00001 /* 00002 ** 2001 September 15 00003 ** 00004 ** The author disclaims copyright to this source code. In place of 00005 ** a legal notice, here is a blessing: 00006 ** 00007 ** May you do good and not evil. 00008 ** May you find forgiveness for yourself and forgive others. 00009 ** May you share freely, never taking more than you give. 00010 ** 00011 ************************************************************************* 00012 ** Internal interface definitions for SQLite. 00013 ** 00014 ** @(#) $Id: sqliteInt.h,v 1.790 2008/11/11 18:29:00 drh Exp $ 00015 */ 00016 #ifndef _SQLITEINT_H_ 00017 #define _SQLITEINT_H_ 00018 00019 /* 00020 ** Include the configuration header output by 'configure' if we're using the 00021 ** autoconf-based build 00022 */ 00023 #include "sqlite3_config.h" 00024 00025 #include "sqliteLimit.h" 00026 00027 /* Disable nuisance warnings on Borland compilers */ 00028 #if defined(__BORLANDC__) 00029 #pragma warn -rch /* unreachable code */ 00030 #pragma warn -ccc /* Condition is always true or false */ 00031 #pragma warn -aus /* Assigned value is never used */ 00032 #pragma warn -csu /* Comparing signed and unsigned */ 00033 #pragma warn -spa /* Suspicous pointer arithmetic */ 00034 #endif 00035 00036 /* Needed for various definitions... */ 00037 #ifndef _GNU_SOURCE 00038 # define _GNU_SOURCE 00039 #endif 00040 00041 /* 00042 ** Include standard header files as necessary 00043 */ 00044 #ifdef HAVE_STDINT_H 00045 #include <stdint.h> 00046 #endif 00047 #ifdef HAVE_INTTYPES_H 00048 #include <inttypes.h> 00049 #endif 00050 00051 /* 00052 ** A macro used to aid in coverage testing. When doing coverage 00053 ** testing, the condition inside the argument must be evaluated 00054 ** both true and false in order to get full branch coverage. 00055 ** This macro can be inserted to ensure adequate test coverage 00056 ** in places where simple condition/decision coverage is inadequate. 00057 */ 00058 #ifdef SQLITE_COVERAGE_TEST 00059 void sqlite3Coverage(int); 00060 # define testcase(X) if( X ){ sqlite3Coverage(__LINE__); } 00061 #else 00062 # define testcase(X) 00063 #endif 00064 00065 /* 00066 ** The ALWAYS and NEVER macros surround boolean expressions which 00067 ** are intended to always be true or false, respectively. Such 00068 ** expressions could be omitted from the code completely. But they 00069 ** are included in a few cases in order to enhance the resilience 00070 ** of SQLite to unexpected behavior - to make the code "self-healing" 00071 ** or "ductile" rather than being "brittle" and crashing at the first 00072 ** hint of unplanned behavior. 00073 ** 00074 ** When doing coverage testing ALWAYS and NEVER are hard-coded to 00075 ** be true and false so that the unreachable code then specify will 00076 ** not be counted as untested code. 00077 */ 00078 #ifdef SQLITE_COVERAGE_TEST 00079 # define ALWAYS(X) (1) 00080 # define NEVER(X) (0) 00081 #else 00082 # define ALWAYS(X) (X) 00083 # define NEVER(X) (X) 00084 #endif 00085 00086 /* 00087 ** The macro unlikely() is a hint that surrounds a boolean 00088 ** expression that is usually false. Macro likely() surrounds 00089 ** a boolean expression that is usually true. GCC is able to 00090 ** use these hints to generate better code, sometimes. 00091 */ 00092 #if defined(__GNUC__) && 0 00093 # define likely(X) __builtin_expect((X),1) 00094 # define unlikely(X) __builtin_expect((X),0) 00095 #else 00096 # define likely(X) !!(X) 00097 # define unlikely(X) !!(X) 00098 #endif 00099 00100 /* 00101 * This macro is used to "hide" some ugliness in casting an int 00102 * value to a ptr value under the MSVC 64-bit compiler. Casting 00103 * non 64-bit values to ptr types results in a "hard" error with 00104 * the MSVC 64-bit compiler which this attempts to avoid. 00105 * 00106 * A simple compiler pragma or casting sequence could not be found 00107 * to correct this in all situations, so this macro was introduced. 00108 * 00109 * It could be argued that the intptr_t type could be used in this 00110 * case, but that type is not available on all compilers, or 00111 * requires the #include of specific headers which differs between 00112 * platforms. 00113 */ 00114 #define SQLITE_INT_TO_PTR(X) ((void*)&((char*)0)[X]) 00115 #define SQLITE_PTR_TO_INT(X) ((int)(((char*)X)-(char*)0)) 00116 00117 /* 00118 ** These #defines should enable >2GB file support on Posix if the 00119 ** underlying operating system supports it. If the OS lacks 00120 ** large file support, or if the OS is windows, these should be no-ops. 00121 ** 00122 ** Ticket #2739: The _LARGEFILE_SOURCE macro must appear before any 00123 ** system #includes. Hence, this block of code must be the very first 00124 ** code in all source files. 00125 ** 00126 ** Large file support can be disabled using the -DSQLITE_DISABLE_LFS switch 00127 ** on the compiler command line. This is necessary if you are compiling 00128 ** on a recent machine (ex: RedHat 7.2) but you want your code to work 00129 ** on an older machine (ex: RedHat 6.0). If you compile on RedHat 7.2 00130 ** without this option, LFS is enable. But LFS does not exist in the kernel 00131 ** in RedHat 6.0, so the code won't work. Hence, for maximum binary 00132 ** portability you should omit LFS. 00133 ** 00134 ** Similar is true for MacOS. LFS is only supported on MacOS 9 and later. 00135 */ 00136 #ifndef SQLITE_DISABLE_LFS 00137 # define _LARGE_FILE 1 00138 # ifndef _FILE_OFFSET_BITS 00139 # define _FILE_OFFSET_BITS 64 00140 # endif 00141 # define _LARGEFILE_SOURCE 1 00142 #endif 00143 00144 00145 /* 00146 ** The SQLITE_THREADSAFE macro must be defined as either 0 or 1. 00147 ** Older versions of SQLite used an optional THREADSAFE macro. 00148 ** We support that for legacy 00149 */ 00150 #if !defined(SQLITE_THREADSAFE) 00151 #if defined(THREADSAFE) 00152 # define SQLITE_THREADSAFE THREADSAFE 00153 #else 00154 # define SQLITE_THREADSAFE 1 00155 #endif 00156 #endif 00157 00158 /* 00159 ** The SQLITE_DEFAULT_MEMSTATUS macro must be defined as either 0 or 1. 00160 ** It determines whether or not the features related to 00161 ** SQLITE_CONFIG_MEMSTATUS are availabe by default or not. This value can 00162 ** be overridden at runtime using the sqlite3_config() API. 00163 */ 00164 #if !defined(SQLITE_DEFAULT_MEMSTATUS) 00165 # define SQLITE_DEFAULT_MEMSTATUS 1 00166 #endif 00167 00168 /* 00169 ** Exactly one of the following macros must be defined in order to 00170 ** specify which memory allocation subsystem to use. 00171 ** 00172 ** SQLITE_SYSTEM_MALLOC // Use normal system malloc() 00173 ** SQLITE_MEMDEBUG // Debugging version of system malloc() 00174 ** SQLITE_MEMORY_SIZE // internal allocator #1 00175 ** SQLITE_MMAP_HEAP_SIZE // internal mmap() allocator 00176 ** SQLITE_POW2_MEMORY_SIZE // internal power-of-two allocator 00177 ** 00178 ** If none of the above are defined, then set SQLITE_SYSTEM_MALLOC as 00179 ** the default. 00180 */ 00181 #if defined(SQLITE_SYSTEM_MALLOC)+defined(SQLITE_MEMDEBUG)+\ 00182 defined(SQLITE_MEMORY_SIZE)+defined(SQLITE_MMAP_HEAP_SIZE)+\ 00183 defined(SQLITE_POW2_MEMORY_SIZE)>1 00184 # error "At most one of the following compile-time configuration options\ 00185 is allows: SQLITE_SYSTEM_MALLOC, SQLITE_MEMDEBUG, SQLITE_MEMORY_SIZE,\ 00186 SQLITE_MMAP_HEAP_SIZE, SQLITE_POW2_MEMORY_SIZE" 00187 #endif 00188 #if defined(SQLITE_SYSTEM_MALLOC)+defined(SQLITE_MEMDEBUG)+\ 00189 defined(SQLITE_MEMORY_SIZE)+defined(SQLITE_MMAP_HEAP_SIZE)+\ 00190 defined(SQLITE_POW2_MEMORY_SIZE)==0 00191 # define SQLITE_SYSTEM_MALLOC 1 00192 #endif 00193 00194 /* 00195 ** If SQLITE_MALLOC_SOFT_LIMIT is defined, then try to keep the 00196 ** sizes of memory allocations below this value where possible. 00197 */ 00198 #if defined(SQLITE_POW2_MEMORY_SIZE) && !defined(SQLITE_MALLOC_SOFT_LIMIT) 00199 # define SQLITE_MALLOC_SOFT_LIMIT 1024 00200 #endif 00201 00202 /* 00203 ** We need to define _XOPEN_SOURCE as follows in order to enable 00204 ** recursive mutexes on most unix systems. But Mac OS X is different. 00205 ** The _XOPEN_SOURCE define causes problems for Mac OS X we are told, 00206 ** so it is omitted there. See ticket #2673. 00207 ** 00208 ** Later we learn that _XOPEN_SOURCE is poorly or incorrectly 00209 ** implemented on some systems. So we avoid defining it at all 00210 ** if it is already defined or if it is unneeded because we are 00211 ** not doing a threadsafe build. Ticket #2681. 00212 ** 00213 ** See also ticket #2741. 00214 */ 00215 #if !defined(_XOPEN_SOURCE) && !defined(__DARWIN__) && !defined(__APPLE__) && SQLITE_THREADSAFE 00216 # define _XOPEN_SOURCE 500 /* Needed to enable pthread recursive mutexes */ 00217 #endif 00218 00219 /* 00220 ** The TCL headers are only needed when compiling the TCL bindings. 00221 */ 00222 #if defined(SQLITE_TCL) || defined(TCLSH) 00223 # include <tcl.h> 00224 #endif 00225 00226 /* 00227 ** Many people are failing to set -DNDEBUG=1 when compiling SQLite. 00228 ** Setting NDEBUG makes the code smaller and run faster. So the following 00229 ** lines are added to automatically set NDEBUG unless the -DSQLITE_DEBUG=1 00230 ** option is set. Thus NDEBUG becomes an opt-in rather than an opt-out 00231 ** feature. 00232 */ 00233 #if !defined(NDEBUG) && !defined(SQLITE_DEBUG) 00234 # define NDEBUG 1 00235 #endif 00236 00237 #include "sqlite3.h" 00238 #include "hash.h" 00239 #include "parse.h" 00240 #include <stdio.h> 00241 #include <stdlib.h> 00242 #include <string.h> 00243 #include <assert.h> 00244 #include <stddef.h> 00245 00246 /* 00247 ** If compiling for a processor that lacks floating point support, 00248 ** substitute integer for floating-point 00249 */ 00250 #ifdef SQLITE_OMIT_FLOATING_POINT 00251 # define double sqlite_int64 00252 # define LONGDOUBLE_TYPE sqlite_int64 00253 # ifndef SQLITE_BIG_DBL 00254 # define SQLITE_BIG_DBL (0x7fffffffffffffff) 00255 # endif 00256 # define SQLITE_OMIT_DATETIME_FUNCS 1 00257 # define SQLITE_OMIT_TRACE 1 00258 # undef SQLITE_MIXED_ENDIAN_64BIT_FLOAT 00259 #endif 00260 #ifndef SQLITE_BIG_DBL 00261 # define SQLITE_BIG_DBL (1e99) 00262 #endif 00263 00264 /* 00265 ** OMIT_TEMPDB is set to 1 if SQLITE_OMIT_TEMPDB is defined, or 0 00266 ** afterward. Having this macro allows us to cause the C compiler 00267 ** to omit code used by TEMP tables without messy #ifndef statements. 00268 */ 00269 #ifdef SQLITE_OMIT_TEMPDB 00270 #define OMIT_TEMPDB 1 00271 #else 00272 #define OMIT_TEMPDB 0 00273 #endif 00274 00275 /* 00276 ** If the following macro is set to 1, then NULL values are considered 00277 ** distinct when determining whether or not two entries are the same 00278 ** in a UNIQUE index. This is the way PostgreSQL, Oracle, DB2, MySQL, 00279 ** OCELOT, and Firebird all work. The SQL92 spec explicitly says this 00280 ** is the way things are suppose to work. 00281 ** 00282 ** If the following macro is set to 0, the NULLs are indistinct for 00283 ** a UNIQUE index. In this mode, you can only have a single NULL entry 00284 ** for a column declared UNIQUE. This is the way Informix and SQL Server 00285 ** work. 00286 */ 00287 #define NULL_DISTINCT_FOR_UNIQUE 1 00288 00289 /* 00290 ** The "file format" number is an integer that is incremented whenever 00291 ** the VDBE-level file format changes. The following macros define the 00292 ** the default file format for new databases and the maximum file format 00293 ** that the library can read. 00294 */ 00295 #define SQLITE_MAX_FILE_FORMAT 4 00296 #ifndef SQLITE_DEFAULT_FILE_FORMAT 00297 # define SQLITE_DEFAULT_FILE_FORMAT 1 00298 #endif 00299 00300 /* 00301 ** Provide a default value for SQLITE_TEMP_STORE in case it is not specified 00302 ** on the command-line 00303 */ 00304 #ifndef SQLITE_TEMP_STORE 00305 # define SQLITE_TEMP_STORE 1 00306 #endif 00307 00308 /* 00309 ** GCC does not define the offsetof() macro so we'll have to do it 00310 ** ourselves. 00311 */ 00312 #ifndef offsetof 00313 #define offsetof(STRUCTURE,FIELD) ((int)((char*)&((STRUCTURE*)0)->FIELD)) 00314 #endif 00315 00316 /* 00317 ** Check to see if this machine uses EBCDIC. (Yes, believe it or 00318 ** not, there are still machines out there that use EBCDIC.) 00319 */ 00320 #if 'A' == '\301' 00321 # define SQLITE_EBCDIC 1 00322 #else 00323 # define SQLITE_ASCII 1 00324 #endif 00325 00326 /* 00327 ** Integers of known sizes. These typedefs might change for architectures 00328 ** where the sizes very. Preprocessor macros are available so that the 00329 ** types can be conveniently redefined at compile-type. Like this: 00330 ** 00331 ** cc '-DUINTPTR_TYPE=long long int' ... 00332 */ 00333 #ifndef UINT32_TYPE 00334 # ifdef HAVE_UINT32_T 00335 # define UINT32_TYPE uint32_t 00336 # else 00337 # define UINT32_TYPE unsigned int 00338 # endif 00339 #endif 00340 #ifndef UINT16_TYPE 00341 # ifdef HAVE_UINT16_T 00342 # define UINT16_TYPE uint16_t 00343 # else 00344 # define UINT16_TYPE unsigned short int 00345 # endif 00346 #endif 00347 #ifndef INT16_TYPE 00348 # ifdef HAVE_INT16_T 00349 # define INT16_TYPE int16_t 00350 # else 00351 # define INT16_TYPE short int 00352 # endif 00353 #endif 00354 #ifndef UINT8_TYPE 00355 # ifdef HAVE_UINT8_T 00356 # define UINT8_TYPE uint8_t 00357 # else 00358 # define UINT8_TYPE unsigned char 00359 # endif 00360 #endif 00361 #ifndef INT8_TYPE 00362 # ifdef HAVE_INT8_T 00363 # define INT8_TYPE int8_t 00364 # else 00365 # define INT8_TYPE signed char 00366 # endif 00367 #endif 00368 #ifndef LONGDOUBLE_TYPE 00369 # define LONGDOUBLE_TYPE long double 00370 #endif 00371 typedef sqlite_int64 i64; /* 8-byte signed integer */ 00372 typedef sqlite_uint64 u64; /* 8-byte unsigned integer */ 00373 typedef UINT32_TYPE u32; /* 4-byte unsigned integer */ 00374 typedef UINT16_TYPE u16; /* 2-byte unsigned integer */ 00375 typedef INT16_TYPE i16; /* 2-byte signed integer */ 00376 typedef UINT8_TYPE u8; /* 1-byte unsigned integer */ 00377 typedef INT8_TYPE i8; /* 1-byte signed integer */ 00378 00379 /* 00380 ** Macros to determine whether the machine is big or little endian, 00381 ** evaluated at runtime. 00382 */ 00383 #ifdef SQLITE_AMALGAMATION 00384 const int sqlite3one; 00385 #else 00386 extern const int sqlite3one; 00387 #endif 00388 #if defined(i386) || defined(__i386__) || defined(_M_IX86)\ 00389 || defined(__x86_64) || defined(__x86_64__) 00390 # define SQLITE_BIGENDIAN 0 00391 # define SQLITE_LITTLEENDIAN 1 00392 # define SQLITE_UTF16NATIVE SQLITE_UTF16LE 00393 #else 00394 # define SQLITE_BIGENDIAN (*(char *)(&sqlite3one)==0) 00395 # define SQLITE_LITTLEENDIAN (*(char *)(&sqlite3one)==1) 00396 # define SQLITE_UTF16NATIVE (SQLITE_BIGENDIAN?SQLITE_UTF16BE:SQLITE_UTF16LE) 00397 #endif 00398 00399 /* 00400 ** Constants for the largest and smallest possible 64-bit signed integers. 00401 ** These macros are designed to work correctly on both 32-bit and 64-bit 00402 ** compilers. 00403 */ 00404 #define LARGEST_INT64 (0xffffffff|(((i64)0x7fffffff)<<32)) 00405 #define SMALLEST_INT64 (((i64)-1) - LARGEST_INT64) 00406 00407 /* 00408 ** An instance of the following structure is used to store the busy-handler 00409 ** callback for a given sqlite handle. 00410 ** 00411 ** The sqlite.busyHandler member of the sqlite struct contains the busy 00412 ** callback for the database handle. Each pager opened via the sqlite 00413 ** handle is passed a pointer to sqlite.busyHandler. The busy-handler 00414 ** callback is currently invoked only from within pager.c. 00415 */ 00416 typedef struct BusyHandler BusyHandler; 00417 struct BusyHandler { 00418 int (*xFunc)(void *,int); /* The busy callback */ 00419 void *pArg; /* First arg to busy callback */ 00420 int nBusy; /* Incremented with each busy call */ 00421 }; 00422 00423 /* 00424 ** Name of the master database table. The master database table 00425 ** is a special table that holds the names and attributes of all 00426 ** user tables and indices. 00427 */ 00428 #define MASTER_NAME "sqlite_master" 00429 #define TEMP_MASTER_NAME "sqlite_temp_master" 00430 00431 /* 00432 ** The root-page of the master database table. 00433 */ 00434 #define MASTER_ROOT 1 00435 00436 /* 00437 ** The name of the schema table. 00438 */ 00439 #define SCHEMA_TABLE(x) ((!OMIT_TEMPDB)&&(x==1)?TEMP_MASTER_NAME:MASTER_NAME) 00440 00441 /* 00442 ** A convenience macro that returns the number of elements in 00443 ** an array. 00444 */ 00445 #define ArraySize(X) (sizeof(X)/sizeof(X[0])) 00446 00447 /* 00448 ** The following value as a destructor means to use sqlite3DbFree(). 00449 ** This is an internal extension to SQLITE_STATIC and SQLITE_TRANSIENT. 00450 */ 00451 #define SQLITE_DYNAMIC ((sqlite3_destructor_type)sqlite3DbFree) 00452 00453 /* 00454 ** When SQLITE_OMIT_WSD is defined, it means that the target platform does 00455 ** not support Writable Static Data (WSD) such as global and static variables. 00456 ** All variables must either be on the stack or dynamically allocated from 00457 ** the heap. When WSD is unsupported, the variable declarations scattered 00458 ** throughout the SQLite code must become constants instead. The SQLITE_WSD 00459 ** macro is used for this purpose. And instead of referencing the variable 00460 ** directly, we use its constant as a key to lookup the run-time allocated 00461 ** buffer that holds real variable. The constant is also the initializer 00462 ** for the run-time allocated buffer. 00463 ** 00464 ** In the usual case where WSD is supported, the SQLITE_WSD and GLOBAL 00465 ** macros become no-ops and have zero performance impact. 00466 */ 00467 #ifdef SQLITE_OMIT_WSD 00468 #define SQLITE_WSD const 00469 #define GLOBAL(t,v) (*(t*)sqlite3_wsd_find((void*)&(v), sizeof(v))) 00470 #define sqlite3GlobalConfig GLOBAL(struct Sqlite3Config, sqlite3Config) 00471 int sqlite3_wsd_init(int N, int J); 00472 void *sqlite3_wsd_find(void *K, int L); 00473 #else 00474 #define SQLITE_WSD 00475 #define GLOBAL(t,v) v 00476 #define sqlite3GlobalConfig sqlite3Config 00477 #endif 00478 00479 /* 00480 ** Forward references to structures 00481 */ 00482 typedef struct AggInfo AggInfo; 00483 typedef struct AuthContext AuthContext; 00484 typedef struct Bitvec Bitvec; 00485 typedef struct CollSeq CollSeq; 00486 typedef struct Column Column; 00487 typedef struct Db Db; 00488 typedef struct Schema Schema; 00489 typedef struct Expr Expr; 00490 typedef struct ExprList ExprList; 00491 typedef struct FKey FKey; 00492 typedef struct FuncDef FuncDef; 00493 typedef struct FuncDefHash FuncDefHash; 00494 typedef struct IdList IdList; 00495 typedef struct Index Index; 00496 typedef struct KeyClass KeyClass; 00497 typedef struct KeyInfo KeyInfo; 00498 typedef struct Lookaside Lookaside; 00499 typedef struct LookasideSlot LookasideSlot; 00500 typedef struct Module Module; 00501 typedef struct NameContext NameContext; 00502 typedef struct Parse Parse; 00503 typedef struct Select Select; 00504 typedef struct SrcList SrcList; 00505 typedef struct StrAccum StrAccum; 00506 typedef struct Table Table; 00507 typedef struct TableLock TableLock; 00508 typedef struct Token Token; 00509 typedef struct TriggerStack TriggerStack; 00510 typedef struct TriggerStep TriggerStep; 00511 typedef struct Trigger Trigger; 00512 typedef struct UnpackedRecord UnpackedRecord; 00513 typedef struct Walker Walker; 00514 typedef struct WhereInfo WhereInfo; 00515 typedef struct WhereLevel WhereLevel; 00516 00517 /* 00518 ** Defer sourcing vdbe.h and btree.h until after the "u8" and 00519 ** "BusyHandler" typedefs. vdbe.h also requires a few of the opaque 00520 ** pointer types (i.e. FuncDef) defined above. 00521 */ 00522 #include "btree.h" 00523 #include "vdbe.h" 00524 #include "pager.h" 00525 #include "pcache.h" 00526 00527 #include "os.h" 00528 #include "mutex.h" 00529 00530 00531 /* 00532 ** Each database file to be accessed by the system is an instance 00533 ** of the following structure. There are normally two of these structures 00534 ** in the sqlite.aDb[] array. aDb[0] is the main database file and 00535 ** aDb[1] is the database file used to hold temporary tables. Additional 00536 ** databases may be attached. 00537 */ 00538 struct Db { 00539 char *zName; /* Name of this database */ 00540 Btree *pBt; /* The B*Tree structure for this database file */ 00541 u8 inTrans; /* 0: not writable. 1: Transaction. 2: Checkpoint */ 00542 u8 safety_level; /* How aggressive at synching data to disk */ 00543 void *pAux; /* Auxiliary data. Usually NULL */ 00544 void (*xFreeAux)(void*); /* Routine to free pAux */ 00545 Schema *pSchema; /* Pointer to database schema (possibly shared) */ 00546 }; 00547 00548 /* 00549 ** An instance of the following structure stores a database schema. 00550 ** 00551 ** If there are no virtual tables configured in this schema, the 00552 ** Schema.db variable is set to NULL. After the first virtual table 00553 ** has been added, it is set to point to the database connection 00554 ** used to create the connection. Once a virtual table has been 00555 ** added to the Schema structure and the Schema.db variable populated, 00556 ** only that database connection may use the Schema to prepare 00557 ** statements. 00558 */ 00559 struct Schema { 00560 int schema_cookie; /* Database schema version number for this file */ 00561 Hash tblHash; /* All tables indexed by name */ 00562 Hash idxHash; /* All (named) indices indexed by name */ 00563 Hash trigHash; /* All triggers indexed by name */ 00564 Hash aFKey; /* Foreign keys indexed by to-table */ 00565 Table *pSeqTab; /* The sqlite_sequence table used by AUTOINCREMENT */ 00566 u8 file_format; /* Schema format version for this file */ 00567 u8 enc; /* Text encoding used by this database */ 00568 u16 flags; /* Flags associated with this schema */ 00569 int cache_size; /* Number of pages to use in the cache */ 00570 #ifndef SQLITE_OMIT_VIRTUALTABLE 00571 sqlite3 *db; /* "Owner" connection. See comment above */ 00572 #endif 00573 }; 00574 00575 /* 00576 ** These macros can be used to test, set, or clear bits in the 00577 ** Db.flags field. 00578 */ 00579 #define DbHasProperty(D,I,P) (((D)->aDb[I].pSchema->flags&(P))==(P)) 00580 #define DbHasAnyProperty(D,I,P) (((D)->aDb[I].pSchema->flags&(P))!=0) 00581 #define DbSetProperty(D,I,P) (D)->aDb[I].pSchema->flags|=(P) 00582 #define DbClearProperty(D,I,P) (D)->aDb[I].pSchema->flags&=~(P) 00583 00584 /* 00585 ** Allowed values for the DB.flags field. 00586 ** 00587 ** The DB_SchemaLoaded flag is set after the database schema has been 00588 ** read into internal hash tables. 00589 ** 00590 ** DB_UnresetViews means that one or more views have column names that 00591 ** have been filled out. If the schema changes, these column names might 00592 ** changes and so the view will need to be reset. 00593 */ 00594 #define DB_SchemaLoaded 0x0001 /* The schema has been loaded */ 00595 #define DB_UnresetViews 0x0002 /* Some views have defined column names */ 00596 #define DB_Empty 0x0004 /* The file is empty (length 0 bytes) */ 00597 00598 /* 00599 ** The number of different kinds of things that can be limited 00600 ** using the sqlite3_limit() interface. 00601 */ 00602 #define SQLITE_N_LIMIT (SQLITE_LIMIT_VARIABLE_NUMBER+1) 00603 00604 /* 00605 ** Lookaside malloc is a set of fixed-size buffers that can be used 00606 ** to satisify small transient memory allocation requests for objects 00607 ** associated with a particular database connection. The use of 00608 ** lookaside malloc provides a significant performance enhancement 00609 ** (approx 10%) by avoiding numerous malloc/free requests while parsing 00610 ** SQL statements. 00611 ** 00612 ** The Lookaside structure holds configuration information about the 00613 ** lookaside malloc subsystem. Each available memory allocation in 00614 ** the lookaside subsystem is stored on a linked list of LookasideSlot 00615 ** objects. 00616 */ 00617 struct Lookaside { 00618 u16 sz; /* Size of each buffer in bytes */ 00619 u8 bEnabled; /* True if use lookaside. False to ignore it */ 00620 u8 bMalloced; /* True if pStart obtained from sqlite3_malloc() */ 00621 int nOut; /* Number of buffers currently checked out */ 00622 int mxOut; /* Highwater mark for nOut */ 00623 LookasideSlot *pFree; /* List of available buffers */ 00624 void *pStart; /* First byte of available memory space */ 00625 void *pEnd; /* First byte past end of available space */ 00626 }; 00627 struct LookasideSlot { 00628 LookasideSlot *pNext; /* Next buffer in the list of free buffers */ 00629 }; 00630 00631 /* 00632 ** A hash table for function definitions. 00633 ** 00634 ** Hash each FuncDef structure into one of the FuncDefHash.a[] slots. 00635 ** Collisions are on the FuncDef.pHash chain. 00636 */ 00637 struct FuncDefHash { 00638 FuncDef *a[23]; /* Hash table for functions */ 00639 }; 00640 00641 /* 00642 ** Each database is an instance of the following structure. 00643 ** 00644 ** The sqlite.lastRowid records the last insert rowid generated by an 00645 ** insert statement. Inserts on views do not affect its value. Each 00646 ** trigger has its own context, so that lastRowid can be updated inside 00647 ** triggers as usual. The previous value will be restored once the trigger 00648 ** exits. Upon entering a before or instead of trigger, lastRowid is no 00649 ** longer (since after version 2.8.12) reset to -1. 00650 ** 00651 ** The sqlite.nChange does not count changes within triggers and keeps no 00652 ** context. It is reset at start of sqlite3_exec. 00653 ** The sqlite.lsChange represents the number of changes made by the last 00654 ** insert, update, or delete statement. It remains constant throughout the 00655 ** length of a statement and is then updated by OP_SetCounts. It keeps a 00656 ** context stack just like lastRowid so that the count of changes 00657 ** within a trigger is not seen outside the trigger. Changes to views do not 00658 ** affect the value of lsChange. 00659 ** The sqlite.csChange keeps track of the number of current changes (since 00660 ** the last statement) and is used to update sqlite_lsChange. 00661 ** 00662 ** The member variables sqlite.errCode, sqlite.zErrMsg and sqlite.zErrMsg16 00663 ** store the most recent error code and, if applicable, string. The 00664 ** internal function sqlite3Error() is used to set these variables 00665 ** consistently. 00666 */ 00667 struct sqlite3 { 00668 sqlite3_vfs *pVfs; /* OS Interface */ 00669 int nDb; /* Number of backends currently in use */ 00670 Db *aDb; /* All backends */ 00671 int flags; /* Miscellanous flags. See below */ 00672 int openFlags; /* Flags passed to sqlite3_vfs.xOpen() */ 00673 int errCode; /* Most recent error code (SQLITE_*) */ 00674 int errMask; /* & result codes with this before returning */ 00675 u8 autoCommit; /* The auto-commit flag. */ 00676 u8 temp_store; /* 1: file 2: memory 0: default */ 00677 u8 mallocFailed; /* True if we have seen a malloc failure */ 00678 u8 dfltLockMode; /* Default locking-mode for attached dbs */ 00679 u8 dfltJournalMode; /* Default journal mode for attached dbs */ 00680 signed char nextAutovac; /* Autovac setting after VACUUM if >=0 */ 00681 int nextPagesize; /* Pagesize after VACUUM if >0 */ 00682 int nTable; /* Number of tables in the database */ 00683 CollSeq *pDfltColl; /* The default collating sequence (BINARY) */ 00684 i64 lastRowid; /* ROWID of most recent insert (see above) */ 00685 i64 priorNewRowid; /* Last randomly generated ROWID */ 00686 int magic; /* Magic number for detect library misuse */ 00687 int nChange; /* Value returned by sqlite3_changes() */ 00688 int nTotalChange; /* Value returned by sqlite3_total_changes() */ 00689 sqlite3_mutex *mutex; /* Connection mutex */ 00690 int aLimit[SQLITE_N_LIMIT]; /* Limits */ 00691 struct sqlite3InitInfo { /* Information used during initialization */ 00692 int iDb; /* When back is being initialized */ 00693 int newTnum; /* Rootpage of table being initialized */ 00694 u8 busy; /* TRUE if currently initializing */ 00695 } init; 00696 int nExtension; /* Number of loaded extensions */ 00697 void **aExtension; /* Array of shared libraray handles */ 00698 struct Vdbe *pVdbe; /* List of active virtual machines */ 00699 int activeVdbeCnt; /* Number of vdbes currently executing */ 00700 int writeVdbeCnt; /* Number of active VDBEs that are writing */ 00701 void (*xTrace)(void*,const char*); /* Trace function */ 00702 void *pTraceArg; /* Argument to the trace function */ 00703 void (*xProfile)(void*,const char*,u64); /* Profiling function */ 00704 void *pProfileArg; /* Argument to profile function */ 00705 void *pCommitArg; /* Argument to xCommitCallback() */ 00706 int (*xCommitCallback)(void*); /* Invoked at every commit. */ 00707 void *pRollbackArg; /* Argument to xRollbackCallback() */ 00708 void (*xRollbackCallback)(void*); /* Invoked at every commit. */ 00709 void *pUpdateArg; 00710 void (*xUpdateCallback)(void*,int, const char*,const char*,sqlite_int64); 00711 void(*xCollNeeded)(void*,sqlite3*,int eTextRep,const char*); 00712 void(*xCollNeeded16)(void*,sqlite3*,int eTextRep,const void*); 00713 void *pCollNeededArg; 00714 sqlite3_value *pErr; /* Most recent error message */ 00715 char *zErrMsg; /* Most recent error message (UTF-8 encoded) */ 00716 char *zErrMsg16; /* Most recent error message (UTF-16 encoded) */ 00717 union { 00718 volatile int isInterrupted; /* True if sqlite3_interrupt has been called */ 00719 double notUsed1; /* Spacer */ 00720 } u1; 00721 Lookaside lookaside; /* Lookaside malloc configuration */ 00722 #ifndef SQLITE_OMIT_AUTHORIZATION 00723 int (*xAuth)(void*,int,const char*,const char*,const char*,const char*); 00724 /* Access authorization function */ 00725 void *pAuthArg; /* 1st argument to the access auth function */ 00726 #endif 00727 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK 00728 int (*xProgress)(void *); /* The progress callback */ 00729 void *pProgressArg; /* Argument to the progress callback */ 00730 int nProgressOps; /* Number of opcodes for progress callback */ 00731 #endif 00732 #ifndef SQLITE_OMIT_VIRTUALTABLE 00733 Hash aModule; /* populated by sqlite3_create_module() */ 00734 Table *pVTab; /* vtab with active Connect/Create method */ 00735 sqlite3_vtab **aVTrans; /* Virtual tables with open transactions */ 00736 int nVTrans; /* Allocated size of aVTrans */ 00737 #endif 00738 FuncDefHash aFunc; /* Hash table of connection functions */ 00739 Hash aCollSeq; /* All collating sequences */ 00740 BusyHandler busyHandler; /* Busy callback */ 00741 int busyTimeout; /* Busy handler timeout, in msec */ 00742 Db aDbStatic[2]; /* Static space for the 2 default backends */ 00743 #ifdef SQLITE_SSE 00744 sqlite3_stmt *pFetch; /* Used by SSE to fetch stored statements */ 00745 #endif 00746 }; 00747 00748 /* 00749 ** A macro to discover the encoding of a database. 00750 */ 00751 #define ENC(db) ((db)->aDb[0].pSchema->enc) 00752 00753 /* 00754 ** Possible values for the sqlite.flags and or Db.flags fields. 00755 ** 00756 ** On sqlite.flags, the SQLITE_InTrans value means that we have 00757 ** executed a BEGIN. On Db.flags, SQLITE_InTrans means a statement 00758 ** transaction is active on that particular database file. 00759 */ 00760 #define SQLITE_VdbeTrace 0x00000001 /* True to trace VDBE execution */ 00761 #define SQLITE_InTrans 0x00000008 /* True if in a transaction */ 00762 #define SQLITE_InternChanges 0x00000010 /* Uncommitted Hash table changes */ 00763 #define SQLITE_FullColNames 0x00000020 /* Show full column names on SELECT */ 00764 #define SQLITE_ShortColNames 0x00000040 /* Show short columns names */ 00765 #define SQLITE_CountRows 0x00000080 /* Count rows changed by INSERT, */ 00766 /* DELETE, or UPDATE and return */ 00767 /* the count using a callback. */ 00768 #define SQLITE_NullCallback 0x00000100 /* Invoke the callback once if the */ 00769 /* result set is empty */ 00770 #define SQLITE_SqlTrace 0x00000200 /* Debug print SQL as it executes */ 00771 #define SQLITE_VdbeListing 0x00000400 /* Debug listings of VDBE programs */ 00772 #define SQLITE_WriteSchema 0x00000800 /* OK to update SQLITE_MASTER */ 00773 #define SQLITE_NoReadlock 0x00001000 /* Readlocks are omitted when 00774 ** accessing read-only databases */ 00775 #define SQLITE_IgnoreChecks 0x00002000 /* Do not enforce check constraints */ 00776 #define SQLITE_ReadUncommitted 0x00004000 /* For shared-cache mode */ 00777 #define SQLITE_LegacyFileFmt 0x00008000 /* Create new databases in format 1 */ 00778 #define SQLITE_FullFSync 0x00010000 /* Use full fsync on the backend */ 00779 #define SQLITE_LoadExtension 0x00020000 /* Enable load_extension */ 00780 00781 #define SQLITE_RecoveryMode 0x00040000 /* Ignore schema errors */ 00782 #define SQLITE_SharedCache 0x00080000 /* Cache sharing is enabled */ 00783 #define SQLITE_Vtab 0x00100000 /* There exists a virtual table */ 00784 00785 /* 00786 ** Possible values for the sqlite.magic field. 00787 ** The numbers are obtained at random and have no special meaning, other 00788 ** than being distinct from one another. 00789 */ 00790 #define SQLITE_MAGIC_OPEN 0xa029a697 /* Database is open */ 00791 #define SQLITE_MAGIC_CLOSED 0x9f3c2d33 /* Database is closed */ 00792 #define SQLITE_MAGIC_SICK 0x4b771290 /* Error and awaiting close */ 00793 #define SQLITE_MAGIC_BUSY 0xf03b7906 /* Database currently in use */ 00794 #define SQLITE_MAGIC_ERROR 0xb5357930 /* An SQLITE_MISUSE error occurred */ 00795 00796 /* 00797 ** Each SQL function is defined by an instance of the following 00798 ** structure. A pointer to this structure is stored in the sqlite.aFunc 00799 ** hash table. When multiple functions have the same name, the hash table 00800 ** points to a linked list of these structures. 00801 */ 00802 struct FuncDef { 00803 i16 nArg; /* Number of arguments. -1 means unlimited */ 00804 u8 iPrefEnc; /* Preferred text encoding (SQLITE_UTF8, 16LE, 16BE) */ 00805 u8 flags; /* Some combination of SQLITE_FUNC_* */ 00806 void *pUserData; /* User data parameter */ 00807 FuncDef *pNext; /* Next function with same name */ 00808 void (*xFunc)(sqlite3_context*,int,sqlite3_value**); /* Regular function */ 00809 void (*xStep)(sqlite3_context*,int,sqlite3_value**); /* Aggregate step */ 00810 void (*xFinalize)(sqlite3_context*); /* Aggregate finializer */ 00811 char *zName; /* SQL name of the function. */ 00812 FuncDef *pHash; /* Next with a different name but the same hash */ 00813 }; 00814 00815 /* 00816 ** Possible values for FuncDef.flags 00817 */ 00818 #define SQLITE_FUNC_LIKE 0x01 /* Candidate for the LIKE optimization */ 00819 #define SQLITE_FUNC_CASE 0x02 /* Case-sensitive LIKE-type function */ 00820 #define SQLITE_FUNC_EPHEM 0x04 /* Ephermeral. Delete with VDBE */ 00821 #define SQLITE_FUNC_NEEDCOLL 0x08 /* sqlite3GetFuncCollSeq() might be called */ 00822 00823 /* 00824 ** The following three macros, FUNCTION(), LIKEFUNC() and AGGREGATE() are 00825 ** used to create the initializers for the FuncDef structures. 00826 ** 00827 ** FUNCTION(zName, nArg, iArg, bNC, xFunc) 00828 ** Used to create a scalar function definition of a function zName 00829 ** implemented by C function xFunc that accepts nArg arguments. The 00830 ** value passed as iArg is cast to a (void*) and made available 00831 ** as the user-data (sqlite3_user_data()) for the function. If 00832 ** argument bNC is true, then the FuncDef.needCollate flag is set. 00833 ** 00834 ** AGGREGATE(zName, nArg, iArg, bNC, xStep, xFinal) 00835 ** Used to create an aggregate function definition implemented by 00836 ** the C functions xStep and xFinal. The first four parameters 00837 ** are interpreted in the same way as the first 4 parameters to 00838 ** FUNCTION(). 00839 ** 00840 ** LIKEFUNC(zName, nArg, pArg, flags) 00841 ** Used to create a scalar function definition of a function zName 00842 ** that accepts nArg arguments and is implemented by a call to C 00843 ** function likeFunc. Argument pArg is cast to a (void *) and made 00844 ** available as the function user-data (sqlite3_user_data()). The 00845 ** FuncDef.flags variable is set to the value passed as the flags 00846 ** parameter. 00847 */ 00848 #define FUNCTION(zName, nArg, iArg, bNC, xFunc) \ 00849 {nArg, SQLITE_UTF8, bNC*8, SQLITE_INT_TO_PTR(iArg), 0, xFunc, 0, 0, #zName} 00850 #define STR_FUNCTION(zName, nArg, pArg, bNC, xFunc) \ 00851 {nArg, SQLITE_UTF8, bNC*8, pArg, 0, xFunc, 0, 0, #zName} 00852 #define LIKEFUNC(zName, nArg, arg, flags) \ 00853 {nArg, SQLITE_UTF8, flags, (void *)arg, 0, likeFunc, 0, 0, #zName} 00854 #define AGGREGATE(zName, nArg, arg, nc, xStep, xFinal) \ 00855 {nArg, SQLITE_UTF8, nc*8, SQLITE_INT_TO_PTR(arg), 0, 0, xStep,xFinal, #zName} 00856 00857 00858 /* 00859 ** Each SQLite module (virtual table definition) is defined by an 00860 ** instance of the following structure, stored in the sqlite3.aModule 00861 ** hash table. 00862 */ 00863 struct Module { 00864 const sqlite3_module *pModule; /* Callback pointers */ 00865 const char *zName; /* Name passed to create_module() */ 00866 void *pAux; /* pAux passed to create_module() */ 00867 void (*xDestroy)(void *); /* Module destructor function */ 00868 }; 00869 00870 /* 00871 ** information about each column of an SQL table is held in an instance 00872 ** of this structure. 00873 */ 00874 struct Column { 00875 char *zName; /* Name of this column */ 00876 Expr *pDflt; /* Default value of this column */ 00877 char *zType; /* Data type for this column */ 00878 char *zColl; /* Collating sequence. If NULL, use the default */ 00879 u8 notNull; /* True if there is a NOT NULL constraint */ 00880 u8 isPrimKey; /* True if this column is part of the PRIMARY KEY */ 00881 char affinity; /* One of the SQLITE_AFF_... values */ 00882 #ifndef SQLITE_OMIT_VIRTUALTABLE 00883 u8 isHidden; /* True if this column is 'hidden' */ 00884 #endif 00885 }; 00886 00887 /* 00888 ** A "Collating Sequence" is defined by an instance of the following 00889 ** structure. Conceptually, a collating sequence consists of a name and 00890 ** a comparison routine that defines the order of that sequence. 00891 ** 00892 ** There may two seperate implementations of the collation function, one 00893 ** that processes text in UTF-8 encoding (CollSeq.xCmp) and another that 00894 ** processes text encoded in UTF-16 (CollSeq.xCmp16), using the machine 00895 ** native byte order. When a collation sequence is invoked, SQLite selects 00896 ** the version that will require the least expensive encoding 00897 ** translations, if any. 00898 ** 00899 ** The CollSeq.pUser member variable is an extra parameter that passed in 00900 ** as the first argument to the UTF-8 comparison function, xCmp. 00901 ** CollSeq.pUser16 is the equivalent for the UTF-16 comparison function, 00902 ** xCmp16. 00903 ** 00904 ** If both CollSeq.xCmp and CollSeq.xCmp16 are NULL, it means that the 00905 ** collating sequence is undefined. Indices built on an undefined 00906 ** collating sequence may not be read or written. 00907 */ 00908 struct CollSeq { 00909 char *zName; /* Name of the collating sequence, UTF-8 encoded */ 00910 u8 enc; /* Text encoding handled by xCmp() */ 00911 u8 type; /* One of the SQLITE_COLL_... values below */ 00912 void *pUser; /* First argument to xCmp() */ 00913 int (*xCmp)(void*,int, const void*, int, const void*); 00914 void (*xDel)(void*); /* Destructor for pUser */ 00915 }; 00916 00917 /* 00918 ** Allowed values of CollSeq.type: 00919 */ 00920 #define SQLITE_COLL_BINARY 1 /* The default memcmp() collating sequence */ 00921 #define SQLITE_COLL_NOCASE 2 /* The built-in NOCASE collating sequence */ 00922 #define SQLITE_COLL_REVERSE 3 /* The built-in REVERSE collating sequence */ 00923 #define SQLITE_COLL_USER 0 /* Any other user-defined collating sequence */ 00924 00925 /* 00926 ** A sort order can be either ASC or DESC. 00927 */ 00928 #define SQLITE_SO_ASC 0 /* Sort in ascending order */ 00929 #define SQLITE_SO_DESC 1 /* Sort in ascending order */ 00930 00931 /* 00932 ** Column affinity types. 00933 ** 00934 ** These used to have mnemonic name like 'i' for SQLITE_AFF_INTEGER and 00935 ** 't' for SQLITE_AFF_TEXT. But we can save a little space and improve 00936 ** the speed a little by numbering the values consecutively. 00937 ** 00938 ** But rather than start with 0 or 1, we begin with 'a'. That way, 00939 ** when multiple affinity types are concatenated into a string and 00940 ** used as the P4 operand, they will be more readable. 00941 ** 00942 ** Note also that the numeric types are grouped together so that testing 00943 ** for a numeric type is a single comparison. 00944 */ 00945 #define SQLITE_AFF_TEXT 'a' 00946 #define SQLITE_AFF_NONE 'b' 00947 #define SQLITE_AFF_NUMERIC 'c' 00948 #define SQLITE_AFF_INTEGER 'd' 00949 #define SQLITE_AFF_REAL 'e' 00950 00951 #define sqlite3IsNumericAffinity(X) ((X)>=SQLITE_AFF_NUMERIC) 00952 00953 /* 00954 ** The SQLITE_AFF_MASK values masks off the significant bits of an 00955 ** affinity value. 00956 */ 00957 #define SQLITE_AFF_MASK 0x67 00958 00959 /* 00960 ** Additional bit values that can be ORed with an affinity without 00961 ** changing the affinity. 00962 */ 00963 #define SQLITE_JUMPIFNULL 0x08 /* jumps if either operand is NULL */ 00964 #define SQLITE_STOREP2 0x10 /* Store result in reg[P2] rather than jump */ 00965 00966 /* 00967 ** Each SQL table is represented in memory by an instance of the 00968 ** following structure. 00969 ** 00970 ** Table.zName is the name of the table. The case of the original 00971 ** CREATE TABLE statement is stored, but case is not significant for 00972 ** comparisons. 00973 ** 00974 ** Table.nCol is the number of columns in this table. Table.aCol is a 00975 ** pointer to an array of Column structures, one for each column. 00976 ** 00977 ** If the table has an INTEGER PRIMARY KEY, then Table.iPKey is the index of 00978 ** the column that is that key. Otherwise Table.iPKey is negative. Note 00979 ** that the datatype of the PRIMARY KEY must be INTEGER for this field to 00980 ** be set. An INTEGER PRIMARY KEY is used as the rowid for each row of 00981 ** the table. If a table has no INTEGER PRIMARY KEY, then a random rowid 00982 ** is generated for each row of the table. TF_HasPrimaryKey is set if 00983 ** the table has any PRIMARY KEY, INTEGER or otherwise. 00984 ** 00985 ** Table.tnum is the page number for the root BTree page of the table in the 00986 ** database file. If Table.iDb is the index of the database table backend 00987 ** in sqlite.aDb[]. 0 is for the main database and 1 is for the file that 00988 ** holds temporary tables and indices. If TF_Ephemeral is set 00989 ** then the table is stored in a file that is automatically deleted 00990 ** when the VDBE cursor to the table is closed. In this case Table.tnum 00991 ** refers VDBE cursor number that holds the table open, not to the root 00992 ** page number. Transient tables are used to hold the results of a 00993 ** sub-query that appears instead of a real table name in the FROM clause 00994 ** of a SELECT statement. 00995 */ 00996 struct Table { 00997 sqlite3 *db; /* Associated database connection. Might be NULL. */ 00998 char *zName; /* Name of the table or view */ 00999 int iPKey; /* If not negative, use aCol[iPKey] as the primary key */ 01000 int nCol; /* Number of columns in this table */ 01001 Column *aCol; /* Information about each column */ 01002 Index *pIndex; /* List of SQL indexes on this table. */ 01003 int tnum; /* Root BTree node for this table (see note above) */ 01004 Select *pSelect; /* NULL for tables. Points to definition if a view. */ 01005 u16 nRef; /* Number of pointers to this Table */ 01006 u8 tabFlags; /* Mask of TF_* values */ 01007 u8 keyConf; /* What to do in case of uniqueness conflict on iPKey */ 01008 Trigger *pTrigger; /* List of SQL triggers on this table */ 01009 FKey *pFKey; /* Linked list of all foreign keys in this table */ 01010 char *zColAff; /* String defining the affinity of each column */ 01011 #ifndef SQLITE_OMIT_CHECK 01012 Expr *pCheck; /* The AND of all CHECK constraints */ 01013 #endif 01014 #ifndef SQLITE_OMIT_ALTERTABLE 01015 int addColOffset; /* Offset in CREATE TABLE stmt to add a new column */ 01016 #endif 01017 #ifndef SQLITE_OMIT_VIRTUALTABLE 01018 Module *pMod; /* Pointer to the implementation of the module */ 01019 sqlite3_vtab *pVtab; /* Pointer to the module instance */ 01020 int nModuleArg; /* Number of arguments to the module */ 01021 char **azModuleArg; /* Text of all module args. [0] is module name */ 01022 #endif 01023 Schema *pSchema; /* Schema that contains this table */ 01024 Table *pNextZombie; /* Next on the Parse.pZombieTab list */ 01025 }; 01026 01027 /* 01028 ** Allowed values for Tabe.tabFlags. 01029 */ 01030 #define TF_Readonly 0x01 /* Read-only system table */ 01031 #define TF_Ephemeral 0x02 /* An emphermal table */ 01032 #define TF_HasPrimaryKey 0x04 /* Table has a primary key */ 01033 #define TF_Autoincrement 0x08 /* Integer primary key is autoincrement */ 01034 #define TF_Virtual 0x10 /* Is a virtual table */ 01035 #define TF_NeedMetadata 0x20 /* aCol[].zType and aCol[].pColl missing */ 01036 01037 01038 01039 /* 01040 ** Test to see whether or not a table is a virtual table. This is 01041 ** done as a macro so that it will be optimized out when virtual 01042 ** table support is omitted from the build. 01043 */ 01044 #ifndef SQLITE_OMIT_VIRTUALTABLE 01045 # define IsVirtual(X) (((X)->tabFlags & TF_Virtual)!=0) 01046 # define IsHiddenColumn(X) ((X)->isHidden) 01047 #else 01048 # define IsVirtual(X) 0 01049 # define IsHiddenColumn(X) 0 01050 #endif 01051 01052 /* 01053 ** Each foreign key constraint is an instance of the following structure. 01054 ** 01055 ** A foreign key is associated with two tables. The "from" table is 01056 ** the table that contains the REFERENCES clause that creates the foreign 01057 ** key. The "to" table is the table that is named in the REFERENCES clause. 01058 ** Consider this example: 01059 ** 01060 ** CREATE TABLE ex1( 01061 ** a INTEGER PRIMARY KEY, 01062 ** b INTEGER CONSTRAINT fk1 REFERENCES ex2(x) 01063 ** ); 01064 ** 01065 ** For foreign key "fk1", the from-table is "ex1" and the to-table is "ex2". 01066 ** 01067 ** Each REFERENCES clause generates an instance of the following structure 01068 ** which is attached to the from-table. The to-table need not exist when 01069 ** the from-table is created. The existance of the to-table is not checked 01070 ** until an attempt is made to insert data into the from-table. 01071 ** 01072 ** The sqlite.aFKey hash table stores pointers to this structure 01073 ** given the name of a to-table. For each to-table, all foreign keys 01074 ** associated with that table are on a linked list using the FKey.pNextTo 01075 ** field. 01076 */ 01077 struct FKey { 01078 Table *pFrom; /* The table that constains the REFERENCES clause */ 01079 FKey *pNextFrom; /* Next foreign key in pFrom */ 01080 char *zTo; /* Name of table that the key points to */ 01081 FKey *pNextTo; /* Next foreign key that points to zTo */ 01082 int nCol; /* Number of columns in this key */ 01083 struct sColMap { /* Mapping of columns in pFrom to columns in zTo */ 01084 int iFrom; /* Index of column in pFrom */ 01085 char *zCol; /* Name of column in zTo. If 0 use PRIMARY KEY */ 01086 } *aCol; /* One entry for each of nCol column s */ 01087 u8 isDeferred; /* True if constraint checking is deferred till COMMIT */ 01088 u8 updateConf; /* How to resolve conflicts that occur on UPDATE */ 01089 u8 deleteConf; /* How to resolve conflicts that occur on DELETE */ 01090 u8 insertConf; /* How to resolve conflicts that occur on INSERT */ 01091 }; 01092 01093 /* 01094 ** SQLite supports many different ways to resolve a constraint 01095 ** error. ROLLBACK processing means that a constraint violation 01096 ** causes the operation in process to fail and for the current transaction 01097 ** to be rolled back. ABORT processing means the operation in process 01098 ** fails and any prior changes from that one operation are backed out, 01099 ** but the transaction is not rolled back. FAIL processing means that 01100 ** the operation in progress stops and returns an error code. But prior 01101 ** changes due to the same operation are not backed out and no rollback 01102 ** occurs. IGNORE means that the particular row that caused the constraint 01103 ** error is not inserted or updated. Processing continues and no error 01104 ** is returned. REPLACE means that preexisting database rows that caused 01105 ** a UNIQUE constraint violation are removed so that the new insert or 01106 ** update can proceed. Processing continues and no error is reported. 01107 ** 01108 ** RESTRICT, SETNULL, and CASCADE actions apply only to foreign keys. 01109 ** RESTRICT is the same as ABORT for IMMEDIATE foreign keys and the 01110 ** same as ROLLBACK for DEFERRED keys. SETNULL means that the foreign 01111 ** key is set to NULL. CASCADE means that a DELETE or UPDATE of the 01112 ** referenced table row is propagated into the row that holds the 01113 ** foreign key. 01114 ** 01115 ** The following symbolic values are used to record which type 01116 ** of action to take. 01117 */ 01118 #define OE_None 0 /* There is no constraint to check */ 01119 #define OE_Rollback 1 /* Fail the operation and rollback the transaction */ 01120 #define OE_Abort 2 /* Back out changes but do no rollback transaction */ 01121 #define OE_Fail 3 /* Stop the operation but leave all prior changes */ 01122 #define OE_Ignore 4 /* Ignore the error. Do not do the INSERT or UPDATE */ 01123 #define OE_Replace 5 /* Delete existing record, then do INSERT or UPDATE */ 01124 01125 #define OE_Restrict 6 /* OE_Abort for IMMEDIATE, OE_Rollback for DEFERRED */ 01126 #define OE_SetNull 7 /* Set the foreign key value to NULL */ 01127 #define OE_SetDflt 8 /* Set the foreign key value to its default */ 01128 #define OE_Cascade 9 /* Cascade the changes */ 01129 01130 #define OE_Default 99 /* Do whatever the default action is */ 01131 01132 01133 /* 01134 ** An instance of the following structure is passed as the first 01135 ** argument to sqlite3VdbeKeyCompare and is used to control the 01136 ** comparison of the two index keys. 01137 */ 01138 struct KeyInfo { 01139 sqlite3 *db; /* The database connection */ 01140 u8 enc; /* Text encoding - one of the TEXT_Utf* values */ 01141 u16 nField; /* Number of entries in aColl[] */ 01142 u8 *aSortOrder; /* If defined an aSortOrder[i] is true, sort DESC */ 01143 CollSeq *aColl[1]; /* Collating sequence for each term of the key */ 01144 }; 01145 01146 /* 01147 ** An instance of the following structure holds information about a 01148 ** single index record that has already been parsed out into individual 01149 ** values. 01150 ** 01151 ** A record is an object that contains one or more fields of data. 01152 ** Records are used to store the content of a table row and to store 01153 ** the key of an index. A blob encoding of a record is created by 01154 ** the OP_MakeRecord opcode of the VDBE and is disassemblied by the 01155 ** OP_Column opcode. 01156 ** 01157 ** This structure holds a record that has already been disassembled 01158 ** into its constitutent fields. 01159 */ 01160 struct UnpackedRecord { 01161 KeyInfo *pKeyInfo; /* Collation and sort-order information */ 01162 u16 nField; /* Number of entries in apMem[] */ 01163 u16 flags; /* Boolean settings. UNPACKED_... below */ 01164 Mem *aMem; /* Values */ 01165 }; 01166 01167 /* 01168 ** Allowed values of UnpackedRecord.flags 01169 */ 01170 #define UNPACKED_NEED_FREE 0x0001 /* Memory is from sqlite3Malloc() */ 01171 #define UNPACKED_NEED_DESTROY 0x0002 /* apMem[]s should all be destroyed */ 01172 #define UNPACKED_IGNORE_ROWID 0x0004 /* Ignore trailing rowid on key1 */ 01173 #define UNPACKED_INCRKEY 0x0008 /* Make this key an epsilon larger */ 01174 #define UNPACKED_PREFIX_MATCH 0x0010 /* A prefix match is considered OK */ 01175 01176 /* 01177 ** Each SQL index is represented in memory by an 01178 ** instance of the following structure. 01179 ** 01180 ** The columns of the table that are to be indexed are described 01181 ** by the aiColumn[] field of this structure. For example, suppose 01182 ** we have the following table and index: 01183 ** 01184 ** CREATE TABLE Ex1(c1 int, c2 int, c3 text); 01185 ** CREATE INDEX Ex2 ON Ex1(c3,c1); 01186 ** 01187 ** In the Table structure describing Ex1, nCol==3 because there are 01188 ** three columns in the table. In the Index structure describing 01189 ** Ex2, nColumn==2 since 2 of the 3 columns of Ex1 are indexed. 01190 ** The value of aiColumn is {2, 0}. aiColumn[0]==2 because the 01191 ** first column to be indexed (c3) has an index of 2 in Ex1.aCol[]. 01192 ** The second column to be indexed (c1) has an index of 0 in 01193 ** Ex1.aCol[], hence Ex2.aiColumn[1]==0. 01194 ** 01195 ** The Index.onError field determines whether or not the indexed columns 01196 ** must be unique and what to do if they are not. When Index.onError=OE_None, 01197 ** it means this is not a unique index. Otherwise it is a unique index 01198 ** and the value of Index.onError indicate the which conflict resolution 01199 ** algorithm to employ whenever an attempt is made to insert a non-unique 01200 ** element. 01201 */ 01202 struct Index { 01203 char *zName; /* Name of this index */ 01204 int nColumn; /* Number of columns in the table used by this index */ 01205 int *aiColumn; /* Which columns are used by this index. 1st is 0 */ 01206 unsigned *aiRowEst; /* Result of ANALYZE: Est. rows selected by each column */ 01207 Table *pTable; /* The SQL table being indexed */ 01208 int tnum; /* Page containing root of this index in database file */ 01209 u8 onError; /* OE_Abort, OE_Ignore, OE_Replace, or OE_None */ 01210 u8 autoIndex; /* True if is automatically created (ex: by UNIQUE) */ 01211 char *zColAff; /* String defining the affinity of each column */ 01212 Index *pNext; /* The next index associated with the same table */ 01213 Schema *pSchema; /* Schema containing this index */ 01214 u8 *aSortOrder; /* Array of size Index.nColumn. True==DESC, False==ASC */ 01215 char **azColl; /* Array of collation sequence names for index */ 01216 }; 01217 01218 /* 01219 ** Each token coming out of the lexer is an instance of 01220 ** this structure. Tokens are also used as part of an expression. 01221 ** 01222 ** Note if Token.z==0 then Token.dyn and Token.n are undefined and 01223 ** may contain random values. Do not make any assuptions about Token.dyn 01224 ** and Token.n when Token.z==0. 01225 */ 01226 struct Token { 01227 const unsigned char *z; /* Text of the token. Not NULL-terminated! */ 01228 unsigned dyn : 1; /* True for malloced memory, false for static */ 01229 unsigned n : 31; /* Number of characters in this token */ 01230 }; 01231 01232 /* 01233 ** An instance of this structure contains information needed to generate 01234 ** code for a SELECT that contains aggregate functions. 01235 ** 01236 ** If Expr.op==TK_AGG_COLUMN or TK_AGG_FUNCTION then Expr.pAggInfo is a 01237 ** pointer to this structure. The Expr.iColumn field is the index in 01238 ** AggInfo.aCol[] or AggInfo.aFunc[] of information needed to generate 01239 ** code for that node. 01240 ** 01241 ** AggInfo.pGroupBy and AggInfo.aFunc.pExpr point to fields within the 01242 ** original Select structure that describes the SELECT statement. These 01243 ** fields do not need to be freed when deallocating the AggInfo structure. 01244 */ 01245 struct AggInfo { 01246 u8 directMode; /* Direct rendering mode means take data directly 01247 ** from source tables rather than from accumulators */ 01248 u8 useSortingIdx; /* In direct mode, reference the sorting index rather 01249 ** than the source table */ 01250 int sortingIdx; /* Cursor number of the sorting index */ 01251 ExprList *pGroupBy; /* The group by clause */ 01252 int nSortingColumn; /* Number of columns in the sorting index */ 01253 struct AggInfo_col { /* For each column used in source tables */ 01254 Table *pTab; /* Source table */ 01255 int iTable; /* Cursor number of the source table */ 01256 int iColumn; /* Column number within the source table */ 01257 int iSorterColumn; /* Column number in the sorting index */ 01258 int iMem; /* Memory location that acts as accumulator */ 01259 Expr *pExpr; /* The original expression */ 01260 } *aCol; 01261 int nColumn; /* Number of used entries in aCol[] */ 01262 int nColumnAlloc; /* Number of slots allocated for aCol[] */ 01263 int nAccumulator; /* Number of columns that show through to the output. 01264 ** Additional columns are used only as parameters to 01265 ** aggregate functions */ 01266 struct AggInfo_func { /* For each aggregate function */ 01267 Expr *pExpr; /* Expression encoding the function */ 01268 FuncDef *pFunc; /* The aggregate function implementation */ 01269 int iMem; /* Memory location that acts as accumulator */ 01270 int iDistinct; /* Ephermeral table used to enforce DISTINCT */ 01271 } *aFunc; 01272 int nFunc; /* Number of entries in aFunc[] */ 01273 int nFuncAlloc; /* Number of slots allocated for aFunc[] */ 01274 }; 01275 01276 /* 01277 ** Each node of an expression in the parse tree is an instance 01278 ** of this structure. 01279 ** 01280 ** Expr.op is the opcode. The integer parser token codes are reused 01281 ** as opcodes here. For example, the parser defines TK_GE to be an integer 01282 ** code representing the ">=" operator. This same integer code is reused 01283 ** to represent the greater-than-or-equal-to operator in the expression 01284 ** tree. 01285 ** 01286 ** Expr.pRight and Expr.pLeft are subexpressions. Expr.pList is a list 01287 ** of argument if the expression is a function. 01288 ** 01289 ** Expr.token is the operator token for this node. For some expressions 01290 ** that have subexpressions, Expr.token can be the complete text that gave 01291 ** rise to the Expr. In the latter case, the token is marked as being 01292 ** a compound token. 01293 ** 01294 ** An expression of the form ID or ID.ID refers to a column in a table. 01295 ** For such expressions, Expr.op is set to TK_COLUMN and Expr.iTable is 01296 ** the integer cursor number of a VDBE cursor pointing to that table and 01297 ** Expr.iColumn is the column number for the specific column. If the 01298 ** expression is used as a result in an aggregate SELECT, then the 01299 ** value is also stored in the Expr.iAgg column in the aggregate so that 01300 ** it can be accessed after all aggregates are computed. 01301 ** 01302 ** If the expression is a function, the Expr.iTable is an integer code 01303 ** representing which function. If the expression is an unbound variable 01304 ** marker (a question mark character '?' in the original SQL) then the 01305 ** Expr.iTable holds the index number for that variable. 01306 ** 01307 ** If the expression is a subquery then Expr.iColumn holds an integer 01308 ** register number containing the result of the subquery. If the 01309 ** subquery gives a constant result, then iTable is -1. If the subquery 01310 ** gives a different answer at different times during statement processing 01311 ** then iTable is the address of a subroutine that computes the subquery. 01312 ** 01313 ** The Expr.pSelect field points to a SELECT statement. The SELECT might 01314 ** be the right operand of an IN operator. Or, if a scalar SELECT appears 01315 ** in an expression the opcode is TK_SELECT and Expr.pSelect is the only 01316 ** operand. 01317 ** 01318 ** If the Expr is of type OP_Column, and the table it is selecting from 01319 ** is a disk table or the "old.*" pseudo-table, then pTab points to the 01320 ** corresponding table definition. 01321 */ 01322 struct Expr { 01323 u8 op; /* Operation performed by this node */ 01324 char affinity; /* The affinity of the column or 0 if not a column */ 01325 u16 flags; /* Various flags. See below */ 01326 CollSeq *pColl; /* The collation type of the column or 0 */ 01327 Expr *pLeft, *pRight; /* Left and right subnodes */ 01328 ExprList *pList; /* A list of expressions used as function arguments 01329 ** or in "<expr> IN (<expr-list)" */ 01330 Token token; /* An operand token */ 01331 Token span; /* Complete text of the expression */ 01332 int iTable, iColumn; /* When op==TK_COLUMN, then this expr node means the 01333 ** iColumn-th field of the iTable-th table. */ 01334 AggInfo *pAggInfo; /* Used by TK_AGG_COLUMN and TK_AGG_FUNCTION */ 01335 int iAgg; /* Which entry in pAggInfo->aCol[] or ->aFunc[] */ 01336 int iRightJoinTable; /* If EP_FromJoin, the right table of the join */ 01337 Select *pSelect; /* When the expression is a sub-select. Also the 01338 ** right side of "<expr> IN (<select>)" */ 01339 Table *pTab; /* Table for TK_COLUMN expressions. */ 01340 #if SQLITE_MAX_EXPR_DEPTH>0 01341 int nHeight; /* Height of the tree headed by this node */ 01342 #endif 01343 }; 01344 01345 /* 01346 ** The following are the meanings of bits in the Expr.flags field. 01347 */ 01348 #define EP_FromJoin 0x0001 /* Originated in ON or USING clause of a join */ 01349 #define EP_Agg 0x0002 /* Contains one or more aggregate functions */ 01350 #define EP_Resolved 0x0004 /* IDs have been resolved to COLUMNs */ 01351 #define EP_Error 0x0008 /* Expression contains one or more errors */ 01352 #define EP_Distinct 0x0010 /* Aggregate function with DISTINCT keyword */ 01353 #define EP_VarSelect 0x0020 /* pSelect is correlated, not constant */ 01354 #define EP_Dequoted 0x0040 /* True if the string has been dequoted */ 01355 #define EP_InfixFunc 0x0080 /* True for an infix function: LIKE, GLOB, etc */ 01356 #define EP_ExpCollate 0x0100 /* Collating sequence specified explicitly */ 01357 #define EP_AnyAff 0x0200 /* Can take a cached column of any affinity */ 01358 #define EP_FixedDest 0x0400 /* Result needed in a specific register */ 01359 #define EP_IntValue 0x0800 /* Integer value contained in iTable */ 01360 /* 01361 ** These macros can be used to test, set, or clear bits in the 01362 ** Expr.flags field. 01363 */ 01364 #define ExprHasProperty(E,P) (((E)->flags&(P))==(P)) 01365 #define ExprHasAnyProperty(E,P) (((E)->flags&(P))!=0) 01366 #define ExprSetProperty(E,P) (E)->flags|=(P) 01367 #define ExprClearProperty(E,P) (E)->flags&=~(P) 01368 01369 /* 01370 ** A list of expressions. Each expression may optionally have a 01371 ** name. An expr/name combination can be used in several ways, such 01372 ** as the list of "expr AS ID" fields following a "SELECT" or in the 01373 ** list of "ID = expr" items in an UPDATE. A list of expressions can 01374 ** also be used as the argument to a function, in which case the a.zName 01375 ** field is not used. 01376 */ 01377 struct ExprList { 01378 int nExpr; /* Number of expressions on the list */ 01379 int nAlloc; /* Number of entries allocated below */ 01380 int iECursor; /* VDBE Cursor associated with this ExprList */ 01381 struct ExprList_item { 01382 Expr *pExpr; /* The list of expressions */ 01383 char *zName; /* Token associated with this expression */ 01384 u8 sortOrder; /* 1 for DESC or 0 for ASC */ 01385 u8 done; /* A flag to indicate when processing is finished */ 01386 u16 iCol; /* For ORDER BY, column number in result set */ 01387 u16 iAlias; /* Index into Parse.aAlias[] for zName */ 01388 } *a; /* One entry for each expression */ 01389 }; 01390 01391 /* 01392 ** An instance of this structure can hold a simple list of identifiers, 01393 ** such as the list "a,b,c" in the following statements: 01394 ** 01395 ** INSERT INTO t(a,b,c) VALUES ...; 01396 ** CREATE INDEX idx ON t(a,b,c); 01397 ** CREATE TRIGGER trig BEFORE UPDATE ON t(a,b,c) ...; 01398 ** 01399 ** The IdList.a.idx field is used when the IdList represents the list of 01400 ** column names after a table name in an INSERT statement. In the statement 01401 ** 01402 ** INSERT INTO t(a,b,c) ... 01403 ** 01404 ** If "a" is the k-th column of table "t", then IdList.a[0].idx==k. 01405 */ 01406 struct IdList { 01407 struct IdList_item { 01408 char *zName; /* Name of the identifier */ 01409 int idx; /* Index in some Table.aCol[] of a column named zName */ 01410 } *a; 01411 int nId; /* Number of identifiers on the list */ 01412 int nAlloc; /* Number of entries allocated for a[] below */ 01413 }; 01414 01415 /* 01416 ** The bitmask datatype defined below is used for various optimizations. 01417 ** 01418 ** Changing this from a 64-bit to a 32-bit type limits the number of 01419 ** tables in a join to 32 instead of 64. But it also reduces the size 01420 ** of the library by 738 bytes on ix86. 01421 */ 01422 typedef u64 Bitmask; 01423 01424 /* 01425 ** The following structure describes the FROM clause of a SELECT statement. 01426 ** Each table or subquery in the FROM clause is a separate element of 01427 ** the SrcList.a[] array. 01428 ** 01429 ** With the addition of multiple database support, the following structure 01430 ** can also be used to describe a particular table such as the table that 01431 ** is modified by an INSERT, DELETE, or UPDATE statement. In standard SQL, 01432 ** such a table must be a simple name: ID. But in SQLite, the table can 01433 ** now be identified by a database name, a dot, then the table name: ID.ID. 01434 ** 01435 ** The jointype starts out showing the join type between the current table 01436 ** and the next table on the list. The parser builds the list this way. 01437 ** But sqlite3SrcListShiftJoinType() later shifts the jointypes so that each 01438 ** jointype expresses the join between the table and the previous table. 01439 */ 01440 struct SrcList { 01441 i16 nSrc; /* Number of tables or subqueries in the FROM clause */ 01442 i16 nAlloc; /* Number of entries allocated in a[] below */ 01443 struct SrcList_item { 01444 char *zDatabase; /* Name of database holding this table */ 01445 char *zName; /* Name of the table */ 01446 char *zAlias; /* The "B" part of a "A AS B" phrase. zName is the "A" */ 01447 Table *pTab; /* An SQL table corresponding to zName */ 01448 Select *pSelect; /* A SELECT statement used in place of a table name */ 01449 u8 isPopulated; /* Temporary table associated with SELECT is populated */ 01450 u8 jointype; /* Type of join between this able and the previous */ 01451 int iCursor; /* The VDBE cursor number used to access this table */ 01452 Expr *pOn; /* The ON clause of a join */ 01453 IdList *pUsing; /* The USING clause of a join */ 01454 Bitmask colUsed; /* Bit N (1<<N) set if column N or pTab is used */ 01455 u8 notIndexed; /* True if there is a NOT INDEXED clause */ 01456 char *zIndex; /* Identifier from "INDEXED BY <zIndex>" clause */ 01457 Index *pIndex; /* Index structure corresponding to zIndex, if any */ 01458 } a[1]; /* One entry for each identifier on the list */ 01459 }; 01460 01461 /* 01462 ** Permitted values of the SrcList.a.jointype field 01463 */ 01464 #define JT_INNER 0x0001 /* Any kind of inner or cross join */ 01465 #define JT_CROSS 0x0002 /* Explicit use of the CROSS keyword */ 01466 #define JT_NATURAL 0x0004 /* True for a "natural" join */ 01467 #define JT_LEFT 0x0008 /* Left outer join */ 01468 #define JT_RIGHT 0x0010 /* Right outer join */ 01469 #define JT_OUTER 0x0020 /* The "OUTER" keyword is present */ 01470 #define JT_ERROR 0x0040 /* unknown or unsupported join type */ 01471 01472 /* 01473 ** For each nested loop in a WHERE clause implementation, the WhereInfo 01474 ** structure contains a single instance of this structure. This structure 01475 ** is intended to be private the the where.c module and should not be 01476 ** access or modified by other modules. 01477 ** 01478 ** The pIdxInfo and pBestIdx fields are used to help pick the best 01479 ** index on a virtual table. The pIdxInfo pointer contains indexing 01480 ** information for the i-th table in the FROM clause before reordering. 01481 ** All the pIdxInfo pointers are freed by whereInfoFree() in where.c. 01482 ** The pBestIdx pointer is a copy of pIdxInfo for the i-th table after 01483 ** FROM clause ordering. This is a little confusing so I will repeat 01484 ** it in different words. WhereInfo.a[i].pIdxInfo is index information 01485 ** for WhereInfo.pTabList.a[i]. WhereInfo.a[i].pBestInfo is the 01486 ** index information for the i-th loop of the join. pBestInfo is always 01487 ** either NULL or a copy of some pIdxInfo. So for cleanup it is 01488 ** sufficient to free all of the pIdxInfo pointers. 01489 ** 01490 */ 01491 struct WhereLevel { 01492 int iFrom; /* Which entry in the FROM clause */ 01493 int flags; /* Flags associated with this level */ 01494 int iMem; /* First memory cell used by this level */ 01495 int iLeftJoin; /* Memory cell used to implement LEFT OUTER JOIN */ 01496 Index *pIdx; /* Index used. NULL if no index */ 01497 int iTabCur; /* The VDBE cursor used to access the table */ 01498 int iIdxCur; /* The VDBE cursor used to acesss pIdx */ 01499 int brk; /* Jump here to break out of the loop */ 01500 int nxt; /* Jump here to start the next IN combination */ 01501 int cont; /* Jump here to continue with the next loop cycle */ 01502 int top; /* First instruction of interior of the loop */ 01503 int op, p1, p2, p5; /* Opcode used to terminate the loop */ 01504 int nEq; /* Number of == or IN constraints on this loop */ 01505 int nIn; /* Number of IN operators constraining this loop */ 01506 struct InLoop { 01507 int iCur; /* The VDBE cursor used by this IN operator */ 01508 int topAddr; /* Top of the IN loop */ 01509 } *aInLoop; /* Information about each nested IN operator */ 01510 sqlite3_index_info *pBestIdx; /* Index information for this level */ 01511 01512 /* The following field is really not part of the current level. But 01513 ** we need a place to cache index information for each table in the 01514 ** FROM clause and the WhereLevel structure is a convenient place. 01515 */ 01516 sqlite3_index_info *pIdxInfo; /* Index info for n-th source table */ 01517 }; 01518 01519 /* 01520 ** Flags appropriate for the wflags parameter of sqlite3WhereBegin(). 01521 */ 01522 #define WHERE_ORDERBY_NORMAL 0 /* No-op */ 01523 #define WHERE_ORDERBY_MIN 1 /* ORDER BY processing for min() func */ 01524 #define WHERE_ORDERBY_MAX 2 /* ORDER BY processing for max() func */ 01525 #define WHERE_ONEPASS_DESIRED 4 /* Want to do one-pass UPDATE/DELETE */ 01526 01527 /* 01528 ** The WHERE clause processing routine has two halves. The 01529 ** first part does the start of the WHERE loop and the second 01530 ** half does the tail of the WHERE loop. An instance of 01531 ** this structure is returned by the first half and passed 01532 ** into the second half to give some continuity. 01533 */ 01534 struct WhereInfo { 01535 Parse *pParse; /* Parsing and code generating context */ 01536 u8 okOnePass; /* Ok to use one-pass algorithm for UPDATE or DELETE */ 01537 SrcList *pTabList; /* List of tables in the join */ 01538 int iTop; /* The very beginning of the WHERE loop */ 01539 int iContinue; /* Jump here to continue with next record */ 01540 int iBreak; /* Jump here to break out of the loop */ 01541 int nLevel; /* Number of nested loop */ 01542 sqlite3_index_info **apInfo; /* Array of pointers to index info structures */ 01543 WhereLevel a[1]; /* Information about each nest loop in the WHERE */ 01544 }; 01545 01546 /* 01547 ** A NameContext defines a context in which to resolve table and column 01548 ** names. The context consists of a list of tables (the pSrcList) field and 01549 ** a list of named expression (pEList). The named expression list may 01550 ** be NULL. The pSrc corresponds to the FROM clause of a SELECT or 01551 ** to the table being operated on by INSERT, UPDATE, or DELETE. The 01552 ** pEList corresponds to the result set of a SELECT and is NULL for 01553 ** other statements. 01554 ** 01555 ** NameContexts can be nested. When resolving names, the inner-most 01556 ** context is searched first. If no match is found, the next outer 01557 ** context is checked. If there is still no match, the next context 01558 ** is checked. This process continues until either a match is found 01559 ** or all contexts are check. When a match is found, the nRef member of 01560 ** the context containing the match is incremented. 01561 ** 01562 ** Each subquery gets a new NameContext. The pNext field points to the 01563 ** NameContext in the parent query. Thus the process of scanning the 01564 ** NameContext list corresponds to searching through successively outer 01565 ** subqueries looking for a match. 01566 */ 01567 struct NameContext { 01568 Parse *pParse; /* The parser */ 01569 SrcList *pSrcList; /* One or more tables used to resolve names */ 01570 ExprList *pEList; /* Optional list of named expressions */ 01571 int nRef; /* Number of names resolved by this context */ 01572 int nErr; /* Number of errors encountered while resolving names */ 01573 u8 allowAgg; /* Aggregate functions allowed here */ 01574 u8 hasAgg; /* True if aggregates are seen */ 01575 u8 isCheck; /* True if resolving names in a CHECK constraint */ 01576 int nDepth; /* Depth of subquery recursion. 1 for no recursion */ 01577 AggInfo *pAggInfo; /* Information about aggregates at this level */ 01578 NameContext *pNext; /* Next outer name context. NULL for outermost */ 01579 }; 01580 01581 /* 01582 ** An instance of the following structure contains all information 01583 ** needed to generate code for a single SELECT statement. 01584 ** 01585 ** nLimit is set to -1 if there is no LIMIT clause. nOffset is set to 0. 01586 ** If there is a LIMIT clause, the parser sets nLimit to the value of the 01587 ** limit and nOffset to the value of the offset (or 0 if there is not 01588 ** offset). But later on, nLimit and nOffset become the memory locations 01589 ** in the VDBE that record the limit and offset counters. 01590 ** 01591 ** addrOpenEphm[] entries contain the address of OP_OpenEphemeral opcodes. 01592 ** These addresses must be stored so that we can go back and fill in 01593 ** the P4_KEYINFO and P2 parameters later. Neither the KeyInfo nor 01594 ** the number of columns in P2 can be computed at the same time 01595 ** as the OP_OpenEphm instruction is coded because not 01596 ** enough information about the compound query is known at that point. 01597 ** The KeyInfo for addrOpenTran[0] and [1] contains collating sequences 01598 ** for the result set. The KeyInfo for addrOpenTran[2] contains collating 01599 ** sequences for the ORDER BY clause. 01600 */ 01601 struct Select { 01602 ExprList *pEList; /* The fields of the result */ 01603 u8 op; /* One of: TK_UNION TK_ALL TK_INTERSECT TK_EXCEPT */ 01604 char affinity; /* MakeRecord with this affinity for SRT_Set */ 01605 u16 selFlags; /* Various SF_* values */ 01606 SrcList *pSrc; /* The FROM clause */ 01607 Expr *pWhere; /* The WHERE clause */ 01608 ExprList *pGroupBy; /* The GROUP BY clause */ 01609 Expr *pHaving; /* The HAVING clause */ 01610 ExprList *pOrderBy; /* The ORDER BY clause */ 01611 Select *pPrior; /* Prior select in a compound select statement */ 01612 Select *pNext; /* Next select to the left in a compound */ 01613 Select *pRightmost; /* Right-most select in a compound select statement */ 01614 Expr *pLimit; /* LIMIT expression. NULL means not used. */ 01615 Expr *pOffset; /* OFFSET expression. NULL means not used. */ 01616 int iLimit, iOffset; /* Memory registers holding LIMIT & OFFSET counters */ 01617 int addrOpenEphm[3]; /* OP_OpenEphem opcodes related to this select */ 01618 }; 01619 01620 /* 01621 ** Allowed values for Select.selFlags. The "SF" prefix stands for 01622 ** "Select Flag". 01623 */ 01624 #define SF_Distinct 0x0001 /* Output should be DISTINCT */ 01625 #define SF_Resolved 0x0002 /* Identifiers have been resolved */ 01626 #define SF_Aggregate 0x0004 /* Contains aggregate functions */ 01627 #define SF_UsesEphemeral 0x0008 /* Uses the OpenEphemeral opcode */ 01628 #define SF_Expanded 0x0010 /* sqlite3SelectExpand() called on this */ 01629 #define SF_HasTypeInfo 0x0020 /* FROM subqueries have Table metadata */ 01630 01631 01632 /* 01633 ** The results of a select can be distributed in several ways. The 01634 ** "SRT" prefix means "SELECT Result Type". 01635 */ 01636 #define SRT_Union 1 /* Store result as keys in an index */ 01637 #define SRT_Except 2 /* Remove result from a UNION index */ 01638 #define SRT_Exists 3 /* Store 1 if the result is not empty */ 01639 #define SRT_Discard 4 /* Do not save the results anywhere */ 01640 01641 /* The ORDER BY clause is ignored for all of the above */ 01642 #define IgnorableOrderby(X) ((X->eDest)<=SRT_Discard) 01643 01644 #define SRT_Output 5 /* Output each row of result */ 01645 #define SRT_Mem 6 /* Store result in a memory cell */ 01646 #define SRT_Set 7 /* Store results as keys in an index */ 01647 #define SRT_Table 8 /* Store result as data with an automatic rowid */ 01648 #define SRT_EphemTab 9 /* Create transient tab and store like SRT_Table */ 01649 #define SRT_Coroutine 10 /* Generate a single row of result */ 01650 01651 /* 01652 ** A structure used to customize the behaviour of sqlite3Select(). See 01653 ** comments above sqlite3Select() for details. 01654 */ 01655 typedef struct SelectDest SelectDest; 01656 struct SelectDest { 01657 u8 eDest; /* How to dispose of the results */ 01658 u8 affinity; /* Affinity used when eDest==SRT_Set */ 01659 int iParm; /* A parameter used by the eDest disposal method */ 01660 int iMem; /* Base register where results are written */ 01661 int nMem; /* Number of registers allocated */ 01662 }; 01663 01664 /* 01665 ** An SQL parser context. A copy of this structure is passed through 01666 ** the parser and down into all the parser action routine in order to 01667 ** carry around information that is global to the entire parse. 01668 ** 01669 ** The structure is divided into two parts. When the parser and code 01670 ** generate call themselves recursively, the first part of the structure 01671 ** is constant but the second part is reset at the beginning and end of 01672 ** each recursion. 01673 ** 01674 ** The nTableLock and aTableLock variables are only used if the shared-cache 01675 ** feature is enabled (if sqlite3Tsd()->useSharedData is true). They are 01676 ** used to store the set of table-locks required by the statement being 01677 ** compiled. Function sqlite3TableLock() is used to add entries to the 01678 ** list. 01679 */ 01680 struct Parse { 01681 sqlite3 *db; /* The main database structure */ 01682 int rc; /* Return code from execution */ 01683 char *zErrMsg; /* An error message */ 01684 Vdbe *pVdbe; /* An engine for executing database bytecode */ 01685 u8 colNamesSet; /* TRUE after OP_ColumnName has been issued to pVdbe */ 01686 u8 nameClash; /* A permanent table name clashes with temp table name */ 01687 u8 checkSchema; /* Causes schema cookie check after an error */ 01688 u8 nested; /* Number of nested calls to the parser/code generator */ 01689 u8 parseError; /* True after a parsing error. Ticket #1794 */ 01690 u8 nTempReg; /* Number of temporary registers in aTempReg[] */ 01691 u8 nTempInUse; /* Number of aTempReg[] currently checked out */ 01692 int aTempReg[8]; /* Holding area for temporary registers */ 01693 int nRangeReg; /* Size of the temporary register block */ 01694 int iRangeReg; /* First register in temporary register block */ 01695 int nErr; /* Number of errors seen */ 01696 int nTab; /* Number of previously allocated VDBE cursors */ 01697 int nMem; /* Number of memory cells used so far */ 01698 int nSet; /* Number of sets used so far */ 01699 int ckBase; /* Base register of data during check constraints */ 01700 int disableColCache; /* True to disable adding to column cache */ 01701 int nColCache; /* Number of entries in the column cache */ 01702 int iColCache; /* Next entry of the cache to replace */ 01703 struct yColCache { 01704 int iTable; /* Table cursor number */ 01705 int iColumn; /* Table column number */ 01706 char affChange; /* True if this register has had an affinity change */ 01707 int iReg; /* Register holding value of this column */ 01708 } aColCache[10]; /* One for each valid column cache entry */ 01709 u32 writeMask; /* Start a write transaction on these databases */ 01710 u32 cookieMask; /* Bitmask of schema verified databases */ 01711 int cookieGoto; /* Address of OP_Goto to cookie verifier subroutine */ 01712 int cookieValue[SQLITE_MAX_ATTACHED+2]; /* Values of cookies to verify */ 01713 #ifndef SQLITE_OMIT_SHARED_CACHE 01714 int nTableLock; /* Number of locks in aTableLock */ 01715 TableLock *aTableLock; /* Required table locks for shared-cache mode */ 01716 #endif 01717 int regRowid; /* Register holding rowid of CREATE TABLE entry */ 01718 int regRoot; /* Register holding root page number for new objects */ 01719 01720 /* Above is constant between recursions. Below is reset before and after 01721 ** each recursion */ 01722 01723 int nVar; /* Number of '?' variables seen in the SQL so far */ 01724 int nVarExpr; /* Number of used slots in apVarExpr[] */ 01725 int nVarExprAlloc; /* Number of allocated slots in apVarExpr[] */ 01726 Expr **apVarExpr; /* Pointers to :aaa and $aaaa wildcard expressions */ 01727 int nAlias; /* Number of aliased result set columns */ 01728 int *aAlias; /* Register used to hold aliased result */ 01729 u8 explain; /* True if the EXPLAIN flag is found on the query */ 01730 Token sErrToken; /* The token at which the error occurred */ 01731 Token sNameToken; /* Token with unqualified schema object name */ 01732 Token sLastToken; /* The last token parsed */ 01733 const char *zSql; /* All SQL text */ 01734 const char *zTail; /* All SQL text past the last semicolon parsed */ 01735 Table *pNewTable; /* A table being constructed by CREATE TABLE */ 01736 Trigger *pNewTrigger; /* Trigger under construct by a CREATE TRIGGER */ 01737 TriggerStack *trigStack; /* Trigger actions being coded */ 01738 const char *zAuthContext; /* The 6th parameter to db->xAuth callbacks */ 01739 #ifndef SQLITE_OMIT_VIRTUALTABLE 01740 Token sArg; /* Complete text of a module argument */ 01741 u8 declareVtab; /* True if inside sqlite3_declare_vtab() */ 01742 int nVtabLock; /* Number of virtual tables to lock */ 01743 Table **apVtabLock; /* Pointer to virtual tables needing locking */ 01744 #endif 01745 int nHeight; /* Expression tree height of current sub-select */ 01746 Table *pZombieTab; /* List of Table objects to delete after code gen */ 01747 }; 01748 01749 #ifdef SQLITE_OMIT_VIRTUALTABLE 01750 #define IN_DECLARE_VTAB 0 01751 #else 01752 #define IN_DECLARE_VTAB (pParse->declareVtab) 01753 #endif 01754 01755 /* 01756 ** An instance of the following structure can be declared on a stack and used 01757 ** to save the Parse.zAuthContext value so that it can be restored later. 01758 */ 01759 struct AuthContext { 01760 const char *zAuthContext; /* Put saved Parse.zAuthContext here */ 01761 Parse *pParse; /* The Parse structure */ 01762 }; 01763 01764 /* 01765 ** Bitfield flags for P2 value in OP_Insert and OP_Delete 01766 */ 01767 #define OPFLAG_NCHANGE 1 /* Set to update db->nChange */ 01768 #define OPFLAG_LASTROWID 2 /* Set to update db->lastRowid */ 01769 #define OPFLAG_ISUPDATE 4 /* This OP_Insert is an sql UPDATE */ 01770 #define OPFLAG_APPEND 8 /* This is likely to be an append */ 01771 01772 /* 01773 * Each trigger present in the database schema is stored as an instance of 01774 * struct Trigger. 01775 * 01776 * Pointers to instances of struct Trigger are stored in two ways. 01777 * 1. In the "trigHash" hash table (part of the sqlite3* that represents the 01778 * database). This allows Trigger structures to be retrieved by name. 01779 * 2. All triggers associated with a single table form a linked list, using the 01780 * pNext member of struct Trigger. A pointer to the first element of the 01781 * linked list is stored as the "pTrigger" member of the associated 01782 * struct Table. 01783 * 01784 * The "step_list" member points to the first element of a linked list 01785 * containing the SQL statements specified as the trigger program. 01786 */ 01787 struct Trigger { 01788 char *name; /* The name of the trigger */ 01789 char *table; /* The table or view to which the trigger applies */ 01790 u8 op; /* One of TK_DELETE, TK_UPDATE, TK_INSERT */ 01791 u8 tr_tm; /* One of TRIGGER_BEFORE, TRIGGER_AFTER */ 01792 Expr *pWhen; /* The WHEN clause of the expresion (may be NULL) */ 01793 IdList *pColumns; /* If this is an UPDATE OF <column-list> trigger, 01794 the <column-list> is stored here */ 01795 Token nameToken; /* Token containing zName. Use during parsing only */ 01796 Schema *pSchema; /* Schema containing the trigger */ 01797 Schema *pTabSchema; /* Schema containing the table */ 01798 TriggerStep *step_list; /* Link list of trigger program steps */ 01799 Trigger *pNext; /* Next trigger associated with the table */ 01800 }; 01801 01802 /* 01803 ** A trigger is either a BEFORE or an AFTER trigger. The following constants 01804 ** determine which. 01805 ** 01806 ** If there are multiple triggers, you might of some BEFORE and some AFTER. 01807 ** In that cases, the constants below can be ORed together. 01808 */ 01809 #define TRIGGER_BEFORE 1 01810 #define TRIGGER_AFTER 2 01811 01812 /* 01813 * An instance of struct TriggerStep is used to store a single SQL statement 01814 * that is a part of a trigger-program. 01815 * 01816 * Instances of struct TriggerStep are stored in a singly linked list (linked 01817 * using the "pNext" member) referenced by the "step_list" member of the 01818 * associated struct Trigger instance. The first element of the linked list is 01819 * the first step of the trigger-program. 01820 * 01821 * The "op" member indicates whether this is a "DELETE", "INSERT", "UPDATE" or 01822 * "SELECT" statement. The meanings of the other members is determined by the 01823 * value of "op" as follows: 01824 * 01825 * (op == TK_INSERT) 01826 * orconf -> stores the ON CONFLICT algorithm 01827 * pSelect -> If this is an INSERT INTO ... SELECT ... statement, then 01828 * this stores a pointer to the SELECT statement. Otherwise NULL. 01829 * target -> A token holding the name of the table to insert into. 01830 * pExprList -> If this is an INSERT INTO ... VALUES ... statement, then 01831 * this stores values to be inserted. Otherwise NULL. 01832 * pIdList -> If this is an INSERT INTO ... (<column-names>) VALUES ... 01833 * statement, then this stores the column-names to be 01834 * inserted into. 01835 * 01836 * (op == TK_DELETE) 01837 * target -> A token holding the name of the table to delete from. 01838 * pWhere -> The WHERE clause of the DELETE statement if one is specified. 01839 * Otherwise NULL. 01840 * 01841 * (op == TK_UPDATE) 01842 * target -> A token holding the name of the table to update rows of. 01843 * pWhere -> The WHERE clause of the UPDATE statement if one is specified. 01844 * Otherwise NULL. 01845 * pExprList -> A list of the columns to update and the expressions to update 01846 * them to. See sqlite3Update() documentation of "pChanges" 01847 * argument. 01848 * 01849 */ 01850 struct TriggerStep { 01851 int op; /* One of TK_DELETE, TK_UPDATE, TK_INSERT, TK_SELECT */ 01852 int orconf; /* OE_Rollback etc. */ 01853 Trigger *pTrig; /* The trigger that this step is a part of */ 01854 01855 Select *pSelect; /* Valid for SELECT and sometimes 01856 INSERT steps (when pExprList == 0) */ 01857 Token target; /* Valid for DELETE, UPDATE, INSERT steps */ 01858 Expr *pWhere; /* Valid for DELETE, UPDATE steps */ 01859 ExprList *pExprList; /* Valid for UPDATE statements and sometimes 01860 INSERT steps (when pSelect == 0) */ 01861 IdList *pIdList; /* Valid for INSERT statements only */ 01862 TriggerStep *pNext; /* Next in the link-list */ 01863 TriggerStep *pLast; /* Last element in link-list. Valid for 1st elem only */ 01864 }; 01865 01866 /* 01867 * An instance of struct TriggerStack stores information required during code 01868 * generation of a single trigger program. While the trigger program is being 01869 * coded, its associated TriggerStack instance is pointed to by the 01870 * "pTriggerStack" member of the Parse structure. 01871 * 01872 * The pTab member points to the table that triggers are being coded on. The 01873 * newIdx member contains the index of the vdbe cursor that points at the temp 01874 * table that stores the new.* references. If new.* references are not valid 01875 * for the trigger being coded (for example an ON DELETE trigger), then newIdx 01876 * is set to -1. The oldIdx member is analogous to newIdx, for old.* references. 01877 * 01878 * The ON CONFLICT policy to be used for the trigger program steps is stored 01879 * as the orconf member. If this is OE_Default, then the ON CONFLICT clause 01880 * specified for individual triggers steps is used. 01881 * 01882 * struct TriggerStack has a "pNext" member, to allow linked lists to be 01883 * constructed. When coding nested triggers (triggers fired by other triggers) 01884 * each nested trigger stores its parent trigger's TriggerStack as the "pNext" 01885 * pointer. Once the nested trigger has been coded, the pNext value is restored 01886 * to the pTriggerStack member of the Parse stucture and coding of the parent 01887 * trigger continues. 01888 * 01889 * Before a nested trigger is coded, the linked list pointed to by the 01890 * pTriggerStack is scanned to ensure that the trigger is not about to be coded 01891 * recursively. If this condition is detected, the nested trigger is not coded. 01892 */ 01893 struct TriggerStack { 01894 Table *pTab; /* Table that triggers are currently being coded on */ 01895 int newIdx; /* Index of vdbe cursor to "new" temp table */ 01896 int oldIdx; /* Index of vdbe cursor to "old" temp table */ 01897 u32 newColMask; 01898 u32 oldColMask; 01899 int orconf; /* Current orconf policy */ 01900 int ignoreJump; /* where to jump to for a RAISE(IGNORE) */ 01901 Trigger *pTrigger; /* The trigger currently being coded */ 01902 TriggerStack *pNext; /* Next trigger down on the trigger stack */ 01903 }; 01904 01905 /* 01906 ** The following structure contains information used by the sqliteFix... 01907 ** routines as they walk the parse tree to make database references 01908 ** explicit. 01909 */ 01910 typedef struct DbFixer DbFixer; 01911 struct DbFixer { 01912 Parse *pParse; /* The parsing context. Error messages written here */ 01913 const char *zDb; /* Make sure all objects are contained in this database */ 01914 const char *zType; /* Type of the container - used for error messages */ 01915 const Token *pName; /* Name of the container - used for error messages */ 01916 }; 01917 01918 /* 01919 ** An objected used to accumulate the text of a string where we 01920 ** do not necessarily know how big the string will be in the end. 01921 */ 01922 struct StrAccum { 01923 sqlite3 *db; /* Optional database for lookaside. Can be NULL */ 01924 char *zBase; /* A base allocation. Not from malloc. */ 01925 char *zText; /* The string collected so far */ 01926 int nChar; /* Length of the string so far */ 01927 int nAlloc; /* Amount of space allocated in zText */ 01928 int mxAlloc; /* Maximum allowed string length */ 01929 u8 mallocFailed; /* Becomes true if any memory allocation fails */ 01930 u8 useMalloc; /* True if zText is enlargable using realloc */ 01931 u8 tooBig; /* Becomes true if string size exceeds limits */ 01932 }; 01933 01934 /* 01935 ** A pointer to this structure is used to communicate information 01936 ** from sqlite3Init and OP_ParseSchema into the sqlite3InitCallback. 01937 */ 01938 typedef struct { 01939 sqlite3 *db; /* The database being initialized */ 01940 int iDb; /* 0 for main database. 1 for TEMP, 2.. for ATTACHed */ 01941 char **pzErrMsg; /* Error message stored here */ 01942 int rc; /* Result code stored here */ 01943 } InitData; 01944 01945 /* 01946 ** Structure containing global configuration data for the SQLite library. 01947 ** 01948 ** This structure also contains some state information. 01949 */ 01950 struct Sqlite3Config { 01951 int bMemstat; /* True to enable memory status */ 01952 int bCoreMutex; /* True to enable core mutexing */ 01953 int bFullMutex; /* True to enable full mutexing */ 01954 int mxStrlen; /* Maximum string length */ 01955 int szLookaside; /* Default lookaside buffer size */ 01956 int nLookaside; /* Default lookaside buffer count */ 01957 sqlite3_mem_methods m; /* Low-level memory allocation interface */ 01958 sqlite3_mutex_methods mutex; /* Low-level mutex interface */ 01959 void *pHeap; /* Heap storage space */ 01960 int nHeap; /* Size of pHeap[] */ 01961 int mnReq, mxReq; /* Min and max heap requests sizes */ 01962 void *pScratch; /* Scratch memory */ 01963 int szScratch; /* Size of each scratch buffer */ 01964 int nScratch; /* Number of scratch buffers */ 01965 void *pPage; /* Page cache memory */ 01966 int szPage; /* Size of each page in pPage[] */ 01967 int nPage; /* Number of pages in pPage[] */ 01968 int isInit; /* True after initialization has finished */ 01969 int inProgress; /* True while initialization in progress */ 01970 int isMallocInit; /* True after malloc is initialized */ 01971 sqlite3_mutex *pInitMutex; /* Mutex used by sqlite3_initialize() */ 01972 int nRefInitMutex; /* Number of users of pInitMutex */ 01973 int mxParserStack; /* maximum depth of the parser stack */ 01974 int sharedCacheEnabled; /* true if shared-cache mode enabled */ 01975 }; 01976 01977 /* 01978 ** Context pointer passed down through the tree-walk. 01979 */ 01980 struct Walker { 01981 int (*xExprCallback)(Walker*, Expr*); /* Callback for expressions */ 01982 int (*xSelectCallback)(Walker*,Select*); /* Callback for SELECTs */ 01983 Parse *pParse; /* Parser context. */ 01984 union { /* Extra data for callback */ 01985 NameContext *pNC; /* Naming context */ 01986 int i; /* Integer value */ 01987 } u; 01988 }; 01989 01990 /* Forward declarations */ 01991 int sqlite3WalkExpr(Walker*, Expr*); 01992 int sqlite3WalkExprList(Walker*, ExprList*); 01993 int sqlite3WalkSelect(Walker*, Select*); 01994 int sqlite3WalkSelectExpr(Walker*, Select*); 01995 int sqlite3WalkSelectFrom(Walker*, Select*); 01996 01997 /* 01998 ** Return code from the parse-tree walking primitives and their 01999 ** callbacks. 02000 */ 02001 #define WRC_Continue 0 02002 #define WRC_Prune 1 02003 #define WRC_Abort 2 02004 02005 /* 02006 ** Assuming zIn points to the first byte of a UTF-8 character, 02007 ** advance zIn to point to the first byte of the next UTF-8 character. 02008 */ 02009 #define SQLITE_SKIP_UTF8(zIn) { \ 02010 if( (*(zIn++))>=0xc0 ){ \ 02011 while( (*zIn & 0xc0)==0x80 ){ zIn++; } \ 02012 } \ 02013 } 02014 02015 /* 02016 ** The SQLITE_CORRUPT_BKPT macro can be either a constant (for production 02017 ** builds) or a function call (for debugging). If it is a function call, 02018 ** it allows the operator to set a breakpoint at the spot where database 02019 ** corruption is first detected. 02020 */ 02021 #ifdef SQLITE_DEBUG 02022 int sqlite3Corrupt(void); 02023 # define SQLITE_CORRUPT_BKPT sqlite3Corrupt() 02024 #else 02025 # define SQLITE_CORRUPT_BKPT SQLITE_CORRUPT 02026 #endif 02027 02028 /* 02029 ** Internal function prototypes 02030 */ 02031 int sqlite3StrICmp(const char *, const char *); 02032 int sqlite3StrNICmp(const char *, const char *, int); 02033 int sqlite3IsNumber(const char*, int*, u8); 02034 int sqlite3Strlen(sqlite3*, const char*); 02035 02036 int sqlite3MallocInit(void); 02037 void sqlite3MallocEnd(void); 02038 void *sqlite3Malloc(int); 02039 void *sqlite3MallocZero(int); 02040 void *sqlite3DbMallocZero(sqlite3*, int); 02041 void *sqlite3DbMallocRaw(sqlite3*, int); 02042 char *sqlite3DbStrDup(sqlite3*,const char*); 02043 char *sqlite3DbStrNDup(sqlite3*,const char*, int); 02044 void *sqlite3Realloc(void*, int); 02045 void *sqlite3DbReallocOrFree(sqlite3 *, void *, int); 02046 void *sqlite3DbRealloc(sqlite3 *, void *, int); 02047 void sqlite3DbFree(sqlite3*, void*); 02048 int sqlite3MallocSize(void*); 02049 int sqlite3DbMallocSize(sqlite3*, void*); 02050 void *sqlite3ScratchMalloc(int); 02051 void sqlite3ScratchFree(void*); 02052 void *sqlite3PageMalloc(int); 02053 void sqlite3PageFree(void*); 02054 void sqlite3MemSetDefault(void); 02055 const sqlite3_mem_methods *sqlite3MemGetMemsys3(void); 02056 const sqlite3_mem_methods *sqlite3MemGetMemsys5(void); 02057 void sqlite3BenignMallocHooks(void (*)(void), void (*)(void)); 02058 int sqlite3MemoryAlarm(void (*)(void*, sqlite3_int64, int), void*, sqlite3_int64); 02059 02060 #ifndef SQLITE_MUTEX_OMIT 02061 sqlite3_mutex_methods *sqlite3DefaultMutex(void); 02062 sqlite3_mutex *sqlite3MutexAlloc(int); 02063 int sqlite3MutexInit(void); 02064 int sqlite3MutexEnd(void); 02065 #endif 02066 02067 int sqlite3StatusValue(int); 02068 void sqlite3StatusAdd(int, int); 02069 void sqlite3StatusSet(int, int); 02070 02071 int sqlite3IsNaN(double); 02072 02073 void sqlite3VXPrintf(StrAccum*, int, const char*, va_list); 02074 char *sqlite3MPrintf(sqlite3*,const char*, ...); 02075 char *sqlite3VMPrintf(sqlite3*,const char*, va_list); 02076 char *sqlite3MAppendf(sqlite3*,char*,const char*,...); 02077 #if defined(SQLITE_TEST) || defined(SQLITE_DEBUG) 02078 void sqlite3DebugPrintf(const char*, ...); 02079 #endif 02080 #if defined(SQLITE_TEST) 02081 void *sqlite3TestTextToPtr(const char*); 02082 #endif 02083 void sqlite3SetString(char **, sqlite3*, const char*, ...); 02084 void sqlite3ErrorMsg(Parse*, const char*, ...); 02085 void sqlite3ErrorClear(Parse*); 02086 void sqlite3Dequote(char*); 02087 void sqlite3DequoteExpr(sqlite3*, Expr*); 02088 int sqlite3KeywordCode(const unsigned char*, int); 02089 int sqlite3RunParser(Parse*, const char*, char **); 02090 void sqlite3FinishCoding(Parse*); 02091 int sqlite3GetTempReg(Parse*); 02092 void sqlite3ReleaseTempReg(Parse*,int); 02093 int sqlite3GetTempRange(Parse*,int); 02094 void sqlite3ReleaseTempRange(Parse*,int,int); 02095 Expr *sqlite3Expr(sqlite3*, int, Expr*, Expr*, const Token*); 02096 Expr *sqlite3PExpr(Parse*, int, Expr*, Expr*, const Token*); 02097 Expr *sqlite3RegisterExpr(Parse*,Token*); 02098 Expr *sqlite3ExprAnd(sqlite3*,Expr*, Expr*); 02099 void sqlite3ExprSpan(Expr*,Token*,Token*); 02100 Expr *sqlite3ExprFunction(Parse*,ExprList*, Token*); 02101 void sqlite3ExprAssignVarNumber(Parse*, Expr*); 02102 void sqlite3ExprClear(sqlite3*, Expr*); 02103 void sqlite3ExprDelete(sqlite3*, Expr*); 02104 ExprList *sqlite3ExprListAppend(Parse*,ExprList*,Expr*,Token*); 02105 void sqlite3ExprListDelete(sqlite3*, ExprList*); 02106 int sqlite3Init(sqlite3*, char**); 02107 int sqlite3InitCallback(void*, int, char**, char**); 02108 void sqlite3Pragma(Parse*,Token*,Token*,Token*,int); 02109 void sqlite3ResetInternalSchema(sqlite3*, int); 02110 void sqlite3BeginParse(Parse*,int); 02111 void sqlite3CommitInternalChanges(sqlite3*); 02112 Table *sqlite3ResultSetOfSelect(Parse*,Select*); 02113 void sqlite3OpenMasterTable(Parse *, int); 02114 void sqlite3StartTable(Parse*,Token*,Token*,int,int,int,int); 02115 void sqlite3AddColumn(Parse*,Token*); 02116 void sqlite3AddNotNull(Parse*, int); 02117 void sqlite3AddPrimaryKey(Parse*, ExprList*, int, int, int); 02118 void sqlite3AddCheckConstraint(Parse*, Expr*); 02119 void sqlite3AddColumnType(Parse*,Token*); 02120 void sqlite3AddDefaultValue(Parse*,Expr*); 02121 void sqlite3AddCollateType(Parse*, Token*); 02122 void sqlite3EndTable(Parse*,Token*,Token*,Select*); 02123 02124 Bitvec *sqlite3BitvecCreate(u32); 02125 int sqlite3BitvecTest(Bitvec*, u32); 02126 int sqlite3BitvecSet(Bitvec*, u32); 02127 void sqlite3BitvecClear(Bitvec*, u32); 02128 void sqlite3BitvecDestroy(Bitvec*); 02129 int sqlite3BitvecBuiltinTest(int,int*); 02130 02131 void sqlite3CreateView(Parse*,Token*,Token*,Token*,Select*,int,int); 02132 02133 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) 02134 int sqlite3ViewGetColumnNames(Parse*,Table*); 02135 #else 02136 # define sqlite3ViewGetColumnNames(A,B) 0 02137 #endif 02138 02139 void sqlite3DropTable(Parse*, SrcList*, int, int); 02140 void sqlite3DeleteTable(Table*); 02141 void sqlite3Insert(Parse*, SrcList*, ExprList*, Select*, IdList*, int); 02142 void *sqlite3ArrayAllocate(sqlite3*,void*,int,int,int*,int*,int*); 02143 IdList *sqlite3IdListAppend(sqlite3*, IdList*, Token*); 02144 int sqlite3IdListIndex(IdList*,const char*); 02145 SrcList *sqlite3SrcListEnlarge(sqlite3*, SrcList*, int, int); 02146 SrcList *sqlite3SrcListAppend(sqlite3*, SrcList*, Token*, Token*); 02147 SrcList *sqlite3SrcListAppendFromTerm(Parse*, SrcList*, Token*, Token*, 02148 Token*, Select*, Expr*, IdList*); 02149 void sqlite3SrcListIndexedBy(Parse *, SrcList *, Token *); 02150 int sqlite3IndexedByLookup(Parse *, struct SrcList_item *); 02151 void sqlite3SrcListShiftJoinType(SrcList*); 02152 void sqlite3SrcListAssignCursors(Parse*, SrcList*); 02153 void sqlite3IdListDelete(sqlite3*, IdList*); 02154 void sqlite3SrcListDelete(sqlite3*, SrcList*); 02155 void sqlite3CreateIndex(Parse*,Token*,Token*,SrcList*,ExprList*,int,Token*, 02156 Token*, int, int); 02157 void sqlite3DropIndex(Parse*, SrcList*, int); 02158 int sqlite3Select(Parse*, Select*, SelectDest*); 02159 Select *sqlite3SelectNew(Parse*,ExprList*,SrcList*,Expr*,ExprList*, 02160 Expr*,ExprList*,int,Expr*,Expr*); 02161 void sqlite3SelectDelete(sqlite3*, Select*); 02162 Table *sqlite3SrcListLookup(Parse*, SrcList*); 02163 int sqlite3IsReadOnly(Parse*, Table*, int); 02164 void sqlite3OpenTable(Parse*, int iCur, int iDb, Table*, int); 02165 #if defined(SQLITE_ENABLE_UPDATE_DELETE_LIMIT) && !defined(SQLITE_OMIT_SUBQUERY) 02166 Expr *sqlite3LimitWhere(Parse *, SrcList *, Expr *, ExprList *, Expr *, Expr *, char *); 02167 #endif 02168 void sqlite3DeleteFrom(Parse*, SrcList*, Expr*); 02169 void sqlite3Update(Parse*, SrcList*, ExprList*, Expr*, int); 02170 WhereInfo *sqlite3WhereBegin(Parse*, SrcList*, Expr*, ExprList**, u8); 02171 void sqlite3WhereEnd(WhereInfo*); 02172 int sqlite3ExprCodeGetColumn(Parse*, Table*, int, int, int, int); 02173 void sqlite3ExprCodeMove(Parse*, int, int, int); 02174 void sqlite3ExprCodeCopy(Parse*, int, int, int); 02175 void sqlite3ExprClearColumnCache(Parse*, int); 02176 void sqlite3ExprCacheAffinityChange(Parse*, int, int); 02177 int sqlite3ExprWritableRegister(Parse*,int,int); 02178 void sqlite3ExprHardCopy(Parse*,int,int); 02179 int sqlite3ExprCode(Parse*, Expr*, int); 02180 int sqlite3ExprCodeTemp(Parse*, Expr*, int*); 02181 int sqlite3ExprCodeTarget(Parse*, Expr*, int); 02182 int sqlite3ExprCodeAndCache(Parse*, Expr*, int); 02183 void sqlite3ExprCodeConstants(Parse*, Expr*); 02184 int sqlite3ExprCodeExprList(Parse*, ExprList*, int, int); 02185 void sqlite3ExprIfTrue(Parse*, Expr*, int, int); 02186 void sqlite3ExprIfFalse(Parse*, Expr*, int, int); 02187 Table *sqlite3FindTable(sqlite3*,const char*, const char*); 02188 Table *sqlite3LocateTable(Parse*,int isView,const char*, const char*); 02189 Index *sqlite3FindIndex(sqlite3*,const char*, const char*); 02190 void sqlite3UnlinkAndDeleteTable(sqlite3*,int,const char*); 02191 void sqlite3UnlinkAndDeleteIndex(sqlite3*,int,const char*); 02192 void sqlite3Vacuum(Parse*); 02193 int sqlite3RunVacuum(char**, sqlite3*); 02194 char *sqlite3NameFromToken(sqlite3*, Token*); 02195 int sqlite3ExprCompare(Expr*, Expr*); 02196 void sqlite3ExprAnalyzeAggregates(NameContext*, Expr*); 02197 void sqlite3ExprAnalyzeAggList(NameContext*,ExprList*); 02198 Vdbe *sqlite3GetVdbe(Parse*); 02199 Expr *sqlite3CreateIdExpr(Parse *, const char*); 02200 void sqlite3PrngSaveState(void); 02201 void sqlite3PrngRestoreState(void); 02202 void sqlite3PrngResetState(void); 02203 void sqlite3RollbackAll(sqlite3*); 02204 void sqlite3CodeVerifySchema(Parse*, int); 02205 void sqlite3BeginTransaction(Parse*, int); 02206 void sqlite3CommitTransaction(Parse*); 02207 void sqlite3RollbackTransaction(Parse*); 02208 int sqlite3ExprIsConstant(Expr*); 02209 int sqlite3ExprIsConstantNotJoin(Expr*); 02210 int sqlite3ExprIsConstantOrFunction(Expr*); 02211 int sqlite3ExprIsInteger(Expr*, int*); 02212 int sqlite3IsRowid(const char*); 02213 void sqlite3GenerateRowDelete(Parse*, Table*, int, int, int); 02214 void sqlite3GenerateRowIndexDelete(Parse*, Table*, int, int*); 02215 int sqlite3GenerateIndexKey(Parse*, Index*, int, int, int); 02216 void sqlite3GenerateConstraintChecks(Parse*,Table*,int,int, 02217 int*,int,int,int,int); 02218 void sqlite3CompleteInsertion(Parse*, Table*, int, int, int*,int,int,int,int); 02219 int sqlite3OpenTableAndIndices(Parse*, Table*, int, int); 02220 void sqlite3BeginWriteOperation(Parse*, int, int); 02221 Expr *sqlite3ExprDup(sqlite3*,Expr*); 02222 void sqlite3TokenCopy(sqlite3*,Token*, Token*); 02223 ExprList *sqlite3ExprListDup(sqlite3*,ExprList*); 02224 SrcList *sqlite3SrcListDup(sqlite3*,SrcList*); 02225 IdList *sqlite3IdListDup(sqlite3*,IdList*); 02226 Select *sqlite3SelectDup(sqlite3*,Select*); 02227 void sqlite3FuncDefInsert(FuncDefHash*, FuncDef*); 02228 FuncDef *sqlite3FindFunction(sqlite3*,const char*,int,int,u8,int); 02229 void sqlite3RegisterBuiltinFunctions(sqlite3*); 02230 void sqlite3RegisterDateTimeFunctions(void); 02231 void sqlite3RegisterGlobalFunctions(void); 02232 int sqlite3GetBuiltinFunction(const char *, int, FuncDef **); 02233 #ifdef SQLITE_DEBUG 02234 int sqlite3SafetyOn(sqlite3*); 02235 int sqlite3SafetyOff(sqlite3*); 02236 #else 02237 # define sqlite3SafetyOn(A) 0 02238 # define sqlite3SafetyOff(A) 0 02239 #endif 02240 int sqlite3SafetyCheckOk(sqlite3*); 02241 int sqlite3SafetyCheckSickOrOk(sqlite3*); 02242 void sqlite3ChangeCookie(Parse*, int); 02243 02244 #if !defined(SQLITE_OMIT_VIEW) && !defined(SQLITE_OMIT_TRIGGER) 02245 void sqlite3MaterializeView(Parse*, Table*, Expr*, int); 02246 #endif 02247 02248 #ifndef SQLITE_OMIT_TRIGGER 02249 void sqlite3BeginTrigger(Parse*, Token*,Token*,int,int,IdList*,SrcList*, 02250 Expr*,int, int); 02251 void sqlite3FinishTrigger(Parse*, TriggerStep*, Token*); 02252 void sqlite3DropTrigger(Parse*, SrcList*, int); 02253 void sqlite3DropTriggerPtr(Parse*, Trigger*); 02254 int sqlite3TriggersExist(Parse*, Table*, int, ExprList*); 02255 int sqlite3CodeRowTrigger(Parse*, int, ExprList*, int, Table *, int, int, 02256 int, int, u32*, u32*); 02257 void sqliteViewTriggers(Parse*, Table*, Expr*, int, ExprList*); 02258 void sqlite3DeleteTriggerStep(sqlite3*, TriggerStep*); 02259 TriggerStep *sqlite3TriggerSelectStep(sqlite3*,Select*); 02260 TriggerStep *sqlite3TriggerInsertStep(sqlite3*,Token*, IdList*, 02261 ExprList*,Select*,int); 02262 TriggerStep *sqlite3TriggerUpdateStep(sqlite3*,Token*,ExprList*, Expr*, int); 02263 TriggerStep *sqlite3TriggerDeleteStep(sqlite3*,Token*, Expr*); 02264 void sqlite3DeleteTrigger(sqlite3*, Trigger*); 02265 void sqlite3UnlinkAndDeleteTrigger(sqlite3*,int,const char*); 02266 #else 02267 # define sqlite3TriggersExist(A,B,C,D,E,F) 0 02268 # define sqlite3DeleteTrigger(A,B) 02269 # define sqlite3DropTriggerPtr(A,B) 02270 # define sqlite3UnlinkAndDeleteTrigger(A,B,C) 02271 # define sqlite3CodeRowTrigger(A,B,C,D,E,F,G,H,I,J,K) 0 02272 #endif 02273 02274 int sqlite3JoinType(Parse*, Token*, Token*, Token*); 02275 void sqlite3CreateForeignKey(Parse*, ExprList*, Token*, ExprList*, int); 02276 void sqlite3DeferForeignKey(Parse*, int); 02277 #ifndef SQLITE_OMIT_AUTHORIZATION 02278 void sqlite3AuthRead(Parse*,Expr*,Schema*,SrcList*); 02279 int sqlite3AuthCheck(Parse*,int, const char*, const char*, const char*); 02280 void sqlite3AuthContextPush(Parse*, AuthContext*, const char*); 02281 void sqlite3AuthContextPop(AuthContext*); 02282 #else 02283 # define sqlite3AuthRead(a,b,c,d) 02284 # define sqlite3AuthCheck(a,b,c,d,e) SQLITE_OK 02285 # define sqlite3AuthContextPush(a,b,c) 02286 # define sqlite3AuthContextPop(a) ((void)(a)) 02287 #endif 02288 void sqlite3Attach(Parse*, Expr*, Expr*, Expr*); 02289 void sqlite3Detach(Parse*, Expr*); 02290 int sqlite3BtreeFactory(const sqlite3 *db, const char *zFilename, 02291 int omitJournal, int nCache, int flags, Btree **ppBtree); 02292 int sqlite3FixInit(DbFixer*, Parse*, int, const char*, const Token*); 02293 int sqlite3FixSrcList(DbFixer*, SrcList*); 02294 int sqlite3FixSelect(DbFixer*, Select*); 02295 int sqlite3FixExpr(DbFixer*, Expr*); 02296 int sqlite3FixExprList(DbFixer*, ExprList*); 02297 int sqlite3FixTriggerStep(DbFixer*, TriggerStep*); 02298 int sqlite3AtoF(const char *z, double*); 02299 int sqlite3GetInt32(const char *, int*); 02300 int sqlite3FitsIn64Bits(const char *, int); 02301 int sqlite3Utf16ByteLen(const void *pData, int nChar); 02302 int sqlite3Utf8CharLen(const char *pData, int nByte); 02303 int sqlite3Utf8Read(const u8*, const u8*, const u8**); 02304 02305 /* 02306 ** Routines to read and write variable-length integers. These used to 02307 ** be defined locally, but now we use the varint routines in the util.c 02308 ** file. Code should use the MACRO forms below, as the Varint32 versions 02309 ** are coded to assume the single byte case is already handled (which 02310 ** the MACRO form does). 02311 */ 02312 int sqlite3PutVarint(unsigned char*, u64); 02313 int sqlite3PutVarint32(unsigned char*, u32); 02314 int sqlite3GetVarint(const unsigned char *, u64 *); 02315 int sqlite3GetVarint32(const unsigned char *, u32 *); 02316 int sqlite3VarintLen(u64 v); 02317 02318 /* 02319 ** The header of a record consists of a sequence variable-length integers. 02320 ** These integers are almost always small and are encoded as a single byte. 02321 ** The following macros take advantage this fact to provide a fast encode 02322 ** and decode of the integers in a record header. It is faster for the common 02323 ** case where the integer is a single byte. It is a little slower when the 02324 ** integer is two or more bytes. But overall it is faster. 02325 ** 02326 ** The following expressions are equivalent: 02327 ** 02328 ** x = sqlite3GetVarint32( A, &B ); 02329 ** x = sqlite3PutVarint32( A, B ); 02330 ** 02331 ** x = getVarint32( A, B ); 02332 ** x = putVarint32( A, B ); 02333 ** 02334 */ 02335 #define getVarint32(A,B) ((*(A)<(unsigned char)0x80) ? ((B) = (u32)*(A)),1 : sqlite3GetVarint32((A), &(B))) 02336 #define putVarint32(A,B) (((B)<(u32)0x80) ? (*(A) = (unsigned char)(B)),1 : sqlite3PutVarint32((A), (B))) 02337 #define getVarint sqlite3GetVarint 02338 #define putVarint sqlite3PutVarint 02339 02340 02341 void sqlite3IndexAffinityStr(Vdbe *, Index *); 02342 void sqlite3TableAffinityStr(Vdbe *, Table *); 02343 char sqlite3CompareAffinity(Expr *pExpr, char aff2); 02344 int sqlite3IndexAffinityOk(Expr *pExpr, char idx_affinity); 02345 char sqlite3ExprAffinity(Expr *pExpr); 02346 int sqlite3Atoi64(const char*, i64*); 02347 void sqlite3Error(sqlite3*, int, const char*,...); 02348 void *sqlite3HexToBlob(sqlite3*, const char *z, int n); 02349 int sqlite3TwoPartName(Parse *, Token *, Token *, Token **); 02350 const char *sqlite3ErrStr(int); 02351 int sqlite3ReadSchema(Parse *pParse); 02352 CollSeq *sqlite3FindCollSeq(sqlite3*,u8 enc, const char *,int,int); 02353 CollSeq *sqlite3LocateCollSeq(Parse *pParse, const char *zName, int nName); 02354 CollSeq *sqlite3ExprCollSeq(Parse *pParse, Expr *pExpr); 02355 Expr *sqlite3ExprSetColl(Parse *pParse, Expr *, Token *); 02356 int sqlite3CheckCollSeq(Parse *, CollSeq *); 02357 int sqlite3CheckObjectName(Parse *, const char *); 02358 void sqlite3VdbeSetChanges(sqlite3 *, int); 02359 02360 const void *sqlite3ValueText(sqlite3_value*, u8); 02361 int sqlite3ValueBytes(sqlite3_value*, u8); 02362 void sqlite3ValueSetStr(sqlite3_value*, int, const void *,u8, 02363 void(*)(void*)); 02364 void sqlite3ValueFree(sqlite3_value*); 02365 sqlite3_value *sqlite3ValueNew(sqlite3 *); 02366 char *sqlite3Utf16to8(sqlite3 *, const void*, int); 02367 int sqlite3ValueFromExpr(sqlite3 *, Expr *, u8, u8, sqlite3_value **); 02368 void sqlite3ValueApplyAffinity(sqlite3_value *, u8, u8); 02369 #ifndef SQLITE_AMALGAMATION 02370 extern const unsigned char sqlite3UpperToLower[]; 02371 extern SQLITE_WSD struct Sqlite3Config sqlite3Config; 02372 extern SQLITE_WSD FuncDefHash sqlite3GlobalFunctions; 02373 #endif 02374 void sqlite3RootPageMoved(Db*, int, int); 02375 void sqlite3Reindex(Parse*, Token*, Token*); 02376 void sqlite3AlterFunctions(sqlite3*); 02377 void sqlite3AlterRenameTable(Parse*, SrcList*, Token*); 02378 int sqlite3GetToken(const unsigned char *, int *); 02379 void sqlite3NestedParse(Parse*, const char*, ...); 02380 void sqlite3ExpirePreparedStatements(sqlite3*); 02381 void sqlite3CodeSubselect(Parse *, Expr *, int, int); 02382 void sqlite3SelectPrep(Parse*, Select*, NameContext*); 02383 int sqlite3ResolveExprNames(NameContext*, Expr*); 02384 void sqlite3ResolveSelectNames(Parse*, Select*, NameContext*); 02385 int sqlite3ResolveOrderGroupBy(Parse*, Select*, ExprList*, const char*); 02386 void sqlite3ColumnDefault(Vdbe *, Table *, int); 02387 void sqlite3AlterFinishAddColumn(Parse *, Token *); 02388 void sqlite3AlterBeginAddColumn(Parse *, SrcList *); 02389 CollSeq *sqlite3GetCollSeq(sqlite3*, CollSeq *, const char *, int); 02390 char sqlite3AffinityType(const Token*); 02391 void sqlite3Analyze(Parse*, Token*, Token*); 02392 int sqlite3InvokeBusyHandler(BusyHandler*); 02393 int sqlite3FindDb(sqlite3*, Token*); 02394 int sqlite3AnalysisLoad(sqlite3*,int iDB); 02395 void sqlite3DefaultRowEst(Index*); 02396 void sqlite3RegisterLikeFunctions(sqlite3*, int); 02397 int sqlite3IsLikeFunction(sqlite3*,Expr*,int*,char*); 02398 void sqlite3MinimumFileFormat(Parse*, int, int); 02399 void sqlite3SchemaFree(void *); 02400 Schema *sqlite3SchemaGet(sqlite3 *, Btree *); 02401 int sqlite3SchemaToIndex(sqlite3 *db, Schema *); 02402 KeyInfo *sqlite3IndexKeyinfo(Parse *, Index *); 02403 int sqlite3CreateFunc(sqlite3 *, const char *, int, int, void *, 02404 void (*)(sqlite3_context*,int,sqlite3_value **), 02405 void (*)(sqlite3_context*,int,sqlite3_value **), void (*)(sqlite3_context*)); 02406 int sqlite3ApiExit(sqlite3 *db, int); 02407 int sqlite3OpenTempDatabase(Parse *); 02408 02409 void sqlite3StrAccumInit(StrAccum*, char*, int, int); 02410 void sqlite3StrAccumAppend(StrAccum*,const char*,int); 02411 char *sqlite3StrAccumFinish(StrAccum*); 02412 void sqlite3StrAccumReset(StrAccum*); 02413 void sqlite3SelectDestInit(SelectDest*,int,int); 02414 02415 /* 02416 ** The interface to the LEMON-generated parser 02417 */ 02418 void *sqlite3ParserAlloc(void*(*)(size_t)); 02419 void sqlite3ParserFree(void*, void(*)(void*)); 02420 void sqlite3Parser(void*, int, Token, Parse*); 02421 #ifdef YYTRACKMAXSTACKDEPTH 02422 int sqlite3ParserStackPeak(void*); 02423 #endif 02424 02425 int sqlite3AutoLoadExtensions(sqlite3*); 02426 #ifndef SQLITE_OMIT_LOAD_EXTENSION 02427 void sqlite3CloseExtensions(sqlite3*); 02428 #else 02429 # define sqlite3CloseExtensions(X) 02430 #endif 02431 02432 #ifndef SQLITE_OMIT_SHARED_CACHE 02433 void sqlite3TableLock(Parse *, int, int, u8, const char *); 02434 #else 02435 #define sqlite3TableLock(v,w,x,y,z) 02436 #endif 02437 02438 #ifdef SQLITE_TEST 02439 int sqlite3Utf8To8(unsigned char*); 02440 #endif 02441 02442 #ifdef SQLITE_OMIT_VIRTUALTABLE 02443 # define sqlite3VtabClear(X) 02444 # define sqlite3VtabSync(X,Y) SQLITE_OK 02445 # define sqlite3VtabRollback(X) 02446 # define sqlite3VtabCommit(X) 02447 #else 02448 void sqlite3VtabClear(Table*); 02449 int sqlite3VtabSync(sqlite3 *db, char **); 02450 int sqlite3VtabRollback(sqlite3 *db); 02451 int sqlite3VtabCommit(sqlite3 *db); 02452 #endif 02453 void sqlite3VtabMakeWritable(Parse*,Table*); 02454 void sqlite3VtabLock(sqlite3_vtab*); 02455 void sqlite3VtabUnlock(sqlite3*, sqlite3_vtab*); 02456 void sqlite3VtabBeginParse(Parse*, Token*, Token*, Token*); 02457 void sqlite3VtabFinishParse(Parse*, Token*); 02458 void sqlite3VtabArgInit(Parse*); 02459 void sqlite3VtabArgExtend(Parse*, Token*); 02460 int sqlite3VtabCallCreate(sqlite3*, int, const char *, char **); 02461 int sqlite3VtabCallConnect(Parse*, Table*); 02462 int sqlite3VtabCallDestroy(sqlite3*, int, const char *); 02463 int sqlite3VtabBegin(sqlite3 *, sqlite3_vtab *); 02464 FuncDef *sqlite3VtabOverloadFunction(sqlite3 *,FuncDef*, int nArg, Expr*); 02465 void sqlite3InvalidFunction(sqlite3_context*,int,sqlite3_value**); 02466 int sqlite3TransferBindings(sqlite3_stmt *, sqlite3_stmt *); 02467 int sqlite3Reprepare(Vdbe*); 02468 void sqlite3ExprListCheckLength(Parse*, ExprList*, const char*); 02469 CollSeq *sqlite3BinaryCompareCollSeq(Parse *, Expr *, Expr *); 02470 02471 02472 /* 02473 ** Available fault injectors. Should be numbered beginning with 0. 02474 */ 02475 #define SQLITE_FAULTINJECTOR_MALLOC 0 02476 #define SQLITE_FAULTINJECTOR_COUNT 1 02477 02478 /* 02479 ** The interface to the code in fault.c used for identifying "benign" 02480 ** malloc failures. This is only present if SQLITE_OMIT_BUILTIN_TEST 02481 ** is not defined. 02482 */ 02483 #ifndef SQLITE_OMIT_BUILTIN_TEST 02484 void sqlite3BeginBenignMalloc(void); 02485 void sqlite3EndBenignMalloc(void); 02486 #else 02487 #define sqlite3BeginBenignMalloc() 02488 #define sqlite3EndBenignMalloc() 02489 #endif 02490 02491 #define IN_INDEX_ROWID 1 02492 #define IN_INDEX_EPH 2 02493 #define IN_INDEX_INDEX 3 02494 int sqlite3FindInIndex(Parse *, Expr *, int*); 02495 02496 #ifdef SQLITE_ENABLE_ATOMIC_WRITE 02497 int sqlite3JournalOpen(sqlite3_vfs *, const char *, sqlite3_file *, int, int); 02498 int sqlite3JournalSize(sqlite3_vfs *); 02499 int sqlite3JournalCreate(sqlite3_file *); 02500 #else 02501 #define sqlite3JournalSize(pVfs) ((pVfs)->szOsFile) 02502 #endif 02503 02504 void sqlite3MemJournalOpen(sqlite3_file *); 02505 int sqlite3MemJournalSize(); 02506 int sqlite3IsMemJournal(sqlite3_file *); 02507 02508 #if SQLITE_MAX_EXPR_DEPTH>0 02509 void sqlite3ExprSetHeight(Parse *pParse, Expr *p); 02510 int sqlite3SelectExprHeight(Select *); 02511 int sqlite3ExprCheckHeight(Parse*, int); 02512 #else 02513 #define sqlite3ExprSetHeight(x,y) 02514 #define sqlite3SelectExprHeight(x) 0 02515 #define sqlite3ExprCheckHeight(x,y) 02516 #endif 02517 02518 u32 sqlite3Get4byte(const u8*); 02519 void sqlite3Put4byte(u8*, u32); 02520 02521 #ifdef SQLITE_SSE 02522 #include "sseInt.h" 02523 #endif 02524 02525 #ifdef SQLITE_DEBUG 02526 void sqlite3ParserTrace(FILE*, char *); 02527 #endif 02528 02529 /* 02530 ** If the SQLITE_ENABLE IOTRACE exists then the global variable 02531 ** sqlite3IoTrace is a pointer to a printf-like routine used to 02532 ** print I/O tracing messages. 02533 */ 02534 #ifdef SQLITE_ENABLE_IOTRACE 02535 # define IOTRACE(A) if( sqlite3IoTrace ){ sqlite3IoTrace A; } 02536 void sqlite3VdbeIOTraceSql(Vdbe*); 02537 SQLITE_EXTERN void (*sqlite3IoTrace)(const char*,...); 02538 #else 02539 # define IOTRACE(A) 02540 # define sqlite3VdbeIOTraceSql(X) 02541 #endif 02542 02543 #endif
ContextLogger2—ContextLogger2 Logger Daemon Internals—Generated on Mon May 2 13:49:56 2011 by Doxygen 1.6.1