00001 /* 00002 ** $Id: lopcodes.h,v 1.125.1.1 2007/12/27 13:02:25 roberto Exp $ 00003 ** Opcodes for Lua virtual machine 00004 ** See Copyright Notice in lua.h 00005 */ 00006 00007 #ifndef lopcodes_h 00008 #define lopcodes_h 00009 00010 #include "llimits.h" 00011 00012 00013 /*=========================================================================== 00014 We assume that instructions are unsigned numbers. 00015 All instructions have an opcode in the first 6 bits. 00016 Instructions can have the following fields: 00017 `A' : 8 bits 00018 `B' : 9 bits 00019 `C' : 9 bits 00020 `Bx' : 18 bits (`B' and `C' together) 00021 `sBx' : signed Bx 00022 00023 A signed argument is represented in excess K; that is, the number 00024 value is the unsigned value minus K. K is exactly the maximum value 00025 for that argument (so that -max is represented by 0, and +max is 00026 represented by 2*max), which is half the maximum for the corresponding 00027 unsigned argument. 00028 ===========================================================================*/ 00029 00030 00031 enum OpMode {iABC, iABx, iAsBx}; /* basic instruction format */ 00032 00033 00034 /* 00035 ** size and position of opcode arguments. 00036 */ 00037 #define SIZE_C 9 00038 #define SIZE_B 9 00039 #define SIZE_Bx (SIZE_C + SIZE_B) 00040 #define SIZE_A 8 00041 00042 #define SIZE_OP 6 00043 00044 #define POS_OP 0 00045 #define POS_A (POS_OP + SIZE_OP) 00046 #define POS_C (POS_A + SIZE_A) 00047 #define POS_B (POS_C + SIZE_C) 00048 #define POS_Bx POS_C 00049 00050 00051 /* 00052 ** limits for opcode arguments. 00053 ** we use (signed) int to manipulate most arguments, 00054 ** so they must fit in LUAI_BITSINT-1 bits (-1 for sign) 00055 */ 00056 #if SIZE_Bx < LUAI_BITSINT-1 00057 #define MAXARG_Bx ((1<<SIZE_Bx)-1) 00058 #define MAXARG_sBx (MAXARG_Bx>>1) /* `sBx' is signed */ 00059 #else 00060 #define MAXARG_Bx MAX_INT 00061 #define MAXARG_sBx MAX_INT 00062 #endif 00063 00064 00065 #define MAXARG_A ((1<<SIZE_A)-1) 00066 #define MAXARG_B ((1<<SIZE_B)-1) 00067 #define MAXARG_C ((1<<SIZE_C)-1) 00068 00069 00070 /* creates a mask with `n' 1 bits at position `p' */ 00071 #define MASK1(n,p) ((~((~(Instruction)0)<<n))<<p) 00072 00073 /* creates a mask with `n' 0 bits at position `p' */ 00074 #define MASK0(n,p) (~MASK1(n,p)) 00075 00076 /* 00077 ** the following macros help to manipulate instructions 00078 */ 00079 00080 #define GET_OPCODE(i) (cast(OpCode, ((i)>>POS_OP) & MASK1(SIZE_OP,0))) 00081 #define SET_OPCODE(i,o) ((i) = (((i)&MASK0(SIZE_OP,POS_OP)) | \ 00082 ((cast(Instruction, o)<<POS_OP)&MASK1(SIZE_OP,POS_OP)))) 00083 00084 #define GETARG_A(i) (cast(int, ((i)>>POS_A) & MASK1(SIZE_A,0))) 00085 #define SETARG_A(i,u) ((i) = (((i)&MASK0(SIZE_A,POS_A)) | \ 00086 ((cast(Instruction, u)<<POS_A)&MASK1(SIZE_A,POS_A)))) 00087 00088 #define GETARG_B(i) (cast(int, ((i)>>POS_B) & MASK1(SIZE_B,0))) 00089 #define SETARG_B(i,b) ((i) = (((i)&MASK0(SIZE_B,POS_B)) | \ 00090 ((cast(Instruction, b)<<POS_B)&MASK1(SIZE_B,POS_B)))) 00091 00092 #define GETARG_C(i) (cast(int, ((i)>>POS_C) & MASK1(SIZE_C,0))) 00093 #define SETARG_C(i,b) ((i) = (((i)&MASK0(SIZE_C,POS_C)) | \ 00094 ((cast(Instruction, b)<<POS_C)&MASK1(SIZE_C,POS_C)))) 00095 00096 #define GETARG_Bx(i) (cast(int, ((i)>>POS_Bx) & MASK1(SIZE_Bx,0))) 00097 #define SETARG_Bx(i,b) ((i) = (((i)&MASK0(SIZE_Bx,POS_Bx)) | \ 00098 ((cast(Instruction, b)<<POS_Bx)&MASK1(SIZE_Bx,POS_Bx)))) 00099 00100 #define GETARG_sBx(i) (GETARG_Bx(i)-MAXARG_sBx) 00101 #define SETARG_sBx(i,b) SETARG_Bx((i),cast(unsigned int, (b)+MAXARG_sBx)) 00102 00103 00104 #define CREATE_ABC(o,a,b,c) ((cast(Instruction, o)<<POS_OP) \ 00105 | (cast(Instruction, a)<<POS_A) \ 00106 | (cast(Instruction, b)<<POS_B) \ 00107 | (cast(Instruction, c)<<POS_C)) 00108 00109 #define CREATE_ABx(o,a,bc) ((cast(Instruction, o)<<POS_OP) \ 00110 | (cast(Instruction, a)<<POS_A) \ 00111 | (cast(Instruction, bc)<<POS_Bx)) 00112 00113 00114 /* 00115 ** Macros to operate RK indices 00116 */ 00117 00118 /* this bit 1 means constant (0 means register) */ 00119 #define BITRK (1 << (SIZE_B - 1)) 00120 00121 /* test whether value is a constant */ 00122 #define ISK(x) ((x) & BITRK) 00123 00124 /* gets the index of the constant */ 00125 #define INDEXK(r) ((int)(r) & ~BITRK) 00126 00127 #define MAXINDEXRK (BITRK - 1) 00128 00129 /* code a constant index as a RK value */ 00130 #define RKASK(x) ((x) | BITRK) 00131 00132 00133 /* 00134 ** invalid register that fits in 8 bits 00135 */ 00136 #define NO_REG MAXARG_A 00137 00138 00139 /* 00140 ** R(x) - register 00141 ** Kst(x) - constant (in constant table) 00142 ** RK(x) == if ISK(x) then Kst(INDEXK(x)) else R(x) 00143 */ 00144 00145 00146 /* 00147 ** grep "ORDER OP" if you change these enums 00148 */ 00149 00150 typedef enum { 00151 /*---------------------------------------------------------------------- 00152 name args description 00153 ------------------------------------------------------------------------*/ 00154 OP_MOVE,/* A B R(A) := R(B) */ 00155 OP_LOADK,/* A Bx R(A) := Kst(Bx) */ 00156 OP_LOADBOOL,/* A B C R(A) := (Bool)B; if (C) pc++ */ 00157 OP_LOADNIL,/* A B R(A) := ... := R(B) := nil */ 00158 OP_GETUPVAL,/* A B R(A) := UpValue[B] */ 00159 00160 OP_GETGLOBAL,/* A Bx R(A) := Gbl[Kst(Bx)] */ 00161 OP_GETTABLE,/* A B C R(A) := R(B)[RK(C)] */ 00162 00163 OP_SETGLOBAL,/* A Bx Gbl[Kst(Bx)] := R(A) */ 00164 OP_SETUPVAL,/* A B UpValue[B] := R(A) */ 00165 OP_SETTABLE,/* A B C R(A)[RK(B)] := RK(C) */ 00166 00167 OP_NEWTABLE,/* A B C R(A) := {} (size = B,C) */ 00168 00169 OP_SELF,/* A B C R(A+1) := R(B); R(A) := R(B)[RK(C)] */ 00170 00171 OP_ADD,/* A B C R(A) := RK(B) + RK(C) */ 00172 OP_SUB,/* A B C R(A) := RK(B) - RK(C) */ 00173 OP_MUL,/* A B C R(A) := RK(B) * RK(C) */ 00174 OP_DIV,/* A B C R(A) := RK(B) / RK(C) */ 00175 OP_MOD,/* A B C R(A) := RK(B) % RK(C) */ 00176 OP_POW,/* A B C R(A) := RK(B) ^ RK(C) */ 00177 OP_UNM,/* A B R(A) := -R(B) */ 00178 OP_NOT,/* A B R(A) := not R(B) */ 00179 OP_LEN,/* A B R(A) := length of R(B) */ 00180 00181 OP_CONCAT,/* A B C R(A) := R(B).. ... ..R(C) */ 00182 00183 OP_JMP,/* sBx pc+=sBx */ 00184 00185 OP_EQ,/* A B C if ((RK(B) == RK(C)) ~= A) then pc++ */ 00186 OP_LT,/* A B C if ((RK(B) < RK(C)) ~= A) then pc++ */ 00187 OP_LE,/* A B C if ((RK(B) <= RK(C)) ~= A) then pc++ */ 00188 00189 OP_TEST,/* A C if not (R(A) <=> C) then pc++ */ 00190 OP_TESTSET,/* A B C if (R(B) <=> C) then R(A) := R(B) else pc++ */ 00191 00192 OP_CALL,/* A B C R(A), ... ,R(A+C-2) := R(A)(R(A+1), ... ,R(A+B-1)) */ 00193 OP_TAILCALL,/* A B C return R(A)(R(A+1), ... ,R(A+B-1)) */ 00194 OP_RETURN,/* A B return R(A), ... ,R(A+B-2) (see note) */ 00195 00196 OP_FORLOOP,/* A sBx R(A)+=R(A+2); 00197 if R(A) <?= R(A+1) then { pc+=sBx; R(A+3)=R(A) }*/ 00198 OP_FORPREP,/* A sBx R(A)-=R(A+2); pc+=sBx */ 00199 00200 OP_TFORLOOP,/* A C R(A+3), ... ,R(A+2+C) := R(A)(R(A+1), R(A+2)); 00201 if R(A+3) ~= nil then R(A+2)=R(A+3) else pc++ */ 00202 OP_SETLIST,/* A B C R(A)[(C-1)*FPF+i] := R(A+i), 1 <= i <= B */ 00203 00204 OP_CLOSE,/* A close all variables in the stack up to (>=) R(A)*/ 00205 OP_CLOSURE,/* A Bx R(A) := closure(KPROTO[Bx], R(A), ... ,R(A+n)) */ 00206 00207 OP_VARARG/* A B R(A), R(A+1), ..., R(A+B-1) = vararg */ 00208 } OpCode; 00209 00210 00211 #define NUM_OPCODES (cast(int, OP_VARARG) + 1) 00212 00213 00214 00215 /*=========================================================================== 00216 Notes: 00217 (*) In OP_CALL, if (B == 0) then B = top. C is the number of returns - 1, 00218 and can be 0: OP_CALL then sets `top' to last_result+1, so 00219 next open instruction (OP_CALL, OP_RETURN, OP_SETLIST) may use `top'. 00220 00221 (*) In OP_VARARG, if (B == 0) then use actual number of varargs and 00222 set top (like in OP_CALL with C == 0). 00223 00224 (*) In OP_RETURN, if (B == 0) then return up to `top' 00225 00226 (*) In OP_SETLIST, if (B == 0) then B = `top'; 00227 if (C == 0) then next `instruction' is real C 00228 00229 (*) For comparisons, A specifies what condition the test should accept 00230 (true or false). 00231 00232 (*) All `skips' (pc++) assume that next instruction is a jump 00233 ===========================================================================*/ 00234 00235 00236 /* 00237 ** masks for instruction properties. The format is: 00238 ** bits 0-1: op mode 00239 ** bits 2-3: C arg mode 00240 ** bits 4-5: B arg mode 00241 ** bit 6: instruction set register A 00242 ** bit 7: operator is a test 00243 */ 00244 00245 enum OpArgMask { 00246 OpArgN, /* argument is not used */ 00247 OpArgU, /* argument is used */ 00248 OpArgR, /* argument is a register or a jump offset */ 00249 OpArgK /* argument is a constant or register/constant */ 00250 }; 00251 00252 LUAI_DATA const lu_byte luaP_opmodes[NUM_OPCODES]; 00253 00254 #define getOpMode(m) (cast(enum OpMode, luaP_opmodes[m] & 3)) 00255 #define getBMode(m) (cast(enum OpArgMask, (luaP_opmodes[m] >> 4) & 3)) 00256 #define getCMode(m) (cast(enum OpArgMask, (luaP_opmodes[m] >> 2) & 3)) 00257 #define testAMode(m) (luaP_opmodes[m] & (1 << 6)) 00258 #define testTMode(m) (luaP_opmodes[m] & (1 << 7)) 00259 00260 00261 LUAI_DATA const char *const luaP_opnames[NUM_OPCODES+1]; /* opcode names */ 00262 00263 00264 /* number of list items to accumulate before a SETLIST instruction */ 00265 #define LFIELDS_PER_FLUSH 50 00266 00267 00268 #endif
ContextLogger2—ContextLogger2 Logger Daemon Internals—Generated on Mon May 2 13:49:54 2011 by Doxygen 1.6.1