) (cast(int, ((i)>>POS_C) & MASK1(SIZE_C,0)))
00093 #define SETARG_C(i,b) ((i) = (((i)&MASK0(SIZE_C,POS_C)) | \
00094     ((cast(Instruction, b)<<POS_C)&MASK1(SIZE_C,POS_C))))
00095 
00096 #define GETARG_Bx(i)  (cast(int, ((i)>>POS_Bx) & MASK1(SIZE_Bx,0)))
00097 #define SETARG_Bx(i,b)  ((i) = (((i)&MASK0(SIZE_Bx,POS_Bx)) | \
00098     ((cast(Instruction, b)<<POS_Bx)&MASK1(SIZE_Bx,POS_Bx))))
00099 
00100 #define GETARG_sBx(i) (GETARG_Bx(i)-MAXARG_sBx)
00101 #define SETARG_sBx(i,b) SETARG_Bx((i),cast(unsigned int, (b)+MAXARG_sBx))
00102 
00103 
00104 #define CREATE_ABC(o,a,b,c) ((cast(Instruction, o)<<POS_OP) \
00105       | (cast(Instruction, a)<<POS_A) \
00106       | (cast(Instruction, b)<<POS_B) \
00107       | (cast(Instruction, c)<<POS_C))
00108 
00109 #define CREATE_ABx(o,a,bc)  ((cast(Instruction, o)<<POS_OP) \
00110       | (cast(Instruction, a)<<POS_A) \
00111       | (cast(Instruction, bc)<<POS_Bx))
00112 
00113 
00114 /*
00115 ** Macros to operate RK indices
00116 */
00117 
00118 /* this bit 1 means constant (0 means register) */
00119 #define BITRK   (1 << (SIZE_B - 1))
00120 
00121 /* test whether value is a constant */
00122 #define ISK(x)    ((x) & BITRK)
00123 
00124 /* gets the index of the constant */
00125 #define INDEXK(r) ((int)(r) & ~BITRK)
00126 
00127 #define MAXINDEXRK  (BITRK - 1)
00128 
00129 /* code a constant index as a RK value */
00130 #define RKASK(x)  ((x) | BITRK)
00131 
00132 
00133 /*
00134 ** invalid register that fits in 8 bits
00135 */
00136 #define NO_REG    MAXARG_A
00137 
00138 
00139 /*
00140 ** R(x) - register
00141 ** Kst(x) - constant (in constant table)
00142 ** RK(x) == if ISK(x) then Kst(INDEXK(x)) else R(x)
00143 */
00144 
00145 
00146 /*
00147 ** grep "ORDER OP" if you change these enums
00148 */
00149 
00150 typedef enum {
00151 /*----------------------------------------------------------------------
00152 name    args  description
00153 ------------------------------------------------------------------------*/
00154 OP_MOVE,/*  A B R(A) := R(B)          */
00155 OP_LOADK,/* A Bx  R(A) := Kst(Bx)         */
00156 OP_LOADBOOL,/*  A B C R(A) := (Bool)B; if (C) pc++      */
00157 OP_LOADNIL,/* A B R(A) := ... := R(B) := nil      */
00158 OP_GETUPVAL,/*  A B R(A) := UpValue[B]        */
00159 
00160 OP_GETGLOBAL,/* A Bx  R(A) := Gbl[Kst(Bx)]        */
00161 OP_GETTABLE,/*  A B C R(A) := R(B)[RK(C)]       */
00162 
00163 OP_SETGLOBAL,/* A Bx  Gbl[Kst(Bx)] := R(A)        */
00164 OP_SETUPVAL,/*  A B UpValue[B] := R(A)        */
00165 OP_SETTABLE,/*  A B C R(A)[RK(B)] := RK(C)        */
00166 
00167 OP_NEWTABLE,/*  A B C R(A) := {} (size = B,C)       */
00168 
00169 OP_SELF,/*  A B C R(A+1) := R(B); R(A) := R(B)[RK(C)]   */
00170 
00171 OP_ADD,/* A B C R(A) := RK(B) + RK(C)       */
00172 OP_SUB,/* A B C R(A) := RK(B) - RK(C)       */
00173 OP_MUL,/* A B C R(A) := RK(B) * RK(C)       */
00174 OP_DIV,/* A B C R(A) := RK(B) / RK(C)       */
00175 OP_MOD,/* A B C R(A) := RK(B) % RK(C)       */
00176 OP_POW,/* A B C R(A) := RK(B) ^ RK(C)       */
00177 OP_UNM,/* A B R(A) := -R(B)         */
00178 OP_NOT,/* A B R(A) := not R(B)        */
00179 OP_LEN,/* A B R(A) := length of R(B)        */
00180 
00181 OP_CONCAT,/*  A B C R(A) := R(B).. ... ..R(C)     */
00182 
00183 OP_JMP,/* sBx pc+=sBx         */
00184 
00185 OP_EQ,/*  A B C if ((RK(B) == RK(C)) ~= A) then pc++    */
00186 OP_LT,/*  A B C if ((RK(B) <  RK(C)) ~= A) then pc++      */
00187 OP_LE,/*  A B C if ((RK(B) <= RK(C)) ~= A) then pc++      */
00188 
00189 OP_TEST,/*  A C if not (R(A) <=> C) then pc++     */ 
00190 OP_TESTSET,/* A B C if (R(B) <=> C) then R(A) := R(B) else pc++ */ 
00191 
00192 OP_CALL,/*  A B C R(A), ... ,R(A+C-2) := R(A)(R(A+1), ... ,R(A+B-1)) */
00193 OP_TAILCALL,/*  A B C return R(A)(R(A+1), ... ,R(A+B-1))    */
00194 OP_RETURN,/*  A B return R(A), ... ,R(A+B-2)  (see note)  */
00195 
00196 OP_FORLOOP,/* A sBx R(A)+=R(A+2);
00197       if R(A) <?= R(A+1) then { pc+=sBx; R(A+3)=R(A) }*/
00198 OP_FORPREP,/* A sBx R(A)-=R(A+2); pc+=sBx       */
00199 
00200 OP_TFORLOOP,/*  A C R(A+3), ... ,R(A+2+C) := R(A)(R(A+1), R(A+2)); 
00201                         if R(A+3) ~= nil then R(A+2)=R(A+3) else pc++ */ 
00202 OP_SETLIST,/* A B C R(A)[(C-1)*FPF+i] := R(A+i), 1 <= i <= B  */
00203 
00204 OP_CLOSE,/* A   close all variables in the stack up to (>=) R(A)*/
00205 OP_CLOSURE,/* A Bx  R(A) := closure(KPROTO[Bx], R(A), ... ,R(A+n))  */
00206 
00207 OP_VARARG/* A B R(A), R(A+1), ..., R(A+B-1) = vararg    */
00208 } OpCode;
00209 
00210 
00211 #define NUM_OPCODES (cast(int, OP_VARARG) + 1)
00212 
00213 
00214 
00215 /*===========================================================================
00216   Notes:
00217   (*) In OP_CALL, if (B == 0) then B = top. C is the number of returns - 1,
00218       and can be 0: OP_CALL then sets `top' to last_result+1, so
00219       next open instruction (OP_CALL, OP_RETURN, OP_SETLIST) may use `top'.
00220 
00221   (*) In OP_VARARG, if (B == 0) then use actual number of varargs and
00222       set top (like in OP_CALL with C == 0).
00223 
00224   (*) In OP_RETURN, if (B == 0) then return up to `top'
00225 
00226   (*) In OP_SETLIST, if (B == 0) then B = `top';
00227       if (C == 0) then next `instruction' is real C
00228 
00229   (*) For comparisons, A specifies what condition the test should accept
00230       (true or false).
00231 
00232   (*) All `skips' (pc++) assume that next instruction is a jump
00233 ===========================================================================*/
00234 
00235 
00236 /*
00237 ** masks for instruction properties. The format is:
00238 ** bits 0-1: op mode
00239 ** bits 2-3: C arg mode
00240 ** bits 4-5: B arg mode
00241 ** bit 6: instruction set register A
00242 ** bit 7: operator is a test
00243 */  
00244 
00245 enum OpArgMask {
00246   OpArgN,  /* argument is not used */
00247   OpArgU,  /* argument is used */
00248   OpArgR,  /* argument is a register or a jump offset */
00249   OpArgK   /* argument is a constant or register/constant */
00250 };
00251 
00252 LUAI_DATA const lu_byte luaP_opmodes[NUM_OPCODES];
00253 
00254 #define getOpMode(m)  (cast(enum OpMode, luaP_opmodes[m] & 3))
00255 #define getBMode(m) (cast(enum OpArgMask, (luaP_opmodes[m] >> 4) & 3))
00256 #define getCMode(m) (cast(enum OpArgMask, (luaP_opmodes[m] >> 2) & 3))
00257 #define testAMode(m)  (luaP_opmodes[m] & (1 << 6))
00258 #define testTMode(m)  (luaP_opmodes[m] & (1 << 7))
00259 
00260 
00261 LUAI_DATA const char *const luaP_opnames[NUM_OPCODES+1];  /* opcode names */
00262 
00263 
00264 /* number of list items to accumulate before a SETLIST instruction */
00265 #define LFIELDS_PER_FLUSH 50
00266 
00267 
00268 #endif

ContextLogger2—ContextLogger2 Logger Daemon Internals—Generated on Mon May 2 13:49:54 2011 by Doxygen 1.6.1