00001 /* 00002 ** The "printf" code that follows dates from the 1980's. It is in 00003 ** the public domain. The original comments are included here for 00004 ** completeness. They are very out-of-date but might be useful as 00005 ** an historical reference. Most of the "enhancements" have been backed 00006 ** out so that the functionality is now the same as standard printf(). 00007 ** 00008 ** $Id: printf.c,v 1.94 2008/08/22 14:08:36 drh Exp $ 00009 ** 00010 ************************************************************************** 00011 ** 00012 ** The following modules is an enhanced replacement for the "printf" subroutines 00013 ** found in the standard C library. The following enhancements are 00014 ** supported: 00015 ** 00016 ** + Additional functions. The standard set of "printf" functions 00017 ** includes printf, fprintf, sprintf, vprintf, vfprintf, and 00018 ** vsprintf. This module adds the following: 00019 ** 00020 ** * snprintf -- Works like sprintf, but has an extra argument 00021 ** which is the size of the buffer written to. 00022 ** 00023 ** * mprintf -- Similar to sprintf. Writes output to memory 00024 ** obtained from malloc. 00025 ** 00026 ** * xprintf -- Calls a function to dispose of output. 00027 ** 00028 ** * nprintf -- No output, but returns the number of characters 00029 ** that would have been output by printf. 00030 ** 00031 ** * A v- version (ex: vsnprintf) of every function is also 00032 ** supplied. 00033 ** 00034 ** + A few extensions to the formatting notation are supported: 00035 ** 00036 ** * The "=" flag (similar to "-") causes the output to be 00037 ** be centered in the appropriately sized field. 00038 ** 00039 ** * The %b field outputs an integer in binary notation. 00040 ** 00041 ** * The %c field now accepts a precision. The character output 00042 ** is repeated by the number of times the precision specifies. 00043 ** 00044 ** * The %' field works like %c, but takes as its character the 00045 ** next character of the format string, instead of the next 00046 ** argument. For example, printf("%.78'-") prints 78 minus 00047 ** signs, the same as printf("%.78c",'-'). 00048 ** 00049 ** + When compiled using GCC on a SPARC, this version of printf is 00050 ** faster than the library printf for SUN OS 4.1. 00051 ** 00052 ** + All functions are fully reentrant. 00053 ** 00054 */ 00055 #include "sqliteInt.h" 00056 00057 /* 00058 ** Conversion types fall into various categories as defined by the 00059 ** following enumeration. 00060 */ 00061 #define etRADIX 1 /* Integer types. %d, %x, %o, and so forth */ 00062 #define etFLOAT 2 /* Floating point. %f */ 00063 #define etEXP 3 /* Exponentional notation. %e and %E */ 00064 #define etGENERIC 4 /* Floating or exponential, depending on exponent. %g */ 00065 #define etSIZE 5 /* Return number of characters processed so far. %n */ 00066 #define etSTRING 6 /* Strings. %s */ 00067 #define etDYNSTRING 7 /* Dynamically allocated strings. %z */ 00068 #define etPERCENT 8 /* Percent symbol. %% */ 00069 #define etCHARX 9 /* Characters. %c */ 00070 /* The rest are extensions, not normally found in printf() */ 00071 #define etSQLESCAPE 10 /* Strings with '\'' doubled. %q */ 00072 #define etSQLESCAPE2 11 /* Strings with '\'' doubled and enclosed in '', 00073 NULL pointers replaced by SQL NULL. %Q */ 00074 #define etTOKEN 12 /* a pointer to a Token structure */ 00075 #define etSRCLIST 13 /* a pointer to a SrcList */ 00076 #define etPOINTER 14 /* The %p conversion */ 00077 #define etSQLESCAPE3 15 /* %w -> Strings with '\"' doubled */ 00078 #define etORDINAL 16 /* %r -> 1st, 2nd, 3rd, 4th, etc. English only */ 00079 00080 00081 /* 00082 ** An "etByte" is an 8-bit unsigned value. 00083 */ 00084 typedef unsigned char etByte; 00085 00086 /* 00087 ** Each builtin conversion character (ex: the 'd' in "%d") is described 00088 ** by an instance of the following structure 00089 */ 00090 typedef struct et_info { /* Information about each format field */ 00091 char fmttype; /* The format field code letter */ 00092 etByte base; /* The base for radix conversion */ 00093 etByte flags; /* One or more of FLAG_ constants below */ 00094 etByte type; /* Conversion paradigm */ 00095 etByte charset; /* Offset into aDigits[] of the digits string */ 00096 etByte prefix; /* Offset into aPrefix[] of the prefix string */ 00097 } et_info; 00098 00099 /* 00100 ** Allowed values for et_info.flags 00101 */ 00102 #define FLAG_SIGNED 1 /* True if the value to convert is signed */ 00103 #define FLAG_INTERN 2 /* True if for internal use only */ 00104 #define FLAG_STRING 4 /* Allow infinity precision */ 00105 00106 00107 /* 00108 ** The following table is searched linearly, so it is good to put the 00109 ** most frequently used conversion types first. 00110 */ 00111 static const char aDigits[] = "0123456789ABCDEF0123456789abcdef"; 00112 static const char aPrefix[] = "-x0\000X0"; 00113 static const et_info fmtinfo[] = { 00114 { 'd', 10, 1, etRADIX, 0, 0 }, 00115 { 's', 0, 4, etSTRING, 0, 0 }, 00116 { 'g', 0, 1, etGENERIC, 30, 0 }, 00117 { 'z', 0, 4, etDYNSTRING, 0, 0 }, 00118 { 'q', 0, 4, etSQLESCAPE, 0, 0 }, 00119 { 'Q', 0, 4, etSQLESCAPE2, 0, 0 }, 00120 { 'w', 0, 4, etSQLESCAPE3, 0, 0 }, 00121 { 'c', 0, 0, etCHARX, 0, 0 }, 00122 { 'o', 8, 0, etRADIX, 0, 2 }, 00123 { 'u', 10, 0, etRADIX, 0, 0 }, 00124 { 'x', 16, 0, etRADIX, 16, 1 }, 00125 { 'X', 16, 0, etRADIX, 0, 4 }, 00126 #ifndef SQLITE_OMIT_FLOATING_POINT 00127 { 'f', 0, 1, etFLOAT, 0, 0 }, 00128 { 'e', 0, 1, etEXP, 30, 0 }, 00129 { 'E', 0, 1, etEXP, 14, 0 }, 00130 { 'G', 0, 1, etGENERIC, 14, 0 }, 00131 #endif 00132 { 'i', 10, 1, etRADIX, 0, 0 }, 00133 { 'n', 0, 0, etSIZE, 0, 0 }, 00134 { '%', 0, 0, etPERCENT, 0, 0 }, 00135 { 'p', 16, 0, etPOINTER, 0, 1 }, 00136 { 'T', 0, 2, etTOKEN, 0, 0 }, 00137 { 'S', 0, 2, etSRCLIST, 0, 0 }, 00138 { 'r', 10, 3, etORDINAL, 0, 0 }, 00139 }; 00140 #define etNINFO (sizeof(fmtinfo)/sizeof(fmtinfo[0])) 00141 00142 /* 00143 ** If SQLITE_OMIT_FLOATING_POINT is defined, then none of the floating point 00144 ** conversions will work. 00145 */ 00146 #ifndef SQLITE_OMIT_FLOATING_POINT 00147 /* 00148 ** "*val" is a double such that 0.1 <= *val < 10.0 00149 ** Return the ascii code for the leading digit of *val, then 00150 ** multiply "*val" by 10.0 to renormalize. 00151 ** 00152 ** Example: 00153 ** input: *val = 3.14159 00154 ** output: *val = 1.4159 function return = '3' 00155 ** 00156 ** The counter *cnt is incremented each time. After counter exceeds 00157 ** 16 (the number of significant digits in a 64-bit float) '0' is 00158 ** always returned. 00159 */ 00160 static int et_getdigit(LONGDOUBLE_TYPE *val, int *cnt){ 00161 int digit; 00162 LONGDOUBLE_TYPE d; 00163 if( (*cnt)++ >= 16 ) return '0'; 00164 digit = (int)*val; 00165 d = digit; 00166 digit += '0'; 00167 *val = (*val - d)*10.0; 00168 return digit; 00169 } 00170 #endif /* SQLITE_OMIT_FLOATING_POINT */ 00171 00172 /* 00173 ** Append N space characters to the given string buffer. 00174 */ 00175 static void appendSpace(StrAccum *pAccum, int N){ 00176 static const char zSpaces[] = " "; 00177 while( N>=sizeof(zSpaces)-1 ){ 00178 sqlite3StrAccumAppend(pAccum, zSpaces, sizeof(zSpaces)-1); 00179 N -= sizeof(zSpaces)-1; 00180 } 00181 if( N>0 ){ 00182 sqlite3StrAccumAppend(pAccum, zSpaces, N); 00183 } 00184 } 00185 00186 /* 00187 ** On machines with a small stack size, you can redefine the 00188 ** SQLITE_PRINT_BUF_SIZE to be less than 350. But beware - for 00189 ** smaller values some %f conversions may go into an infinite loop. 00190 */ 00191 #ifndef SQLITE_PRINT_BUF_SIZE 00192 # define SQLITE_PRINT_BUF_SIZE 350 00193 #endif 00194 #define etBUFSIZE SQLITE_PRINT_BUF_SIZE /* Size of the output buffer */ 00195 00196 /* 00197 ** The root program. All variations call this core. 00198 ** 00199 ** INPUTS: 00200 ** func This is a pointer to a function taking three arguments 00201 ** 1. A pointer to anything. Same as the "arg" parameter. 00202 ** 2. A pointer to the list of characters to be output 00203 ** (Note, this list is NOT null terminated.) 00204 ** 3. An integer number of characters to be output. 00205 ** (Note: This number might be zero.) 00206 ** 00207 ** arg This is the pointer to anything which will be passed as the 00208 ** first argument to "func". Use it for whatever you like. 00209 ** 00210 ** fmt This is the format string, as in the usual print. 00211 ** 00212 ** ap This is a pointer to a list of arguments. Same as in 00213 ** vfprint. 00214 ** 00215 ** OUTPUTS: 00216 ** The return value is the total number of characters sent to 00217 ** the function "func". Returns -1 on a error. 00218 ** 00219 ** Note that the order in which automatic variables are declared below 00220 ** seems to make a big difference in determining how fast this beast 00221 ** will run. 00222 */ 00223 void sqlite3VXPrintf( 00224 StrAccum *pAccum, /* Accumulate results here */ 00225 int useExtended, /* Allow extended %-conversions */ 00226 const char *fmt, /* Format string */ 00227 va_list ap /* arguments */ 00228 ){ 00229 int c; /* Next character in the format string */ 00230 char *bufpt; /* Pointer to the conversion buffer */ 00231 int precision; /* Precision of the current field */ 00232 int length; /* Length of the field */ 00233 int idx; /* A general purpose loop counter */ 00234 int width; /* Width of the current field */ 00235 etByte flag_leftjustify; /* True if "-" flag is present */ 00236 etByte flag_plussign; /* True if "+" flag is present */ 00237 etByte flag_blanksign; /* True if " " flag is present */ 00238 etByte flag_alternateform; /* True if "#" flag is present */ 00239 etByte flag_altform2; /* True if "!" flag is present */ 00240 etByte flag_zeropad; /* True if field width constant starts with zero */ 00241 etByte flag_long; /* True if "l" flag is present */ 00242 etByte flag_longlong; /* True if the "ll" flag is present */ 00243 etByte done; /* Loop termination flag */ 00244 sqlite_uint64 longvalue; /* Value for integer types */ 00245 LONGDOUBLE_TYPE realvalue; /* Value for real types */ 00246 const et_info *infop; /* Pointer to the appropriate info structure */ 00247 char buf[etBUFSIZE]; /* Conversion buffer */ 00248 char prefix; /* Prefix character. "+" or "-" or " " or '\0'. */ 00249 etByte xtype; /* Conversion paradigm */ 00250 char *zExtra; /* Extra memory used for etTCLESCAPE conversions */ 00251 #ifndef SQLITE_OMIT_FLOATING_POINT 00252 int exp, e2; /* exponent of real numbers */ 00253 double rounder; /* Used for rounding floating point values */ 00254 etByte flag_dp; /* True if decimal point should be shown */ 00255 etByte flag_rtz; /* True if trailing zeros should be removed */ 00256 etByte flag_exp; /* True to force display of the exponent */ 00257 int nsd; /* Number of significant digits returned */ 00258 #endif 00259 00260 length = 0; 00261 bufpt = 0; 00262 for(; (c=(*fmt))!=0; ++fmt){ 00263 if( c!='%' ){ 00264 int amt; 00265 bufpt = (char *)fmt; 00266 amt = 1; 00267 while( (c=(*++fmt))!='%' && c!=0 ) amt++; 00268 sqlite3StrAccumAppend(pAccum, bufpt, amt); 00269 if( c==0 ) break; 00270 } 00271 if( (c=(*++fmt))==0 ){ 00272 sqlite3StrAccumAppend(pAccum, "%", 1); 00273 break; 00274 } 00275 /* Find out what flags are present */ 00276 flag_leftjustify = flag_plussign = flag_blanksign = 00277 flag_alternateform = flag_altform2 = flag_zeropad = 0; 00278 done = 0; 00279 do{ 00280 switch( c ){ 00281 case '-': flag_leftjustify = 1; break; 00282 case '+': flag_plussign = 1; break; 00283 case ' ': flag_blanksign = 1; break; 00284 case '#': flag_alternateform = 1; break; 00285 case '!': flag_altform2 = 1; break; 00286 case '0': flag_zeropad = 1; break; 00287 default: done = 1; break; 00288 } 00289 }while( !done && (c=(*++fmt))!=0 ); 00290 /* Get the field width */ 00291 width = 0; 00292 if( c=='*' ){ 00293 width = va_arg(ap,int); 00294 if( width<0 ){ 00295 flag_leftjustify = 1; 00296 width = -width; 00297 } 00298 c = *++fmt; 00299 }else{ 00300 while( c>='0' && c<='9' ){ 00301 width = width*10 + c - '0'; 00302 c = *++fmt; 00303 } 00304 } 00305 if( width > etBUFSIZE-10 ){ 00306 width = etBUFSIZE-10; 00307 } 00308 /* Get the precision */ 00309 if( c=='.' ){ 00310 precision = 0; 00311 c = *++fmt; 00312 if( c=='*' ){ 00313 precision = va_arg(ap,int); 00314 if( precision<0 ) precision = -precision; 00315 c = *++fmt; 00316 }else{ 00317 while( c>='0' && c<='9' ){ 00318 precision = precision*10 + c - '0'; 00319 c = *++fmt; 00320 } 00321 } 00322 }else{ 00323 precision = -1; 00324 } 00325 /* Get the conversion type modifier */ 00326 if( c=='l' ){ 00327 flag_long = 1; 00328 c = *++fmt; 00329 if( c=='l' ){ 00330 flag_longlong = 1; 00331 c = *++fmt; 00332 }else{ 00333 flag_longlong = 0; 00334 } 00335 }else{ 00336 flag_long = flag_longlong = 0; 00337 } 00338 /* Fetch the info entry for the field */ 00339 infop = 0; 00340 for(idx=0; idx<etNINFO; idx++){ 00341 if( c==fmtinfo[idx].fmttype ){ 00342 infop = &fmtinfo[idx]; 00343 if( useExtended || (infop->flags & FLAG_INTERN)==0 ){ 00344 xtype = infop->type; 00345 }else{ 00346 return; 00347 } 00348 break; 00349 } 00350 } 00351 zExtra = 0; 00352 if( infop==0 ){ 00353 return; 00354 } 00355 00356 00357 /* Limit the precision to prevent overflowing buf[] during conversion */ 00358 if( precision>etBUFSIZE-40 && (infop->flags & FLAG_STRING)==0 ){ 00359 precision = etBUFSIZE-40; 00360 } 00361 00362 /* 00363 ** At this point, variables are initialized as follows: 00364 ** 00365 ** flag_alternateform TRUE if a '#' is present. 00366 ** flag_altform2 TRUE if a '!' is present. 00367 ** flag_plussign TRUE if a '+' is present. 00368 ** flag_leftjustify TRUE if a '-' is present or if the 00369 ** field width was negative. 00370 ** flag_zeropad TRUE if the width began with 0. 00371 ** flag_long TRUE if the letter 'l' (ell) prefixed 00372 ** the conversion character. 00373 ** flag_longlong TRUE if the letter 'll' (ell ell) prefixed 00374 ** the conversion character. 00375 ** flag_blanksign TRUE if a ' ' is present. 00376 ** width The specified field width. This is 00377 ** always non-negative. Zero is the default. 00378 ** precision The specified precision. The default 00379 ** is -1. 00380 ** xtype The class of the conversion. 00381 ** infop Pointer to the appropriate info struct. 00382 */ 00383 switch( xtype ){ 00384 case etPOINTER: 00385 flag_longlong = sizeof(char*)==sizeof(i64); 00386 flag_long = sizeof(char*)==sizeof(long int); 00387 /* Fall through into the next case */ 00388 case etORDINAL: 00389 case etRADIX: 00390 if( infop->flags & FLAG_SIGNED ){ 00391 i64 v; 00392 if( flag_longlong ) v = va_arg(ap,i64); 00393 else if( flag_long ) v = va_arg(ap,long int); 00394 else v = va_arg(ap,int); 00395 if( v<0 ){ 00396 longvalue = -v; 00397 prefix = '-'; 00398 }else{ 00399 longvalue = v; 00400 if( flag_plussign ) prefix = '+'; 00401 else if( flag_blanksign ) prefix = ' '; 00402 else prefix = 0; 00403 } 00404 }else{ 00405 if( flag_longlong ) longvalue = va_arg(ap,u64); 00406 else if( flag_long ) longvalue = va_arg(ap,unsigned long int); 00407 else longvalue = va_arg(ap,unsigned int); 00408 prefix = 0; 00409 } 00410 if( longvalue==0 ) flag_alternateform = 0; 00411 if( flag_zeropad && precision<width-(prefix!=0) ){ 00412 precision = width-(prefix!=0); 00413 } 00414 bufpt = &buf[etBUFSIZE-1]; 00415 if( xtype==etORDINAL ){ 00416 static const char zOrd[] = "thstndrd"; 00417 int x = longvalue % 10; 00418 if( x>=4 || (longvalue/10)%10==1 ){ 00419 x = 0; 00420 } 00421 buf[etBUFSIZE-3] = zOrd[x*2]; 00422 buf[etBUFSIZE-2] = zOrd[x*2+1]; 00423 bufpt -= 2; 00424 } 00425 { 00426 register const char *cset; /* Use registers for speed */ 00427 register int base; 00428 cset = &aDigits[infop->charset]; 00429 base = infop->base; 00430 do{ /* Convert to ascii */ 00431 *(--bufpt) = cset[longvalue%base]; 00432 longvalue = longvalue/base; 00433 }while( longvalue>0 ); 00434 } 00435 length = &buf[etBUFSIZE-1]-bufpt; 00436 for(idx=precision-length; idx>0; idx--){ 00437 *(--bufpt) = '0'; /* Zero pad */ 00438 } 00439 if( prefix ) *(--bufpt) = prefix; /* Add sign */ 00440 if( flag_alternateform && infop->prefix ){ /* Add "0" or "0x" */ 00441 const char *pre; 00442 char x; 00443 pre = &aPrefix[infop->prefix]; 00444 for(; (x=(*pre))!=0; pre++) *(--bufpt) = x; 00445 } 00446 length = &buf[etBUFSIZE-1]-bufpt; 00447 break; 00448 case etFLOAT: 00449 case etEXP: 00450 case etGENERIC: 00451 realvalue = va_arg(ap,double); 00452 #ifndef SQLITE_OMIT_FLOATING_POINT 00453 if( precision<0 ) precision = 6; /* Set default precision */ 00454 if( precision>etBUFSIZE/2-10 ) precision = etBUFSIZE/2-10; 00455 if( realvalue<0.0 ){ 00456 realvalue = -realvalue; 00457 prefix = '-'; 00458 }else{ 00459 if( flag_plussign ) prefix = '+'; 00460 else if( flag_blanksign ) prefix = ' '; 00461 else prefix = 0; 00462 } 00463 if( xtype==etGENERIC && precision>0 ) precision--; 00464 #if 0 00465 /* Rounding works like BSD when the constant 0.4999 is used. Wierd! */ 00466 for(idx=precision, rounder=0.4999; idx>0; idx--, rounder*=0.1); 00467 #else 00468 /* It makes more sense to use 0.5 */ 00469 for(idx=precision, rounder=0.5; idx>0; idx--, rounder*=0.1){} 00470 #endif 00471 if( xtype==etFLOAT ) realvalue += rounder; 00472 /* Normalize realvalue to within 10.0 > realvalue >= 1.0 */ 00473 exp = 0; 00474 if( sqlite3IsNaN(realvalue) ){ 00475 bufpt = "NaN"; 00476 length = 3; 00477 break; 00478 } 00479 if( realvalue>0.0 ){ 00480 while( realvalue>=1e32 && exp<=350 ){ realvalue *= 1e-32; exp+=32; } 00481 while( realvalue>=1e8 && exp<=350 ){ realvalue *= 1e-8; exp+=8; } 00482 while( realvalue>=10.0 && exp<=350 ){ realvalue *= 0.1; exp++; } 00483 while( realvalue<1e-8 ){ realvalue *= 1e8; exp-=8; } 00484 while( realvalue<1.0 ){ realvalue *= 10.0; exp--; } 00485 if( exp>350 ){ 00486 if( prefix=='-' ){ 00487 bufpt = "-Inf"; 00488 }else if( prefix=='+' ){ 00489 bufpt = "+Inf"; 00490 }else{ 00491 bufpt = "Inf"; 00492 } 00493 length = strlen(bufpt); 00494 break; 00495 } 00496 } 00497 bufpt = buf; 00498 /* 00499 ** If the field type is etGENERIC, then convert to either etEXP 00500 ** or etFLOAT, as appropriate. 00501 */ 00502 flag_exp = xtype==etEXP; 00503 if( xtype!=etFLOAT ){ 00504 realvalue += rounder; 00505 if( realvalue>=10.0 ){ realvalue *= 0.1; exp++; } 00506 } 00507 if( xtype==etGENERIC ){ 00508 flag_rtz = !flag_alternateform; 00509 if( exp<-4 || exp>precision ){ 00510 xtype = etEXP; 00511 }else{ 00512 precision = precision - exp; 00513 xtype = etFLOAT; 00514 } 00515 }else{ 00516 flag_rtz = 0; 00517 } 00518 if( xtype==etEXP ){ 00519 e2 = 0; 00520 }else{ 00521 e2 = exp; 00522 } 00523 nsd = 0; 00524 flag_dp = (precision>0) | flag_alternateform | flag_altform2; 00525 /* The sign in front of the number */ 00526 if( prefix ){ 00527 *(bufpt++) = prefix; 00528 } 00529 /* Digits prior to the decimal point */ 00530 if( e2<0 ){ 00531 *(bufpt++) = '0'; 00532 }else{ 00533 for(; e2>=0; e2--){ 00534 *(bufpt++) = et_getdigit(&realvalue,&nsd); 00535 } 00536 } 00537 /* The decimal point */ 00538 if( flag_dp ){ 00539 *(bufpt++) = '.'; 00540 } 00541 /* "0" digits after the decimal point but before the first 00542 ** significant digit of the number */ 00543 for(e2++; e2<0; precision--, e2++){ 00544 assert( precision>0 ); 00545 *(bufpt++) = '0'; 00546 } 00547 /* Significant digits after the decimal point */ 00548 while( (precision--)>0 ){ 00549 *(bufpt++) = et_getdigit(&realvalue,&nsd); 00550 } 00551 /* Remove trailing zeros and the "." if no digits follow the "." */ 00552 if( flag_rtz && flag_dp ){ 00553 while( bufpt[-1]=='0' ) *(--bufpt) = 0; 00554 assert( bufpt>buf ); 00555 if( bufpt[-1]=='.' ){ 00556 if( flag_altform2 ){ 00557 *(bufpt++) = '0'; 00558 }else{ 00559 *(--bufpt) = 0; 00560 } 00561 } 00562 } 00563 /* Add the "eNNN" suffix */ 00564 if( flag_exp || xtype==etEXP ){ 00565 *(bufpt++) = aDigits[infop->charset]; 00566 if( exp<0 ){ 00567 *(bufpt++) = '-'; exp = -exp; 00568 }else{ 00569 *(bufpt++) = '+'; 00570 } 00571 if( exp>=100 ){ 00572 *(bufpt++) = (exp/100)+'0'; /* 100's digit */ 00573 exp %= 100; 00574 } 00575 *(bufpt++) = exp/10+'0'; /* 10's digit */ 00576 *(bufpt++) = exp%10+'0'; /* 1's digit */ 00577 } 00578 *bufpt = 0; 00579 00580 /* The converted number is in buf[] and zero terminated. Output it. 00581 ** Note that the number is in the usual order, not reversed as with 00582 ** integer conversions. */ 00583 length = bufpt-buf; 00584 bufpt = buf; 00585 00586 /* Special case: Add leading zeros if the flag_zeropad flag is 00587 ** set and we are not left justified */ 00588 if( flag_zeropad && !flag_leftjustify && length < width){ 00589 int i; 00590 int nPad = width - length; 00591 for(i=width; i>=nPad; i--){ 00592 bufpt[i] = bufpt[i-nPad]; 00593 } 00594 i = prefix!=0; 00595 while( nPad-- ) bufpt[i++] = '0'; 00596 length = width; 00597 } 00598 #endif 00599 break; 00600 case etSIZE: 00601 *(va_arg(ap,int*)) = pAccum->nChar; 00602 length = width = 0; 00603 break; 00604 case etPERCENT: 00605 buf[0] = '%'; 00606 bufpt = buf; 00607 length = 1; 00608 break; 00609 case etCHARX: 00610 c = buf[0] = va_arg(ap,int); 00611 if( precision>=0 ){ 00612 for(idx=1; idx<precision; idx++) buf[idx] = c; 00613 length = precision; 00614 }else{ 00615 length =1; 00616 } 00617 bufpt = buf; 00618 break; 00619 case etSTRING: 00620 case etDYNSTRING: 00621 bufpt = va_arg(ap,char*); 00622 if( bufpt==0 ){ 00623 bufpt = ""; 00624 }else if( xtype==etDYNSTRING ){ 00625 zExtra = bufpt; 00626 } 00627 if( precision>=0 ){ 00628 for(length=0; length<precision && bufpt[length]; length++){} 00629 }else{ 00630 length = strlen(bufpt); 00631 } 00632 break; 00633 case etSQLESCAPE: 00634 case etSQLESCAPE2: 00635 case etSQLESCAPE3: { 00636 int i, j, n, ch, isnull; 00637 int needQuote; 00638 char q = ((xtype==etSQLESCAPE3)?'"':'\''); /* Quote character */ 00639 char *escarg = va_arg(ap,char*); 00640 isnull = escarg==0; 00641 if( isnull ) escarg = (xtype==etSQLESCAPE2 ? "NULL" : "(NULL)"); 00642 for(i=n=0; (ch=escarg[i])!=0; i++){ 00643 if( ch==q ) n++; 00644 } 00645 needQuote = !isnull && xtype==etSQLESCAPE2; 00646 n += i + 1 + needQuote*2; 00647 if( n>etBUFSIZE ){ 00648 bufpt = zExtra = sqlite3Malloc( n ); 00649 if( bufpt==0 ) return; 00650 }else{ 00651 bufpt = buf; 00652 } 00653 j = 0; 00654 if( needQuote ) bufpt[j++] = q; 00655 for(i=0; (ch=escarg[i])!=0; i++){ 00656 bufpt[j++] = ch; 00657 if( ch==q ) bufpt[j++] = ch; 00658 } 00659 if( needQuote ) bufpt[j++] = q; 00660 bufpt[j] = 0; 00661 length = j; 00662 /* The precision is ignored on %q and %Q */ 00663 /* if( precision>=0 && precision<length ) length = precision; */ 00664 break; 00665 } 00666 case etTOKEN: { 00667 Token *pToken = va_arg(ap, Token*); 00668 if( pToken ){ 00669 sqlite3StrAccumAppend(pAccum, (const char*)pToken->z, pToken->n); 00670 } 00671 length = width = 0; 00672 break; 00673 } 00674 case etSRCLIST: { 00675 SrcList *pSrc = va_arg(ap, SrcList*); 00676 int k = va_arg(ap, int); 00677 struct SrcList_item *pItem = &pSrc->a[k]; 00678 assert( k>=0 && k<pSrc->nSrc ); 00679 if( pItem->zDatabase ){ 00680 sqlite3StrAccumAppend(pAccum, pItem->zDatabase, -1); 00681 sqlite3StrAccumAppend(pAccum, ".", 1); 00682 } 00683 sqlite3StrAccumAppend(pAccum, pItem->zName, -1); 00684 length = width = 0; 00685 break; 00686 } 00687 }/* End switch over the format type */ 00688 /* 00689 ** The text of the conversion is pointed to by "bufpt" and is 00690 ** "length" characters long. The field width is "width". Do 00691 ** the output. 00692 */ 00693 if( !flag_leftjustify ){ 00694 register int nspace; 00695 nspace = width-length; 00696 if( nspace>0 ){ 00697 appendSpace(pAccum, nspace); 00698 } 00699 } 00700 if( length>0 ){ 00701 sqlite3StrAccumAppend(pAccum, bufpt, length); 00702 } 00703 if( flag_leftjustify ){ 00704 register int nspace; 00705 nspace = width-length; 00706 if( nspace>0 ){ 00707 appendSpace(pAccum, nspace); 00708 } 00709 } 00710 if( zExtra ){ 00711 sqlite3_free(zExtra); 00712 } 00713 }/* End for loop over the format string */ 00714 } /* End of function */ 00715 00716 /* 00717 ** Append N bytes of text from z to the StrAccum object. 00718 */ 00719 void sqlite3StrAccumAppend(StrAccum *p, const char *z, int N){ 00720 if( p->tooBig | p->mallocFailed ){ 00721 return; 00722 } 00723 if( N<0 ){ 00724 N = strlen(z); 00725 } 00726 if( N==0 ){ 00727 return; 00728 } 00729 if( p->nChar+N >= p->nAlloc ){ 00730 char *zNew; 00731 if( !p->useMalloc ){ 00732 p->tooBig = 1; 00733 N = p->nAlloc - p->nChar - 1; 00734 if( N<=0 ){ 00735 return; 00736 } 00737 }else{ 00738 i64 szNew = p->nChar; 00739 szNew += N + 1; 00740 if( szNew > p->mxAlloc ){ 00741 sqlite3StrAccumReset(p); 00742 p->tooBig = 1; 00743 return; 00744 }else{ 00745 p->nAlloc = szNew; 00746 } 00747 zNew = sqlite3DbMallocRaw(p->db, p->nAlloc ); 00748 if( zNew ){ 00749 memcpy(zNew, p->zText, p->nChar); 00750 sqlite3StrAccumReset(p); 00751 p->zText = zNew; 00752 }else{ 00753 p->mallocFailed = 1; 00754 sqlite3StrAccumReset(p); 00755 return; 00756 } 00757 } 00758 } 00759 memcpy(&p->zText[p->nChar], z, N); 00760 p->nChar += N; 00761 } 00762 00763 /* 00764 ** Finish off a string by making sure it is zero-terminated. 00765 ** Return a pointer to the resulting string. Return a NULL 00766 ** pointer if any kind of error was encountered. 00767 */ 00768 char *sqlite3StrAccumFinish(StrAccum *p){ 00769 if( p->zText ){ 00770 p->zText[p->nChar] = 0; 00771 if( p->useMalloc && p->zText==p->zBase ){ 00772 p->zText = sqlite3DbMallocRaw(p->db, p->nChar+1 ); 00773 if( p->zText ){ 00774 memcpy(p->zText, p->zBase, p->nChar+1); 00775 }else{ 00776 p->mallocFailed = 1; 00777 } 00778 } 00779 } 00780 return p->zText; 00781 } 00782 00783 /* 00784 ** Reset an StrAccum string. Reclaim all malloced memory. 00785 */ 00786 void sqlite3StrAccumReset(StrAccum *p){ 00787 if( p->zText!=p->zBase ){ 00788 sqlite3DbFree(p->db, p->zText); 00789 } 00790 p->zText = 0; 00791 } 00792 00793 /* 00794 ** Initialize a string accumulator 00795 */ 00796 void sqlite3StrAccumInit(StrAccum *p, char *zBase, int n, int mx){ 00797 p->zText = p->zBase = zBase; 00798 p->db = 0; 00799 p->nChar = 0; 00800 p->nAlloc = n; 00801 p->mxAlloc = mx; 00802 p->useMalloc = 1; 00803 p->tooBig = 0; 00804 p->mallocFailed = 0; 00805 } 00806 00807 /* 00808 ** Print into memory obtained from sqliteMalloc(). Use the internal 00809 ** %-conversion extensions. 00810 */ 00811 char *sqlite3VMPrintf(sqlite3 *db, const char *zFormat, va_list ap){ 00812 char *z; 00813 char zBase[SQLITE_PRINT_BUF_SIZE]; 00814 StrAccum acc; 00815 sqlite3StrAccumInit(&acc, zBase, sizeof(zBase), 00816 db ? db->aLimit[SQLITE_LIMIT_LENGTH] : SQLITE_MAX_LENGTH); 00817 acc.db = db; 00818 sqlite3VXPrintf(&acc, 1, zFormat, ap); 00819 z = sqlite3StrAccumFinish(&acc); 00820 if( acc.mallocFailed && db ){ 00821 db->mallocFailed = 1; 00822 } 00823 return z; 00824 } 00825 00826 /* 00827 ** Print into memory obtained from sqliteMalloc(). Use the internal 00828 ** %-conversion extensions. 00829 */ 00830 char *sqlite3MPrintf(sqlite3 *db, const char *zFormat, ...){ 00831 va_list ap; 00832 char *z; 00833 va_start(ap, zFormat); 00834 z = sqlite3VMPrintf(db, zFormat, ap); 00835 va_end(ap); 00836 return z; 00837 } 00838 00839 /* 00840 ** Like sqlite3MPrintf(), but call sqlite3DbFree() on zStr after formatting 00841 ** the string and before returnning. This routine is intended to be used 00842 ** to modify an existing string. For example: 00843 ** 00844 ** x = sqlite3MPrintf(db, x, "prefix %s suffix", x); 00845 ** 00846 */ 00847 char *sqlite3MAppendf(sqlite3 *db, char *zStr, const char *zFormat, ...){ 00848 va_list ap; 00849 char *z; 00850 va_start(ap, zFormat); 00851 z = sqlite3VMPrintf(db, zFormat, ap); 00852 va_end(ap); 00853 sqlite3DbFree(db, zStr); 00854 return z; 00855 } 00856 00857 /* 00858 ** Print into memory obtained from sqlite3_malloc(). Omit the internal 00859 ** %-conversion extensions. 00860 */ 00861 char *sqlite3_vmprintf(const char *zFormat, va_list ap){ 00862 char *z; 00863 char zBase[SQLITE_PRINT_BUF_SIZE]; 00864 StrAccum acc; 00865 #ifndef SQLITE_OMIT_AUTOINIT 00866 if( sqlite3_initialize() ) return 0; 00867 #endif 00868 sqlite3StrAccumInit(&acc, zBase, sizeof(zBase), SQLITE_MAX_LENGTH); 00869 sqlite3VXPrintf(&acc, 0, zFormat, ap); 00870 z = sqlite3StrAccumFinish(&acc); 00871 return z; 00872 } 00873 00874 /* 00875 ** Print into memory obtained from sqlite3_malloc()(). Omit the internal 00876 ** %-conversion extensions. 00877 */ 00878 char *sqlite3_mprintf(const char *zFormat, ...){ 00879 va_list ap; 00880 char *z; 00881 #ifndef SQLITE_OMIT_AUTOINIT 00882 if( sqlite3_initialize() ) return 0; 00883 #endif 00884 va_start(ap, zFormat); 00885 z = sqlite3_vmprintf(zFormat, ap); 00886 va_end(ap); 00887 return z; 00888 } 00889 00890 /* 00891 ** sqlite3_snprintf() works like snprintf() except that it ignores the 00892 ** current locale settings. This is important for SQLite because we 00893 ** are not able to use a "," as the decimal point in place of "." as 00894 ** specified by some locales. 00895 */ 00896 char *sqlite3_snprintf(int n, char *zBuf, const char *zFormat, ...){ 00897 char *z; 00898 va_list ap; 00899 StrAccum acc; 00900 00901 if( n<=0 ){ 00902 return zBuf; 00903 } 00904 sqlite3StrAccumInit(&acc, zBuf, n, 0); 00905 acc.useMalloc = 0; 00906 va_start(ap,zFormat); 00907 sqlite3VXPrintf(&acc, 0, zFormat, ap); 00908 va_end(ap); 00909 z = sqlite3StrAccumFinish(&acc); 00910 return z; 00911 } 00912 00913 #if defined(SQLITE_DEBUG) 00914 /* 00915 ** A version of printf() that understands %lld. Used for debugging. 00916 ** The printf() built into some versions of windows does not understand %lld 00917 ** and segfaults if you give it a long long int. 00918 */ 00919 void sqlite3DebugPrintf(const char *zFormat, ...){ 00920 va_list ap; 00921 StrAccum acc; 00922 char zBuf[500]; 00923 sqlite3StrAccumInit(&acc, zBuf, sizeof(zBuf), 0); 00924 acc.useMalloc = 0; 00925 va_start(ap,zFormat); 00926 sqlite3VXPrintf(&acc, 0, zFormat, ap); 00927 va_end(ap); 00928 sqlite3StrAccumFinish(&acc); 00929 fprintf(stdout,"%s", zBuf); 00930 fflush(stdout); 00931 } 00932 #endif
ContextLogger2—ContextLogger2 Logger Daemon Internals—Generated on Mon May 2 13:49:56 2011 by Doxygen 1.6.1