00001 /* 00002 ** 2007 October 14 00003 ** 00004 ** The author disclaims copyright to this source code. In place of 00005 ** a legal notice, here is a blessing: 00006 ** 00007 ** May you do good and not evil. 00008 ** May you find forgiveness for yourself and forgive others. 00009 ** May you share freely, never taking more than you give. 00010 ** 00011 ************************************************************************* 00012 ** This file contains the C functions that implement a memory 00013 ** allocation subsystem for use by SQLite. 00014 ** 00015 ** This version of the memory allocation subsystem omits all 00016 ** use of malloc(). The SQLite user supplies a block of memory 00017 ** before calling sqlite3_initialize() from which allocations 00018 ** are made and returned by the xMalloc() and xRealloc() 00019 ** implementations. Once sqlite3_initialize() has been called, 00020 ** the amount of memory available to SQLite is fixed and cannot 00021 ** be changed. 00022 ** 00023 ** This version of the memory allocation subsystem is included 00024 ** in the build only if SQLITE_ENABLE_MEMSYS3 is defined. 00025 ** 00026 ** $Id: mem3.c,v 1.23 2008/09/02 17:52:52 danielk1977 Exp $ 00027 */ 00028 #include "sqliteInt.h" 00029 00030 /* 00031 ** This version of the memory allocator is only built into the library 00032 ** SQLITE_ENABLE_MEMSYS3 is defined. Defining this symbol does not 00033 ** mean that the library will use a memory-pool by default, just that 00034 ** it is available. The mempool allocator is activated by calling 00035 ** sqlite3_config(). 00036 */ 00037 #ifdef SQLITE_ENABLE_MEMSYS3 00038 00039 /* 00040 ** Maximum size (in Mem3Blocks) of a "small" chunk. 00041 */ 00042 #define MX_SMALL 10 00043 00044 00045 /* 00046 ** Number of freelist hash slots 00047 */ 00048 #define N_HASH 61 00049 00050 /* 00051 ** A memory allocation (also called a "chunk") consists of two or 00052 ** more blocks where each block is 8 bytes. The first 8 bytes are 00053 ** a header that is not returned to the user. 00054 ** 00055 ** A chunk is two or more blocks that is either checked out or 00056 ** free. The first block has format u.hdr. u.hdr.size4x is 4 times the 00057 ** size of the allocation in blocks if the allocation is free. 00058 ** The u.hdr.size4x&1 bit is true if the chunk is checked out and 00059 ** false if the chunk is on the freelist. The u.hdr.size4x&2 bit 00060 ** is true if the previous chunk is checked out and false if the 00061 ** previous chunk is free. The u.hdr.prevSize field is the size of 00062 ** the previous chunk in blocks if the previous chunk is on the 00063 ** freelist. If the previous chunk is checked out, then 00064 ** u.hdr.prevSize can be part of the data for that chunk and should 00065 ** not be read or written. 00066 ** 00067 ** We often identify a chunk by its index in mem3.aPool[]. When 00068 ** this is done, the chunk index refers to the second block of 00069 ** the chunk. In this way, the first chunk has an index of 1. 00070 ** A chunk index of 0 means "no such chunk" and is the equivalent 00071 ** of a NULL pointer. 00072 ** 00073 ** The second block of free chunks is of the form u.list. The 00074 ** two fields form a double-linked list of chunks of related sizes. 00075 ** Pointers to the head of the list are stored in mem3.aiSmall[] 00076 ** for smaller chunks and mem3.aiHash[] for larger chunks. 00077 ** 00078 ** The second block of a chunk is user data if the chunk is checked 00079 ** out. If a chunk is checked out, the user data may extend into 00080 ** the u.hdr.prevSize value of the following chunk. 00081 */ 00082 typedef struct Mem3Block Mem3Block; 00083 struct Mem3Block { 00084 union { 00085 struct { 00086 u32 prevSize; /* Size of previous chunk in Mem3Block elements */ 00087 u32 size4x; /* 4x the size of current chunk in Mem3Block elements */ 00088 } hdr; 00089 struct { 00090 u32 next; /* Index in mem3.aPool[] of next free chunk */ 00091 u32 prev; /* Index in mem3.aPool[] of previous free chunk */ 00092 } list; 00093 } u; 00094 }; 00095 00096 /* 00097 ** All of the static variables used by this module are collected 00098 ** into a single structure named "mem3". This is to keep the 00099 ** static variables organized and to reduce namespace pollution 00100 ** when this module is combined with other in the amalgamation. 00101 */ 00102 static SQLITE_WSD struct Mem3Global { 00103 /* 00104 ** Memory available for allocation. nPool is the size of the array 00105 ** (in Mem3Blocks) pointed to by aPool less 2. 00106 */ 00107 u32 nPool; 00108 Mem3Block *aPool; 00109 00110 /* 00111 ** True if we are evaluating an out-of-memory callback. 00112 */ 00113 int alarmBusy; 00114 00115 /* 00116 ** Mutex to control access to the memory allocation subsystem. 00117 */ 00118 sqlite3_mutex *mutex; 00119 00120 /* 00121 ** The minimum amount of free space that we have seen. 00122 */ 00123 u32 mnMaster; 00124 00125 /* 00126 ** iMaster is the index of the master chunk. Most new allocations 00127 ** occur off of this chunk. szMaster is the size (in Mem3Blocks) 00128 ** of the current master. iMaster is 0 if there is not master chunk. 00129 ** The master chunk is not in either the aiHash[] or aiSmall[]. 00130 */ 00131 u32 iMaster; 00132 u32 szMaster; 00133 00134 /* 00135 ** Array of lists of free blocks according to the block size 00136 ** for smaller chunks, or a hash on the block size for larger 00137 ** chunks. 00138 */ 00139 u32 aiSmall[MX_SMALL-1]; /* For sizes 2 through MX_SMALL, inclusive */ 00140 u32 aiHash[N_HASH]; /* For sizes MX_SMALL+1 and larger */ 00141 } mem3 = { 97535575 }; 00142 00143 #define mem3 GLOBAL(struct Mem3Global, mem3) 00144 00145 /* 00146 ** Unlink the chunk at mem3.aPool[i] from list it is currently 00147 ** on. *pRoot is the list that i is a member of. 00148 */ 00149 static void memsys3UnlinkFromList(u32 i, u32 *pRoot){ 00150 u32 next = mem3.aPool[i].u.list.next; 00151 u32 prev = mem3.aPool[i].u.list.prev; 00152 assert( sqlite3_mutex_held(mem3.mutex) ); 00153 if( prev==0 ){ 00154 *pRoot = next; 00155 }else{ 00156 mem3.aPool[prev].u.list.next = next; 00157 } 00158 if( next ){ 00159 mem3.aPool[next].u.list.prev = prev; 00160 } 00161 mem3.aPool[i].u.list.next = 0; 00162 mem3.aPool[i].u.list.prev = 0; 00163 } 00164 00165 /* 00166 ** Unlink the chunk at index i from 00167 ** whatever list is currently a member of. 00168 */ 00169 static void memsys3Unlink(u32 i){ 00170 u32 size, hash; 00171 assert( sqlite3_mutex_held(mem3.mutex) ); 00172 assert( (mem3.aPool[i-1].u.hdr.size4x & 1)==0 ); 00173 assert( i>=1 ); 00174 size = mem3.aPool[i-1].u.hdr.size4x/4; 00175 assert( size==mem3.aPool[i+size-1].u.hdr.prevSize ); 00176 assert( size>=2 ); 00177 if( size <= MX_SMALL ){ 00178 memsys3UnlinkFromList(i, &mem3.aiSmall[size-2]); 00179 }else{ 00180 hash = size % N_HASH; 00181 memsys3UnlinkFromList(i, &mem3.aiHash[hash]); 00182 } 00183 } 00184 00185 /* 00186 ** Link the chunk at mem3.aPool[i] so that is on the list rooted 00187 ** at *pRoot. 00188 */ 00189 static void memsys3LinkIntoList(u32 i, u32 *pRoot){ 00190 assert( sqlite3_mutex_held(mem3.mutex) ); 00191 mem3.aPool[i].u.list.next = *pRoot; 00192 mem3.aPool[i].u.list.prev = 0; 00193 if( *pRoot ){ 00194 mem3.aPool[*pRoot].u.list.prev = i; 00195 } 00196 *pRoot = i; 00197 } 00198 00199 /* 00200 ** Link the chunk at index i into either the appropriate 00201 ** small chunk list, or into the large chunk hash table. 00202 */ 00203 static void memsys3Link(u32 i){ 00204 u32 size, hash; 00205 assert( sqlite3_mutex_held(mem3.mutex) ); 00206 assert( i>=1 ); 00207 assert( (mem3.aPool[i-1].u.hdr.size4x & 1)==0 ); 00208 size = mem3.aPool[i-1].u.hdr.size4x/4; 00209 assert( size==mem3.aPool[i+size-1].u.hdr.prevSize ); 00210 assert( size>=2 ); 00211 if( size <= MX_SMALL ){ 00212 memsys3LinkIntoList(i, &mem3.aiSmall[size-2]); 00213 }else{ 00214 hash = size % N_HASH; 00215 memsys3LinkIntoList(i, &mem3.aiHash[hash]); 00216 } 00217 } 00218 00219 /* 00220 ** If the STATIC_MEM mutex is not already held, obtain it now. The mutex 00221 ** will already be held (obtained by code in malloc.c) if 00222 ** sqlite3GlobalConfig.bMemStat is true. 00223 */ 00224 static void memsys3Enter(void){ 00225 if( sqlite3GlobalConfig.bMemstat==0 && mem3.mutex==0 ){ 00226 mem3.mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MEM); 00227 } 00228 sqlite3_mutex_enter(mem3.mutex); 00229 } 00230 static void memsys3Leave(void){ 00231 sqlite3_mutex_leave(mem3.mutex); 00232 } 00233 00234 /* 00235 ** Called when we are unable to satisfy an allocation of nBytes. 00236 */ 00237 static void memsys3OutOfMemory(int nByte){ 00238 if( !mem3.alarmBusy ){ 00239 mem3.alarmBusy = 1; 00240 assert( sqlite3_mutex_held(mem3.mutex) ); 00241 sqlite3_mutex_leave(mem3.mutex); 00242 sqlite3_release_memory(nByte); 00243 sqlite3_mutex_enter(mem3.mutex); 00244 mem3.alarmBusy = 0; 00245 } 00246 } 00247 00248 00249 /* 00250 ** Chunk i is a free chunk that has been unlinked. Adjust its 00251 ** size parameters for check-out and return a pointer to the 00252 ** user portion of the chunk. 00253 */ 00254 static void *memsys3Checkout(u32 i, int nBlock){ 00255 u32 x; 00256 assert( sqlite3_mutex_held(mem3.mutex) ); 00257 assert( i>=1 ); 00258 assert( mem3.aPool[i-1].u.hdr.size4x/4==nBlock ); 00259 assert( mem3.aPool[i+nBlock-1].u.hdr.prevSize==nBlock ); 00260 x = mem3.aPool[i-1].u.hdr.size4x; 00261 mem3.aPool[i-1].u.hdr.size4x = nBlock*4 | 1 | (x&2); 00262 mem3.aPool[i+nBlock-1].u.hdr.prevSize = nBlock; 00263 mem3.aPool[i+nBlock-1].u.hdr.size4x |= 2; 00264 return &mem3.aPool[i]; 00265 } 00266 00267 /* 00268 ** Carve a piece off of the end of the mem3.iMaster free chunk. 00269 ** Return a pointer to the new allocation. Or, if the master chunk 00270 ** is not large enough, return 0. 00271 */ 00272 static void *memsys3FromMaster(int nBlock){ 00273 assert( sqlite3_mutex_held(mem3.mutex) ); 00274 assert( mem3.szMaster>=nBlock ); 00275 if( nBlock>=mem3.szMaster-1 ){ 00276 /* Use the entire master */ 00277 void *p = memsys3Checkout(mem3.iMaster, mem3.szMaster); 00278 mem3.iMaster = 0; 00279 mem3.szMaster = 0; 00280 mem3.mnMaster = 0; 00281 return p; 00282 }else{ 00283 /* Split the master block. Return the tail. */ 00284 u32 newi, x; 00285 newi = mem3.iMaster + mem3.szMaster - nBlock; 00286 assert( newi > mem3.iMaster+1 ); 00287 mem3.aPool[mem3.iMaster+mem3.szMaster-1].u.hdr.prevSize = nBlock; 00288 mem3.aPool[mem3.iMaster+mem3.szMaster-1].u.hdr.size4x |= 2; 00289 mem3.aPool[newi-1].u.hdr.size4x = nBlock*4 + 1; 00290 mem3.szMaster -= nBlock; 00291 mem3.aPool[newi-1].u.hdr.prevSize = mem3.szMaster; 00292 x = mem3.aPool[mem3.iMaster-1].u.hdr.size4x & 2; 00293 mem3.aPool[mem3.iMaster-1].u.hdr.size4x = mem3.szMaster*4 | x; 00294 if( mem3.szMaster < mem3.mnMaster ){ 00295 mem3.mnMaster = mem3.szMaster; 00296 } 00297 return (void*)&mem3.aPool[newi]; 00298 } 00299 } 00300 00301 /* 00302 ** *pRoot is the head of a list of free chunks of the same size 00303 ** or same size hash. In other words, *pRoot is an entry in either 00304 ** mem3.aiSmall[] or mem3.aiHash[]. 00305 ** 00306 ** This routine examines all entries on the given list and tries 00307 ** to coalesce each entries with adjacent free chunks. 00308 ** 00309 ** If it sees a chunk that is larger than mem3.iMaster, it replaces 00310 ** the current mem3.iMaster with the new larger chunk. In order for 00311 ** this mem3.iMaster replacement to work, the master chunk must be 00312 ** linked into the hash tables. That is not the normal state of 00313 ** affairs, of course. The calling routine must link the master 00314 ** chunk before invoking this routine, then must unlink the (possibly 00315 ** changed) master chunk once this routine has finished. 00316 */ 00317 static void memsys3Merge(u32 *pRoot){ 00318 u32 iNext, prev, size, i, x; 00319 00320 assert( sqlite3_mutex_held(mem3.mutex) ); 00321 for(i=*pRoot; i>0; i=iNext){ 00322 iNext = mem3.aPool[i].u.list.next; 00323 size = mem3.aPool[i-1].u.hdr.size4x; 00324 assert( (size&1)==0 ); 00325 if( (size&2)==0 ){ 00326 memsys3UnlinkFromList(i, pRoot); 00327 assert( i > mem3.aPool[i-1].u.hdr.prevSize ); 00328 prev = i - mem3.aPool[i-1].u.hdr.prevSize; 00329 if( prev==iNext ){ 00330 iNext = mem3.aPool[prev].u.list.next; 00331 } 00332 memsys3Unlink(prev); 00333 size = i + size/4 - prev; 00334 x = mem3.aPool[prev-1].u.hdr.size4x & 2; 00335 mem3.aPool[prev-1].u.hdr.size4x = size*4 | x; 00336 mem3.aPool[prev+size-1].u.hdr.prevSize = size; 00337 memsys3Link(prev); 00338 i = prev; 00339 }else{ 00340 size /= 4; 00341 } 00342 if( size>mem3.szMaster ){ 00343 mem3.iMaster = i; 00344 mem3.szMaster = size; 00345 } 00346 } 00347 } 00348 00349 /* 00350 ** Return a block of memory of at least nBytes in size. 00351 ** Return NULL if unable. 00352 ** 00353 ** This function assumes that the necessary mutexes, if any, are 00354 ** already held by the caller. Hence "Unsafe". 00355 */ 00356 static void *memsys3MallocUnsafe(int nByte){ 00357 u32 i; 00358 int nBlock; 00359 int toFree; 00360 00361 assert( sqlite3_mutex_held(mem3.mutex) ); 00362 assert( sizeof(Mem3Block)==8 ); 00363 if( nByte<=12 ){ 00364 nBlock = 2; 00365 }else{ 00366 nBlock = (nByte + 11)/8; 00367 } 00368 assert( nBlock>=2 ); 00369 00370 /* STEP 1: 00371 ** Look for an entry of the correct size in either the small 00372 ** chunk table or in the large chunk hash table. This is 00373 ** successful most of the time (about 9 times out of 10). 00374 */ 00375 if( nBlock <= MX_SMALL ){ 00376 i = mem3.aiSmall[nBlock-2]; 00377 if( i>0 ){ 00378 memsys3UnlinkFromList(i, &mem3.aiSmall[nBlock-2]); 00379 return memsys3Checkout(i, nBlock); 00380 } 00381 }else{ 00382 int hash = nBlock % N_HASH; 00383 for(i=mem3.aiHash[hash]; i>0; i=mem3.aPool[i].u.list.next){ 00384 if( mem3.aPool[i-1].u.hdr.size4x/4==nBlock ){ 00385 memsys3UnlinkFromList(i, &mem3.aiHash[hash]); 00386 return memsys3Checkout(i, nBlock); 00387 } 00388 } 00389 } 00390 00391 /* STEP 2: 00392 ** Try to satisfy the allocation by carving a piece off of the end 00393 ** of the master chunk. This step usually works if step 1 fails. 00394 */ 00395 if( mem3.szMaster>=nBlock ){ 00396 return memsys3FromMaster(nBlock); 00397 } 00398 00399 00400 /* STEP 3: 00401 ** Loop through the entire memory pool. Coalesce adjacent free 00402 ** chunks. Recompute the master chunk as the largest free chunk. 00403 ** Then try again to satisfy the allocation by carving a piece off 00404 ** of the end of the master chunk. This step happens very 00405 ** rarely (we hope!) 00406 */ 00407 for(toFree=nBlock*16; toFree<(mem3.nPool*16); toFree *= 2){ 00408 memsys3OutOfMemory(toFree); 00409 if( mem3.iMaster ){ 00410 memsys3Link(mem3.iMaster); 00411 mem3.iMaster = 0; 00412 mem3.szMaster = 0; 00413 } 00414 for(i=0; i<N_HASH; i++){ 00415 memsys3Merge(&mem3.aiHash[i]); 00416 } 00417 for(i=0; i<MX_SMALL-1; i++){ 00418 memsys3Merge(&mem3.aiSmall[i]); 00419 } 00420 if( mem3.szMaster ){ 00421 memsys3Unlink(mem3.iMaster); 00422 if( mem3.szMaster>=nBlock ){ 00423 return memsys3FromMaster(nBlock); 00424 } 00425 } 00426 } 00427 00428 /* If none of the above worked, then we fail. */ 00429 return 0; 00430 } 00431 00432 /* 00433 ** Free an outstanding memory allocation. 00434 ** 00435 ** This function assumes that the necessary mutexes, if any, are 00436 ** already held by the caller. Hence "Unsafe". 00437 */ 00438 void memsys3FreeUnsafe(void *pOld){ 00439 Mem3Block *p = (Mem3Block*)pOld; 00440 int i; 00441 u32 size, x; 00442 assert( sqlite3_mutex_held(mem3.mutex) ); 00443 assert( p>mem3.aPool && p<&mem3.aPool[mem3.nPool] ); 00444 i = p - mem3.aPool; 00445 assert( (mem3.aPool[i-1].u.hdr.size4x&1)==1 ); 00446 size = mem3.aPool[i-1].u.hdr.size4x/4; 00447 assert( i+size<=mem3.nPool+1 ); 00448 mem3.aPool[i-1].u.hdr.size4x &= ~1; 00449 mem3.aPool[i+size-1].u.hdr.prevSize = size; 00450 mem3.aPool[i+size-1].u.hdr.size4x &= ~2; 00451 memsys3Link(i); 00452 00453 /* Try to expand the master using the newly freed chunk */ 00454 if( mem3.iMaster ){ 00455 while( (mem3.aPool[mem3.iMaster-1].u.hdr.size4x&2)==0 ){ 00456 size = mem3.aPool[mem3.iMaster-1].u.hdr.prevSize; 00457 mem3.iMaster -= size; 00458 mem3.szMaster += size; 00459 memsys3Unlink(mem3.iMaster); 00460 x = mem3.aPool[mem3.iMaster-1].u.hdr.size4x & 2; 00461 mem3.aPool[mem3.iMaster-1].u.hdr.size4x = mem3.szMaster*4 | x; 00462 mem3.aPool[mem3.iMaster+mem3.szMaster-1].u.hdr.prevSize = mem3.szMaster; 00463 } 00464 x = mem3.aPool[mem3.iMaster-1].u.hdr.size4x & 2; 00465 while( (mem3.aPool[mem3.iMaster+mem3.szMaster-1].u.hdr.size4x&1)==0 ){ 00466 memsys3Unlink(mem3.iMaster+mem3.szMaster); 00467 mem3.szMaster += mem3.aPool[mem3.iMaster+mem3.szMaster-1].u.hdr.size4x/4; 00468 mem3.aPool[mem3.iMaster-1].u.hdr.size4x = mem3.szMaster*4 | x; 00469 mem3.aPool[mem3.iMaster+mem3.szMaster-1].u.hdr.prevSize = mem3.szMaster; 00470 } 00471 } 00472 } 00473 00474 /* 00475 ** Return the size of an outstanding allocation, in bytes. The 00476 ** size returned omits the 8-byte header overhead. This only 00477 ** works for chunks that are currently checked out. 00478 */ 00479 static int memsys3Size(void *p){ 00480 Mem3Block *pBlock; 00481 if( p==0 ) return 0; 00482 pBlock = (Mem3Block*)p; 00483 assert( (pBlock[-1].u.hdr.size4x&1)!=0 ); 00484 return (pBlock[-1].u.hdr.size4x&~3)*2 - 4; 00485 } 00486 00487 /* 00488 ** Round up a request size to the next valid allocation size. 00489 */ 00490 static int memsys3Roundup(int n){ 00491 if( n<=12 ){ 00492 return 12; 00493 }else{ 00494 return ((n+11)&~7) - 4; 00495 } 00496 } 00497 00498 /* 00499 ** Allocate nBytes of memory. 00500 */ 00501 static void *memsys3Malloc(int nBytes){ 00502 sqlite3_int64 *p; 00503 assert( nBytes>0 ); /* malloc.c filters out 0 byte requests */ 00504 memsys3Enter(); 00505 p = memsys3MallocUnsafe(nBytes); 00506 memsys3Leave(); 00507 return (void*)p; 00508 } 00509 00510 /* 00511 ** Free memory. 00512 */ 00513 void memsys3Free(void *pPrior){ 00514 assert( pPrior ); 00515 memsys3Enter(); 00516 memsys3FreeUnsafe(pPrior); 00517 memsys3Leave(); 00518 } 00519 00520 /* 00521 ** Change the size of an existing memory allocation 00522 */ 00523 void *memsys3Realloc(void *pPrior, int nBytes){ 00524 int nOld; 00525 void *p; 00526 if( pPrior==0 ){ 00527 return sqlite3_malloc(nBytes); 00528 } 00529 if( nBytes<=0 ){ 00530 sqlite3_free(pPrior); 00531 return 0; 00532 } 00533 nOld = memsys3Size(pPrior); 00534 if( nBytes<=nOld && nBytes>=nOld-128 ){ 00535 return pPrior; 00536 } 00537 memsys3Enter(); 00538 p = memsys3MallocUnsafe(nBytes); 00539 if( p ){ 00540 if( nOld<nBytes ){ 00541 memcpy(p, pPrior, nOld); 00542 }else{ 00543 memcpy(p, pPrior, nBytes); 00544 } 00545 memsys3FreeUnsafe(pPrior); 00546 } 00547 memsys3Leave(); 00548 return p; 00549 } 00550 00551 /* 00552 ** Initialize this module. 00553 */ 00554 static int memsys3Init(void *NotUsed){ 00555 if( !sqlite3GlobalConfig.pHeap ){ 00556 return SQLITE_ERROR; 00557 } 00558 00559 /* Store a pointer to the memory block in global structure mem3. */ 00560 assert( sizeof(Mem3Block)==8 ); 00561 mem3.aPool = (Mem3Block *)sqlite3GlobalConfig.pHeap; 00562 mem3.nPool = (sqlite3GlobalConfig.nHeap / sizeof(Mem3Block)) - 2; 00563 00564 /* Initialize the master block. */ 00565 mem3.szMaster = mem3.nPool; 00566 mem3.mnMaster = mem3.szMaster; 00567 mem3.iMaster = 1; 00568 mem3.aPool[0].u.hdr.size4x = (mem3.szMaster<<2) + 2; 00569 mem3.aPool[mem3.nPool].u.hdr.prevSize = mem3.nPool; 00570 mem3.aPool[mem3.nPool].u.hdr.size4x = 1; 00571 00572 return SQLITE_OK; 00573 } 00574 00575 /* 00576 ** Deinitialize this module. 00577 */ 00578 static void memsys3Shutdown(void *NotUsed){ 00579 return; 00580 } 00581 00582 00583 00584 /* 00585 ** Open the file indicated and write a log of all unfreed memory 00586 ** allocations into that log. 00587 */ 00588 void sqlite3Memsys3Dump(const char *zFilename){ 00589 #ifdef SQLITE_DEBUG 00590 FILE *out; 00591 int i, j; 00592 u32 size; 00593 if( zFilename==0 || zFilename[0]==0 ){ 00594 out = stdout; 00595 }else{ 00596 out = fopen(zFilename, "w"); 00597 if( out==0 ){ 00598 fprintf(stderr, "** Unable to output memory debug output log: %s **\n", 00599 zFilename); 00600 return; 00601 } 00602 } 00603 memsys3Enter(); 00604 fprintf(out, "CHUNKS:\n"); 00605 for(i=1; i<=mem3.nPool; i+=size/4){ 00606 size = mem3.aPool[i-1].u.hdr.size4x; 00607 if( size/4<=1 ){ 00608 fprintf(out, "%p size error\n", &mem3.aPool[i]); 00609 assert( 0 ); 00610 break; 00611 } 00612 if( (size&1)==0 && mem3.aPool[i+size/4-1].u.hdr.prevSize!=size/4 ){ 00613 fprintf(out, "%p tail size does not match\n", &mem3.aPool[i]); 00614 assert( 0 ); 00615 break; 00616 } 00617 if( ((mem3.aPool[i+size/4-1].u.hdr.size4x&2)>>1)!=(size&1) ){ 00618 fprintf(out, "%p tail checkout bit is incorrect\n", &mem3.aPool[i]); 00619 assert( 0 ); 00620 break; 00621 } 00622 if( size&1 ){ 00623 fprintf(out, "%p %6d bytes checked out\n", &mem3.aPool[i], (size/4)*8-8); 00624 }else{ 00625 fprintf(out, "%p %6d bytes free%s\n", &mem3.aPool[i], (size/4)*8-8, 00626 i==mem3.iMaster ? " **master**" : ""); 00627 } 00628 } 00629 for(i=0; i<MX_SMALL-1; i++){ 00630 if( mem3.aiSmall[i]==0 ) continue; 00631 fprintf(out, "small(%2d):", i); 00632 for(j = mem3.aiSmall[i]; j>0; j=mem3.aPool[j].u.list.next){ 00633 fprintf(out, " %p(%d)", &mem3.aPool[j], 00634 (mem3.aPool[j-1].u.hdr.size4x/4)*8-8); 00635 } 00636 fprintf(out, "\n"); 00637 } 00638 for(i=0; i<N_HASH; i++){ 00639 if( mem3.aiHash[i]==0 ) continue; 00640 fprintf(out, "hash(%2d):", i); 00641 for(j = mem3.aiHash[i]; j>0; j=mem3.aPool[j].u.list.next){ 00642 fprintf(out, " %p(%d)", &mem3.aPool[j], 00643 (mem3.aPool[j-1].u.hdr.size4x/4)*8-8); 00644 } 00645 fprintf(out, "\n"); 00646 } 00647 fprintf(out, "master=%d\n", mem3.iMaster); 00648 fprintf(out, "nowUsed=%d\n", mem3.nPool*8 - mem3.szMaster*8); 00649 fprintf(out, "mxUsed=%d\n", mem3.nPool*8 - mem3.mnMaster*8); 00650 sqlite3_mutex_leave(mem3.mutex); 00651 if( out==stdout ){ 00652 fflush(stdout); 00653 }else{ 00654 fclose(out); 00655 } 00656 #endif 00657 } 00658 00659 /* 00660 ** This routine is the only routine in this file with external 00661 ** linkage. 00662 ** 00663 ** Populate the low-level memory allocation function pointers in 00664 ** sqlite3GlobalConfig.m with pointers to the routines in this file. The 00665 ** arguments specify the block of memory to manage. 00666 ** 00667 ** This routine is only called by sqlite3_config(), and therefore 00668 ** is not required to be threadsafe (it is not). 00669 */ 00670 const sqlite3_mem_methods *sqlite3MemGetMemsys3(void){ 00671 static const sqlite3_mem_methods mempoolMethods = { 00672 memsys3Malloc, 00673 memsys3Free, 00674 memsys3Realloc, 00675 memsys3Size, 00676 memsys3Roundup, 00677 memsys3Init, 00678 memsys3Shutdown, 00679 0 00680 }; 00681 return &mempoolMethods; 00682 } 00683 00684 #endif /* SQLITE_ENABLE_MEMSYS3 */
ContextLogger2—ContextLogger2 Logger Daemon Internals—Generated on Mon May 2 13:49:55 2011 by Doxygen 1.6.1