00001 /* 00002 ** 2001 September 15 00003 ** 00004 ** The author disclaims copyright to this source code. In place of 00005 ** a legal notice, here is a blessing: 00006 ** 00007 ** May you do good and not evil. 00008 ** May you find forgiveness for yourself and forgive others. 00009 ** May you share freely, never taking more than you give. 00010 ** 00011 ************************************************************************* 00012 ** The code in this file implements execution method of the 00013 ** Virtual Database Engine (VDBE). A separate file ("vdbeaux.c") 00014 ** handles housekeeping details such as creating and deleting 00015 ** VDBE instances. This file is solely interested in executing 00016 ** the VDBE program. 00017 ** 00018 ** In the external interface, an "sqlite3_stmt*" is an opaque pointer 00019 ** to a VDBE. 00020 ** 00021 ** The SQL parser generates a program which is then executed by 00022 ** the VDBE to do the work of the SQL statement. VDBE programs are 00023 ** similar in form to assembly language. The program consists of 00024 ** a linear sequence of operations. Each operation has an opcode 00025 ** and 5 operands. Operands P1, P2, and P3 are integers. Operand P4 00026 ** is a null-terminated string. Operand P5 is an unsigned character. 00027 ** Few opcodes use all 5 operands. 00028 ** 00029 ** Computation results are stored on a set of registers numbered beginning 00030 ** with 1 and going up to Vdbe.nMem. Each register can store 00031 ** either an integer, a null-terminated string, a floating point 00032 ** number, or the SQL "NULL" value. An implicit conversion from one 00033 ** type to the other occurs as necessary. 00034 ** 00035 ** Most of the code in this file is taken up by the sqlite3VdbeExec() 00036 ** function which does the work of interpreting a VDBE program. 00037 ** But other routines are also provided to help in building up 00038 ** a program instruction by instruction. 00039 ** 00040 ** Various scripts scan this source file in order to generate HTML 00041 ** documentation, headers files, or other derived files. The formatting 00042 ** of the code in this file is, therefore, important. See other comments 00043 ** in this file for details. If in doubt, do not deviate from existing 00044 ** commenting and indentation practices when changing or adding code. 00045 ** 00046 ** $Id: vdbe.c,v 1.786 2008/11/05 16:37:35 drh Exp $ 00047 */ 00048 #include "sqliteInt.h" 00049 #include <ctype.h> 00050 #include "vdbeInt.h" 00051 00052 /* 00053 ** The following global variable is incremented every time a cursor 00054 ** moves, either by the OP_MoveXX, OP_Next, or OP_Prev opcodes. The test 00055 ** procedures use this information to make sure that indices are 00056 ** working correctly. This variable has no function other than to 00057 ** help verify the correct operation of the library. 00058 */ 00059 #ifdef SQLITE_TEST 00060 int sqlite3_search_count = 0; 00061 #endif 00062 00063 /* 00064 ** When this global variable is positive, it gets decremented once before 00065 ** each instruction in the VDBE. When reaches zero, the u1.isInterrupted 00066 ** field of the sqlite3 structure is set in order to simulate and interrupt. 00067 ** 00068 ** This facility is used for testing purposes only. It does not function 00069 ** in an ordinary build. 00070 */ 00071 #ifdef SQLITE_TEST 00072 int sqlite3_interrupt_count = 0; 00073 #endif 00074 00075 /* 00076 ** The next global variable is incremented each type the OP_Sort opcode 00077 ** is executed. The test procedures use this information to make sure that 00078 ** sorting is occurring or not occurring at appropriate times. This variable 00079 ** has no function other than to help verify the correct operation of the 00080 ** library. 00081 */ 00082 #ifdef SQLITE_TEST 00083 int sqlite3_sort_count = 0; 00084 #endif 00085 00086 /* 00087 ** The next global variable records the size of the largest MEM_Blob 00088 ** or MEM_Str that has been used by a VDBE opcode. The test procedures 00089 ** use this information to make sure that the zero-blob functionality 00090 ** is working correctly. This variable has no function other than to 00091 ** help verify the correct operation of the library. 00092 */ 00093 #ifdef SQLITE_TEST 00094 int sqlite3_max_blobsize = 0; 00095 static void updateMaxBlobsize(Mem *p){ 00096 if( (p->flags & (MEM_Str|MEM_Blob))!=0 && p->n>sqlite3_max_blobsize ){ 00097 sqlite3_max_blobsize = p->n; 00098 } 00099 } 00100 #endif 00101 00102 /* 00103 ** Test a register to see if it exceeds the current maximum blob size. 00104 ** If it does, record the new maximum blob size. 00105 */ 00106 #if defined(SQLITE_TEST) && !defined(SQLITE_OMIT_BUILTIN_TEST) 00107 # define UPDATE_MAX_BLOBSIZE(P) updateMaxBlobsize(P) 00108 #else 00109 # define UPDATE_MAX_BLOBSIZE(P) 00110 #endif 00111 00112 /* 00113 ** Convert the given register into a string if it isn't one 00114 ** already. Return non-zero if a malloc() fails. 00115 */ 00116 #define Stringify(P, enc) \ 00117 if(((P)->flags&(MEM_Str|MEM_Blob))==0 && sqlite3VdbeMemStringify(P,enc)) \ 00118 { goto no_mem; } 00119 00120 /* 00121 ** An ephemeral string value (signified by the MEM_Ephem flag) contains 00122 ** a pointer to a dynamically allocated string where some other entity 00123 ** is responsible for deallocating that string. Because the register 00124 ** does not control the string, it might be deleted without the register 00125 ** knowing it. 00126 ** 00127 ** This routine converts an ephemeral string into a dynamically allocated 00128 ** string that the register itself controls. In other words, it 00129 ** converts an MEM_Ephem string into an MEM_Dyn string. 00130 */ 00131 #define Deephemeralize(P) \ 00132 if( ((P)->flags&MEM_Ephem)!=0 \ 00133 && sqlite3VdbeMemMakeWriteable(P) ){ goto no_mem;} 00134 00135 /* 00136 ** Call sqlite3VdbeMemExpandBlob() on the supplied value (type Mem*) 00137 ** P if required. 00138 */ 00139 #define ExpandBlob(P) (((P)->flags&MEM_Zero)?sqlite3VdbeMemExpandBlob(P):0) 00140 00141 /* 00142 ** Argument pMem points at a register that will be passed to a 00143 ** user-defined function or returned to the user as the result of a query. 00144 ** The second argument, 'db_enc' is the text encoding used by the vdbe for 00145 ** register variables. This routine sets the pMem->enc and pMem->type 00146 ** variables used by the sqlite3_value_*() routines. 00147 */ 00148 #define storeTypeInfo(A,B) _storeTypeInfo(A) 00149 static void _storeTypeInfo(Mem *pMem){ 00150 int flags = pMem->flags; 00151 if( flags & MEM_Null ){ 00152 pMem->type = SQLITE_NULL; 00153 } 00154 else if( flags & MEM_Int ){ 00155 pMem->type = SQLITE_INTEGER; 00156 } 00157 else if( flags & MEM_Real ){ 00158 pMem->type = SQLITE_FLOAT; 00159 } 00160 else if( flags & MEM_Str ){ 00161 pMem->type = SQLITE_TEXT; 00162 }else{ 00163 pMem->type = SQLITE_BLOB; 00164 } 00165 } 00166 00167 /* 00168 ** Properties of opcodes. The OPFLG_INITIALIZER macro is 00169 ** created by mkopcodeh.awk during compilation. Data is obtained 00170 ** from the comments following the "case OP_xxxx:" statements in 00171 ** this file. 00172 */ 00173 static const unsigned char opcodeProperty[] = OPFLG_INITIALIZER; 00174 00175 /* 00176 ** Return true if an opcode has any of the OPFLG_xxx properties 00177 ** specified by mask. 00178 */ 00179 int sqlite3VdbeOpcodeHasProperty(int opcode, int mask){ 00180 assert( opcode>0 && opcode<sizeof(opcodeProperty) ); 00181 return (opcodeProperty[opcode]&mask)!=0; 00182 } 00183 00184 /* 00185 ** Allocate VdbeCursor number iCur. Return a pointer to it. Return NULL 00186 ** if we run out of memory. 00187 */ 00188 static VdbeCursor *allocateCursor( 00189 Vdbe *p, /* The virtual machine */ 00190 int iCur, /* Index of the new VdbeCursor */ 00191 Op *pOp, /* */ 00192 int iDb, /* */ 00193 int isBtreeCursor /* */ 00194 ){ 00195 /* Find the memory cell that will be used to store the blob of memory 00196 ** required for this VdbeCursor structure. It is convenient to use a 00197 ** vdbe memory cell to manage the memory allocation required for a 00198 ** VdbeCursor structure for the following reasons: 00199 ** 00200 ** * Sometimes cursor numbers are used for a couple of different 00201 ** purposes in a vdbe program. The different uses might require 00202 ** different sized allocations. Memory cells provide growable 00203 ** allocations. 00204 ** 00205 ** * When using ENABLE_MEMORY_MANAGEMENT, memory cell buffers can 00206 ** be freed lazily via the sqlite3_release_memory() API. This 00207 ** minimizes the number of malloc calls made by the system. 00208 ** 00209 ** Memory cells for cursors are allocated at the top of the address 00210 ** space. Memory cell (p->nMem) corresponds to cursor 0. Space for 00211 ** cursor 1 is managed by memory cell (p->nMem-1), etc. 00212 */ 00213 Mem *pMem = &p->aMem[p->nMem-iCur]; 00214 00215 int nByte; 00216 VdbeCursor *pCx = 0; 00217 /* If the opcode of pOp is OP_SetNumColumns, then pOp->p2 contains 00218 ** the number of fields in the records contained in the table or 00219 ** index being opened. Use this to reserve space for the 00220 ** VdbeCursor.aType[] array. 00221 */ 00222 int nField = 0; 00223 if( pOp->opcode==OP_SetNumColumns || pOp->opcode==OP_OpenEphemeral ){ 00224 nField = pOp->p2; 00225 } 00226 nByte = 00227 sizeof(VdbeCursor) + 00228 (isBtreeCursor?sqlite3BtreeCursorSize():0) + 00229 2*nField*sizeof(u32); 00230 00231 assert( iCur<p->nCursor ); 00232 if( p->apCsr[iCur] ){ 00233 sqlite3VdbeFreeCursor(p, p->apCsr[iCur]); 00234 p->apCsr[iCur] = 0; 00235 } 00236 if( SQLITE_OK==sqlite3VdbeMemGrow(pMem, nByte, 0) ){ 00237 p->apCsr[iCur] = pCx = (VdbeCursor*)pMem->z; 00238 memset(pMem->z, 0, nByte); 00239 pCx->iDb = iDb; 00240 pCx->nField = nField; 00241 if( nField ){ 00242 pCx->aType = (u32 *)&pMem->z[sizeof(VdbeCursor)]; 00243 } 00244 if( isBtreeCursor ){ 00245 pCx->pCursor = (BtCursor*) 00246 &pMem->z[sizeof(VdbeCursor)+2*nField*sizeof(u32)]; 00247 } 00248 } 00249 return pCx; 00250 } 00251 00252 /* 00253 ** Try to convert a value into a numeric representation if we can 00254 ** do so without loss of information. In other words, if the string 00255 ** looks like a number, convert it into a number. If it does not 00256 ** look like a number, leave it alone. 00257 */ 00258 static void applyNumericAffinity(Mem *pRec){ 00259 if( (pRec->flags & (MEM_Real|MEM_Int))==0 ){ 00260 int realnum; 00261 sqlite3VdbeMemNulTerminate(pRec); 00262 if( (pRec->flags&MEM_Str) 00263 && sqlite3IsNumber(pRec->z, &realnum, pRec->enc) ){ 00264 i64 value; 00265 sqlite3VdbeChangeEncoding(pRec, SQLITE_UTF8); 00266 if( !realnum && sqlite3Atoi64(pRec->z, &value) ){ 00267 pRec->u.i = value; 00268 MemSetTypeFlag(pRec, MEM_Int); 00269 }else{ 00270 sqlite3VdbeMemRealify(pRec); 00271 } 00272 } 00273 } 00274 } 00275 00276 /* 00277 ** Processing is determine by the affinity parameter: 00278 ** 00279 ** SQLITE_AFF_INTEGER: 00280 ** SQLITE_AFF_REAL: 00281 ** SQLITE_AFF_NUMERIC: 00282 ** Try to convert pRec to an integer representation or a 00283 ** floating-point representation if an integer representation 00284 ** is not possible. Note that the integer representation is 00285 ** always preferred, even if the affinity is REAL, because 00286 ** an integer representation is more space efficient on disk. 00287 ** 00288 ** SQLITE_AFF_TEXT: 00289 ** Convert pRec to a text representation. 00290 ** 00291 ** SQLITE_AFF_NONE: 00292 ** No-op. pRec is unchanged. 00293 */ 00294 static void applyAffinity( 00295 Mem *pRec, /* The value to apply affinity to */ 00296 char affinity, /* The affinity to be applied */ 00297 u8 enc /* Use this text encoding */ 00298 ){ 00299 if( affinity==SQLITE_AFF_TEXT ){ 00300 /* Only attempt the conversion to TEXT if there is an integer or real 00301 ** representation (blob and NULL do not get converted) but no string 00302 ** representation. 00303 */ 00304 if( 0==(pRec->flags&MEM_Str) && (pRec->flags&(MEM_Real|MEM_Int)) ){ 00305 sqlite3VdbeMemStringify(pRec, enc); 00306 } 00307 pRec->flags &= ~(MEM_Real|MEM_Int); 00308 }else if( affinity!=SQLITE_AFF_NONE ){ 00309 assert( affinity==SQLITE_AFF_INTEGER || affinity==SQLITE_AFF_REAL 00310 || affinity==SQLITE_AFF_NUMERIC ); 00311 applyNumericAffinity(pRec); 00312 if( pRec->flags & MEM_Real ){ 00313 sqlite3VdbeIntegerAffinity(pRec); 00314 } 00315 } 00316 } 00317 00318 /* 00319 ** Try to convert the type of a function argument or a result column 00320 ** into a numeric representation. Use either INTEGER or REAL whichever 00321 ** is appropriate. But only do the conversion if it is possible without 00322 ** loss of information and return the revised type of the argument. 00323 ** 00324 ** This is an EXPERIMENTAL api and is subject to change or removal. 00325 */ 00326 int sqlite3_value_numeric_type(sqlite3_value *pVal){ 00327 Mem *pMem = (Mem*)pVal; 00328 applyNumericAffinity(pMem); 00329 storeTypeInfo(pMem, 0); 00330 return pMem->type; 00331 } 00332 00333 /* 00334 ** Exported version of applyAffinity(). This one works on sqlite3_value*, 00335 ** not the internal Mem* type. 00336 */ 00337 void sqlite3ValueApplyAffinity( 00338 sqlite3_value *pVal, 00339 u8 affinity, 00340 u8 enc 00341 ){ 00342 applyAffinity((Mem *)pVal, affinity, enc); 00343 } 00344 00345 #ifdef SQLITE_DEBUG 00346 /* 00347 ** Write a nice string representation of the contents of cell pMem 00348 ** into buffer zBuf, length nBuf. 00349 */ 00350 void sqlite3VdbeMemPrettyPrint(Mem *pMem, char *zBuf){ 00351 char *zCsr = zBuf; 00352 int f = pMem->flags; 00353 00354 static const char *const encnames[] = {"(X)", "(8)", "(16LE)", "(16BE)"}; 00355 00356 if( f&MEM_Blob ){ 00357 int i; 00358 char c; 00359 if( f & MEM_Dyn ){ 00360 c = 'z'; 00361 assert( (f & (MEM_Static|MEM_Ephem))==0 ); 00362 }else if( f & MEM_Static ){ 00363 c = 't'; 00364 assert( (f & (MEM_Dyn|MEM_Ephem))==0 ); 00365 }else if( f & MEM_Ephem ){ 00366 c = 'e'; 00367 assert( (f & (MEM_Static|MEM_Dyn))==0 ); 00368 }else{ 00369 c = 's'; 00370 } 00371 00372 sqlite3_snprintf(100, zCsr, "%c", c); 00373 zCsr += strlen(zCsr); 00374 sqlite3_snprintf(100, zCsr, "%d[", pMem->n); 00375 zCsr += strlen(zCsr); 00376 for(i=0; i<16 && i<pMem->n; i++){ 00377 sqlite3_snprintf(100, zCsr, "%02X", ((int)pMem->z[i] & 0xFF)); 00378 zCsr += strlen(zCsr); 00379 } 00380 for(i=0; i<16 && i<pMem->n; i++){ 00381 char z = pMem->z[i]; 00382 if( z<32 || z>126 ) *zCsr++ = '.'; 00383 else *zCsr++ = z; 00384 } 00385 00386 sqlite3_snprintf(100, zCsr, "]%s", encnames[pMem->enc]); 00387 zCsr += strlen(zCsr); 00388 if( f & MEM_Zero ){ 00389 sqlite3_snprintf(100, zCsr,"+%lldz",pMem->u.i); 00390 zCsr += strlen(zCsr); 00391 } 00392 *zCsr = '\0'; 00393 }else if( f & MEM_Str ){ 00394 int j, k; 00395 zBuf[0] = ' '; 00396 if( f & MEM_Dyn ){ 00397 zBuf[1] = 'z'; 00398 assert( (f & (MEM_Static|MEM_Ephem))==0 ); 00399 }else if( f & MEM_Static ){ 00400 zBuf[1] = 't'; 00401 assert( (f & (MEM_Dyn|MEM_Ephem))==0 ); 00402 }else if( f & MEM_Ephem ){ 00403 zBuf[1] = 'e'; 00404 assert( (f & (MEM_Static|MEM_Dyn))==0 ); 00405 }else{ 00406 zBuf[1] = 's'; 00407 } 00408 k = 2; 00409 sqlite3_snprintf(100, &zBuf[k], "%d", pMem->n); 00410 k += strlen(&zBuf[k]); 00411 zBuf[k++] = '['; 00412 for(j=0; j<15 && j<pMem->n; j++){ 00413 u8 c = pMem->z[j]; 00414 if( c>=0x20 && c<0x7f ){ 00415 zBuf[k++] = c; 00416 }else{ 00417 zBuf[k++] = '.'; 00418 } 00419 } 00420 zBuf[k++] = ']'; 00421 sqlite3_snprintf(100,&zBuf[k], encnames[pMem->enc]); 00422 k += strlen(&zBuf[k]); 00423 zBuf[k++] = 0; 00424 } 00425 } 00426 #endif 00427 00428 #ifdef SQLITE_DEBUG 00429 /* 00430 ** Print the value of a register for tracing purposes: 00431 */ 00432 static void memTracePrint(FILE *out, Mem *p){ 00433 if( p->flags & MEM_Null ){ 00434 fprintf(out, " NULL"); 00435 }else if( (p->flags & (MEM_Int|MEM_Str))==(MEM_Int|MEM_Str) ){ 00436 fprintf(out, " si:%lld", p->u.i); 00437 }else if( p->flags & MEM_Int ){ 00438 fprintf(out, " i:%lld", p->u.i); 00439 }else if( p->flags & MEM_Real ){ 00440 fprintf(out, " r:%g", p->r); 00441 }else{ 00442 char zBuf[200]; 00443 sqlite3VdbeMemPrettyPrint(p, zBuf); 00444 fprintf(out, " "); 00445 fprintf(out, "%s", zBuf); 00446 } 00447 } 00448 static void registerTrace(FILE *out, int iReg, Mem *p){ 00449 fprintf(out, "REG[%d] = ", iReg); 00450 memTracePrint(out, p); 00451 fprintf(out, "\n"); 00452 } 00453 #endif 00454 00455 #ifdef SQLITE_DEBUG 00456 # define REGISTER_TRACE(R,M) if(p->trace)registerTrace(p->trace,R,M) 00457 #else 00458 # define REGISTER_TRACE(R,M) 00459 #endif 00460 00461 00462 #ifdef VDBE_PROFILE 00463 00464 /* 00465 ** hwtime.h contains inline assembler code for implementing 00466 ** high-performance timing routines. 00467 */ 00468 #include "hwtime.h" 00469 00470 #endif 00471 00472 /* 00473 ** The CHECK_FOR_INTERRUPT macro defined here looks to see if the 00474 ** sqlite3_interrupt() routine has been called. If it has been, then 00475 ** processing of the VDBE program is interrupted. 00476 ** 00477 ** This macro added to every instruction that does a jump in order to 00478 ** implement a loop. This test used to be on every single instruction, 00479 ** but that meant we more testing that we needed. By only testing the 00480 ** flag on jump instructions, we get a (small) speed improvement. 00481 */ 00482 #define CHECK_FOR_INTERRUPT \ 00483 if( db->u1.isInterrupted ) goto abort_due_to_interrupt; 00484 00485 #ifdef SQLITE_DEBUG 00486 static int fileExists(sqlite3 *db, const char *zFile){ 00487 int res = 0; 00488 int rc = SQLITE_OK; 00489 #ifdef SQLITE_TEST 00490 /* If we are currently testing IO errors, then do not call OsAccess() to 00491 ** test for the presence of zFile. This is because any IO error that 00492 ** occurs here will not be reported, causing the test to fail. 00493 */ 00494 extern int sqlite3_io_error_pending; 00495 if( sqlite3_io_error_pending<=0 ) 00496 #endif 00497 rc = sqlite3OsAccess(db->pVfs, zFile, SQLITE_ACCESS_EXISTS, &res); 00498 return (res && rc==SQLITE_OK); 00499 } 00500 #endif 00501 00502 /* 00503 ** Execute as much of a VDBE program as we can then return. 00504 ** 00505 ** sqlite3VdbeMakeReady() must be called before this routine in order to 00506 ** close the program with a final OP_Halt and to set up the callbacks 00507 ** and the error message pointer. 00508 ** 00509 ** Whenever a row or result data is available, this routine will either 00510 ** invoke the result callback (if there is one) or return with 00511 ** SQLITE_ROW. 00512 ** 00513 ** If an attempt is made to open a locked database, then this routine 00514 ** will either invoke the busy callback (if there is one) or it will 00515 ** return SQLITE_BUSY. 00516 ** 00517 ** If an error occurs, an error message is written to memory obtained 00518 ** from sqlite3_malloc() and p->zErrMsg is made to point to that memory. 00519 ** The error code is stored in p->rc and this routine returns SQLITE_ERROR. 00520 ** 00521 ** If the callback ever returns non-zero, then the program exits 00522 ** immediately. There will be no error message but the p->rc field is 00523 ** set to SQLITE_ABORT and this routine will return SQLITE_ERROR. 00524 ** 00525 ** A memory allocation error causes p->rc to be set to SQLITE_NOMEM and this 00526 ** routine to return SQLITE_ERROR. 00527 ** 00528 ** Other fatal errors return SQLITE_ERROR. 00529 ** 00530 ** After this routine has finished, sqlite3VdbeFinalize() should be 00531 ** used to clean up the mess that was left behind. 00532 */ 00533 int sqlite3VdbeExec( 00534 Vdbe *p /* The VDBE */ 00535 ){ 00536 int pc; /* The program counter */ 00537 Op *pOp; /* Current operation */ 00538 int rc = SQLITE_OK; /* Value to return */ 00539 sqlite3 *db = p->db; /* The database */ 00540 u8 encoding = ENC(db); /* The database encoding */ 00541 Mem *pIn1, *pIn2, *pIn3; /* Input operands */ 00542 Mem *pOut; /* Output operand */ 00543 u8 opProperty; 00544 int iCompare = 0; /* Result of last OP_Compare operation */ 00545 int *aPermute = 0; /* Permuation of columns for OP_Compare */ 00546 #ifdef VDBE_PROFILE 00547 u64 start; /* CPU clock count at start of opcode */ 00548 int origPc; /* Program counter at start of opcode */ 00549 #endif 00550 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK 00551 int nProgressOps = 0; /* Opcodes executed since progress callback. */ 00552 #endif 00553 UnpackedRecord aTempRec[16]; /* Space to hold a transient UnpackedRecord */ 00554 00555 00556 assert( p->magic==VDBE_MAGIC_RUN ); /* sqlite3_step() verifies this */ 00557 assert( db->magic==SQLITE_MAGIC_BUSY ); 00558 sqlite3BtreeMutexArrayEnter(&p->aMutex); 00559 if( p->rc==SQLITE_NOMEM ){ 00560 /* This happens if a malloc() inside a call to sqlite3_column_text() or 00561 ** sqlite3_column_text16() failed. */ 00562 goto no_mem; 00563 } 00564 assert( p->rc==SQLITE_OK || p->rc==SQLITE_BUSY ); 00565 p->rc = SQLITE_OK; 00566 assert( p->explain==0 ); 00567 p->pResultSet = 0; 00568 db->busyHandler.nBusy = 0; 00569 CHECK_FOR_INTERRUPT; 00570 sqlite3VdbeIOTraceSql(p); 00571 #ifdef SQLITE_DEBUG 00572 sqlite3BeginBenignMalloc(); 00573 if( p->pc==0 00574 && ((p->db->flags & SQLITE_VdbeListing) || fileExists(db, "vdbe_explain")) 00575 ){ 00576 int i; 00577 printf("VDBE Program Listing:\n"); 00578 sqlite3VdbePrintSql(p); 00579 for(i=0; i<p->nOp; i++){ 00580 sqlite3VdbePrintOp(stdout, i, &p->aOp[i]); 00581 } 00582 } 00583 if( fileExists(db, "vdbe_trace") ){ 00584 p->trace = stdout; 00585 } 00586 sqlite3EndBenignMalloc(); 00587 #endif 00588 for(pc=p->pc; rc==SQLITE_OK; pc++){ 00589 assert( pc>=0 && pc<p->nOp ); 00590 if( db->mallocFailed ) goto no_mem; 00591 #ifdef VDBE_PROFILE 00592 origPc = pc; 00593 start = sqlite3Hwtime(); 00594 #endif 00595 pOp = &p->aOp[pc]; 00596 00597 /* Only allow tracing if SQLITE_DEBUG is defined. 00598 */ 00599 #ifdef SQLITE_DEBUG 00600 if( p->trace ){ 00601 if( pc==0 ){ 00602 printf("VDBE Execution Trace:\n"); 00603 sqlite3VdbePrintSql(p); 00604 } 00605 sqlite3VdbePrintOp(p->trace, pc, pOp); 00606 } 00607 if( p->trace==0 && pc==0 ){ 00608 sqlite3BeginBenignMalloc(); 00609 if( fileExists(db, "vdbe_sqltrace") ){ 00610 sqlite3VdbePrintSql(p); 00611 } 00612 sqlite3EndBenignMalloc(); 00613 } 00614 #endif 00615 00616 00617 /* Check to see if we need to simulate an interrupt. This only happens 00618 ** if we have a special test build. 00619 */ 00620 #ifdef SQLITE_TEST 00621 if( sqlite3_interrupt_count>0 ){ 00622 sqlite3_interrupt_count--; 00623 if( sqlite3_interrupt_count==0 ){ 00624 sqlite3_interrupt(db); 00625 } 00626 } 00627 #endif 00628 00629 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK 00630 /* Call the progress callback if it is configured and the required number 00631 ** of VDBE ops have been executed (either since this invocation of 00632 ** sqlite3VdbeExec() or since last time the progress callback was called). 00633 ** If the progress callback returns non-zero, exit the virtual machine with 00634 ** a return code SQLITE_ABORT. 00635 */ 00636 if( db->xProgress ){ 00637 if( db->nProgressOps==nProgressOps ){ 00638 int prc; 00639 if( sqlite3SafetyOff(db) ) goto abort_due_to_misuse; 00640 prc =db->xProgress(db->pProgressArg); 00641 if( sqlite3SafetyOn(db) ) goto abort_due_to_misuse; 00642 if( prc!=0 ){ 00643 rc = SQLITE_INTERRUPT; 00644 goto vdbe_error_halt; 00645 } 00646 nProgressOps = 0; 00647 } 00648 nProgressOps++; 00649 } 00650 #endif 00651 00652 /* Do common setup processing for any opcode that is marked 00653 ** with the "out2-prerelease" tag. Such opcodes have a single 00654 ** output which is specified by the P2 parameter. The P2 register 00655 ** is initialized to a NULL. 00656 */ 00657 opProperty = opcodeProperty[pOp->opcode]; 00658 if( (opProperty & OPFLG_OUT2_PRERELEASE)!=0 ){ 00659 assert( pOp->p2>0 ); 00660 assert( pOp->p2<=p->nMem ); 00661 pOut = &p->aMem[pOp->p2]; 00662 sqlite3VdbeMemReleaseExternal(pOut); 00663 pOut->flags = MEM_Null; 00664 }else 00665 00666 /* Do common setup for opcodes marked with one of the following 00667 ** combinations of properties. 00668 ** 00669 ** in1 00670 ** in1 in2 00671 ** in1 in2 out3 00672 ** in1 in3 00673 ** 00674 ** Variables pIn1, pIn2, and pIn3 are made to point to appropriate 00675 ** registers for inputs. Variable pOut points to the output register. 00676 */ 00677 if( (opProperty & OPFLG_IN1)!=0 ){ 00678 assert( pOp->p1>0 ); 00679 assert( pOp->p1<=p->nMem ); 00680 pIn1 = &p->aMem[pOp->p1]; 00681 REGISTER_TRACE(pOp->p1, pIn1); 00682 if( (opProperty & OPFLG_IN2)!=0 ){ 00683 assert( pOp->p2>0 ); 00684 assert( pOp->p2<=p->nMem ); 00685 pIn2 = &p->aMem[pOp->p2]; 00686 REGISTER_TRACE(pOp->p2, pIn2); 00687 if( (opProperty & OPFLG_OUT3)!=0 ){ 00688 assert( pOp->p3>0 ); 00689 assert( pOp->p3<=p->nMem ); 00690 pOut = &p->aMem[pOp->p3]; 00691 } 00692 }else if( (opProperty & OPFLG_IN3)!=0 ){ 00693 assert( pOp->p3>0 ); 00694 assert( pOp->p3<=p->nMem ); 00695 pIn3 = &p->aMem[pOp->p3]; 00696 REGISTER_TRACE(pOp->p3, pIn3); 00697 } 00698 }else if( (opProperty & OPFLG_IN2)!=0 ){ 00699 assert( pOp->p2>0 ); 00700 assert( pOp->p2<=p->nMem ); 00701 pIn2 = &p->aMem[pOp->p2]; 00702 REGISTER_TRACE(pOp->p2, pIn2); 00703 }else if( (opProperty & OPFLG_IN3)!=0 ){ 00704 assert( pOp->p3>0 ); 00705 assert( pOp->p3<=p->nMem ); 00706 pIn3 = &p->aMem[pOp->p3]; 00707 REGISTER_TRACE(pOp->p3, pIn3); 00708 } 00709 00710 switch( pOp->opcode ){ 00711 00712 /***************************************************************************** 00713 ** What follows is a massive switch statement where each case implements a 00714 ** separate instruction in the virtual machine. If we follow the usual 00715 ** indentation conventions, each case should be indented by 6 spaces. But 00716 ** that is a lot of wasted space on the left margin. So the code within 00717 ** the switch statement will break with convention and be flush-left. Another 00718 ** big comment (similar to this one) will mark the point in the code where 00719 ** we transition back to normal indentation. 00720 ** 00721 ** The formatting of each case is important. The makefile for SQLite 00722 ** generates two C files "opcodes.h" and "opcodes.c" by scanning this 00723 ** file looking for lines that begin with "case OP_". The opcodes.h files 00724 ** will be filled with #defines that give unique integer values to each 00725 ** opcode and the opcodes.c file is filled with an array of strings where 00726 ** each string is the symbolic name for the corresponding opcode. If the 00727 ** case statement is followed by a comment of the form "/# same as ... #/" 00728 ** that comment is used to determine the particular value of the opcode. 00729 ** 00730 ** Other keywords in the comment that follows each case are used to 00731 ** construct the OPFLG_INITIALIZER value that initializes opcodeProperty[]. 00732 ** Keywords include: in1, in2, in3, out2_prerelease, out2, out3. See 00733 ** the mkopcodeh.awk script for additional information. 00734 ** 00735 ** Documentation about VDBE opcodes is generated by scanning this file 00736 ** for lines of that contain "Opcode:". That line and all subsequent 00737 ** comment lines are used in the generation of the opcode.html documentation 00738 ** file. 00739 ** 00740 ** SUMMARY: 00741 ** 00742 ** Formatting is important to scripts that scan this file. 00743 ** Do not deviate from the formatting style currently in use. 00744 ** 00745 *****************************************************************************/ 00746 00747 /* Opcode: Goto * P2 * * * 00748 ** 00749 ** An unconditional jump to address P2. 00750 ** The next instruction executed will be 00751 ** the one at index P2 from the beginning of 00752 ** the program. 00753 */ 00754 case OP_Goto: { /* jump */ 00755 CHECK_FOR_INTERRUPT; 00756 pc = pOp->p2 - 1; 00757 break; 00758 } 00759 00760 /* Opcode: Gosub P1 P2 * * * 00761 ** 00762 ** Write the current address onto register P1 00763 ** and then jump to address P2. 00764 */ 00765 case OP_Gosub: { /* jump */ 00766 assert( pOp->p1>0 ); 00767 assert( pOp->p1<=p->nMem ); 00768 pIn1 = &p->aMem[pOp->p1]; 00769 assert( (pIn1->flags & MEM_Dyn)==0 ); 00770 pIn1->flags = MEM_Int; 00771 pIn1->u.i = pc; 00772 REGISTER_TRACE(pOp->p1, pIn1); 00773 pc = pOp->p2 - 1; 00774 break; 00775 } 00776 00777 /* Opcode: Return P1 * * * * 00778 ** 00779 ** Jump to the next instruction after the address in register P1. 00780 */ 00781 case OP_Return: { /* in1 */ 00782 assert( pIn1->flags & MEM_Int ); 00783 pc = pIn1->u.i; 00784 break; 00785 } 00786 00787 /* Opcode: Yield P1 * * * * 00788 ** 00789 ** Swap the program counter with the value in register P1. 00790 */ 00791 case OP_Yield: { 00792 int pcDest; 00793 assert( pOp->p1>0 ); 00794 assert( pOp->p1<=p->nMem ); 00795 pIn1 = &p->aMem[pOp->p1]; 00796 assert( (pIn1->flags & MEM_Dyn)==0 ); 00797 pIn1->flags = MEM_Int; 00798 pcDest = pIn1->u.i; 00799 pIn1->u.i = pc; 00800 REGISTER_TRACE(pOp->p1, pIn1); 00801 pc = pcDest; 00802 break; 00803 } 00804 00805 00806 /* Opcode: Halt P1 P2 * P4 * 00807 ** 00808 ** Exit immediately. All open cursors, Fifos, etc are closed 00809 ** automatically. 00810 ** 00811 ** P1 is the result code returned by sqlite3_exec(), sqlite3_reset(), 00812 ** or sqlite3_finalize(). For a normal halt, this should be SQLITE_OK (0). 00813 ** For errors, it can be some other value. If P1!=0 then P2 will determine 00814 ** whether or not to rollback the current transaction. Do not rollback 00815 ** if P2==OE_Fail. Do the rollback if P2==OE_Rollback. If P2==OE_Abort, 00816 ** then back out all changes that have occurred during this execution of the 00817 ** VDBE, but do not rollback the transaction. 00818 ** 00819 ** If P4 is not null then it is an error message string. 00820 ** 00821 ** There is an implied "Halt 0 0 0" instruction inserted at the very end of 00822 ** every program. So a jump past the last instruction of the program 00823 ** is the same as executing Halt. 00824 */ 00825 case OP_Halt: { 00826 p->rc = pOp->p1; 00827 p->pc = pc; 00828 p->errorAction = pOp->p2; 00829 if( pOp->p4.z ){ 00830 sqlite3SetString(&p->zErrMsg, db, "%s", pOp->p4.z); 00831 } 00832 rc = sqlite3VdbeHalt(p); 00833 assert( rc==SQLITE_BUSY || rc==SQLITE_OK ); 00834 if( rc==SQLITE_BUSY ){ 00835 p->rc = rc = SQLITE_BUSY; 00836 }else{ 00837 rc = p->rc ? SQLITE_ERROR : SQLITE_DONE; 00838 } 00839 goto vdbe_return; 00840 } 00841 00842 /* Opcode: Integer P1 P2 * * * 00843 ** 00844 ** The 32-bit integer value P1 is written into register P2. 00845 */ 00846 case OP_Integer: { /* out2-prerelease */ 00847 pOut->flags = MEM_Int; 00848 pOut->u.i = pOp->p1; 00849 break; 00850 } 00851 00852 /* Opcode: Int64 * P2 * P4 * 00853 ** 00854 ** P4 is a pointer to a 64-bit integer value. 00855 ** Write that value into register P2. 00856 */ 00857 case OP_Int64: { /* out2-prerelease */ 00858 assert( pOp->p4.pI64!=0 ); 00859 pOut->flags = MEM_Int; 00860 pOut->u.i = *pOp->p4.pI64; 00861 break; 00862 } 00863 00864 /* Opcode: Real * P2 * P4 * 00865 ** 00866 ** P4 is a pointer to a 64-bit floating point value. 00867 ** Write that value into register P2. 00868 */ 00869 case OP_Real: { /* same as TK_FLOAT, out2-prerelease */ 00870 pOut->flags = MEM_Real; 00871 assert( !sqlite3IsNaN(*pOp->p4.pReal) ); 00872 pOut->r = *pOp->p4.pReal; 00873 break; 00874 } 00875 00876 /* Opcode: String8 * P2 * P4 * 00877 ** 00878 ** P4 points to a nul terminated UTF-8 string. This opcode is transformed 00879 ** into an OP_String before it is executed for the first time. 00880 */ 00881 case OP_String8: { /* same as TK_STRING, out2-prerelease */ 00882 assert( pOp->p4.z!=0 ); 00883 pOp->opcode = OP_String; 00884 pOp->p1 = strlen(pOp->p4.z); 00885 00886 #ifndef SQLITE_OMIT_UTF16 00887 if( encoding!=SQLITE_UTF8 ){ 00888 sqlite3VdbeMemSetStr(pOut, pOp->p4.z, -1, SQLITE_UTF8, SQLITE_STATIC); 00889 if( SQLITE_OK!=sqlite3VdbeChangeEncoding(pOut, encoding) ) goto no_mem; 00890 if( SQLITE_OK!=sqlite3VdbeMemMakeWriteable(pOut) ) goto no_mem; 00891 pOut->zMalloc = 0; 00892 pOut->flags |= MEM_Static; 00893 pOut->flags &= ~MEM_Dyn; 00894 if( pOp->p4type==P4_DYNAMIC ){ 00895 sqlite3DbFree(db, pOp->p4.z); 00896 } 00897 pOp->p4type = P4_DYNAMIC; 00898 pOp->p4.z = pOut->z; 00899 pOp->p1 = pOut->n; 00900 if( pOp->p1>db->aLimit[SQLITE_LIMIT_LENGTH] ){ 00901 goto too_big; 00902 } 00903 UPDATE_MAX_BLOBSIZE(pOut); 00904 break; 00905 } 00906 #endif 00907 if( pOp->p1>db->aLimit[SQLITE_LIMIT_LENGTH] ){ 00908 goto too_big; 00909 } 00910 /* Fall through to the next case, OP_String */ 00911 } 00912 00913 /* Opcode: String P1 P2 * P4 * 00914 ** 00915 ** The string value P4 of length P1 (bytes) is stored in register P2. 00916 */ 00917 case OP_String: { /* out2-prerelease */ 00918 assert( pOp->p4.z!=0 ); 00919 pOut->flags = MEM_Str|MEM_Static|MEM_Term; 00920 pOut->z = pOp->p4.z; 00921 pOut->n = pOp->p1; 00922 pOut->enc = encoding; 00923 UPDATE_MAX_BLOBSIZE(pOut); 00924 break; 00925 } 00926 00927 /* Opcode: Null * P2 * * * 00928 ** 00929 ** Write a NULL into register P2. 00930 */ 00931 case OP_Null: { /* out2-prerelease */ 00932 break; 00933 } 00934 00935 00936 #ifndef SQLITE_OMIT_BLOB_LITERAL 00937 /* Opcode: Blob P1 P2 * P4 00938 ** 00939 ** P4 points to a blob of data P1 bytes long. Store this 00940 ** blob in register P2. This instruction is not coded directly 00941 ** by the compiler. Instead, the compiler layer specifies 00942 ** an OP_HexBlob opcode, with the hex string representation of 00943 ** the blob as P4. This opcode is transformed to an OP_Blob 00944 ** the first time it is executed. 00945 */ 00946 case OP_Blob: { /* out2-prerelease */ 00947 assert( pOp->p1 <= SQLITE_MAX_LENGTH ); 00948 sqlite3VdbeMemSetStr(pOut, pOp->p4.z, pOp->p1, 0, 0); 00949 pOut->enc = encoding; 00950 UPDATE_MAX_BLOBSIZE(pOut); 00951 break; 00952 } 00953 #endif /* SQLITE_OMIT_BLOB_LITERAL */ 00954 00955 /* Opcode: Variable P1 P2 * * * 00956 ** 00957 ** The value of variable P1 is written into register P2. A variable is 00958 ** an unknown in the original SQL string as handed to sqlite3_compile(). 00959 ** Any occurrence of the '?' character in the original SQL is considered 00960 ** a variable. Variables in the SQL string are number from left to 00961 ** right beginning with 1. The values of variables are set using the 00962 ** sqlite3_bind() API. 00963 */ 00964 case OP_Variable: { /* out2-prerelease */ 00965 int j = pOp->p1 - 1; 00966 Mem *pVar; 00967 assert( j>=0 && j<p->nVar ); 00968 00969 pVar = &p->aVar[j]; 00970 if( sqlite3VdbeMemTooBig(pVar) ){ 00971 goto too_big; 00972 } 00973 sqlite3VdbeMemShallowCopy(pOut, &p->aVar[j], MEM_Static); 00974 UPDATE_MAX_BLOBSIZE(pOut); 00975 break; 00976 } 00977 00978 /* Opcode: Move P1 P2 P3 * * 00979 ** 00980 ** Move the values in register P1..P1+P3-1 over into 00981 ** registers P2..P2+P3-1. Registers P1..P1+P1-1 are 00982 ** left holding a NULL. It is an error for register ranges 00983 ** P1..P1+P3-1 and P2..P2+P3-1 to overlap. 00984 */ 00985 case OP_Move: { 00986 char *zMalloc; 00987 int n = pOp->p3; 00988 int p1 = pOp->p1; 00989 int p2 = pOp->p2; 00990 assert( n>0 ); 00991 assert( p1>0 ); 00992 assert( p1+n<p->nMem ); 00993 pIn1 = &p->aMem[p1]; 00994 assert( p2>0 ); 00995 assert( p2+n<p->nMem ); 00996 pOut = &p->aMem[p2]; 00997 assert( p1+n<=p2 || p2+n<=p1 ); 00998 while( n-- ){ 00999 zMalloc = pOut->zMalloc; 01000 pOut->zMalloc = 0; 01001 sqlite3VdbeMemMove(pOut, pIn1); 01002 pIn1->zMalloc = zMalloc; 01003 REGISTER_TRACE(p2++, pOut); 01004 pIn1++; 01005 pOut++; 01006 } 01007 break; 01008 } 01009 01010 /* Opcode: Copy P1 P2 * * * 01011 ** 01012 ** Make a copy of register P1 into register P2. 01013 ** 01014 ** This instruction makes a deep copy of the value. A duplicate 01015 ** is made of any string or blob constant. See also OP_SCopy. 01016 */ 01017 case OP_Copy: { 01018 assert( pOp->p1>0 ); 01019 assert( pOp->p1<=p->nMem ); 01020 pIn1 = &p->aMem[pOp->p1]; 01021 assert( pOp->p2>0 ); 01022 assert( pOp->p2<=p->nMem ); 01023 pOut = &p->aMem[pOp->p2]; 01024 assert( pOut!=pIn1 ); 01025 sqlite3VdbeMemShallowCopy(pOut, pIn1, MEM_Ephem); 01026 Deephemeralize(pOut); 01027 REGISTER_TRACE(pOp->p2, pOut); 01028 break; 01029 } 01030 01031 /* Opcode: SCopy P1 P2 * * * 01032 ** 01033 ** Make a shallow copy of register P1 into register P2. 01034 ** 01035 ** This instruction makes a shallow copy of the value. If the value 01036 ** is a string or blob, then the copy is only a pointer to the 01037 ** original and hence if the original changes so will the copy. 01038 ** Worse, if the original is deallocated, the copy becomes invalid. 01039 ** Thus the program must guarantee that the original will not change 01040 ** during the lifetime of the copy. Use OP_Copy to make a complete 01041 ** copy. 01042 */ 01043 case OP_SCopy: { 01044 assert( pOp->p1>0 ); 01045 assert( pOp->p1<=p->nMem ); 01046 pIn1 = &p->aMem[pOp->p1]; 01047 REGISTER_TRACE(pOp->p1, pIn1); 01048 assert( pOp->p2>0 ); 01049 assert( pOp->p2<=p->nMem ); 01050 pOut = &p->aMem[pOp->p2]; 01051 assert( pOut!=pIn1 ); 01052 sqlite3VdbeMemShallowCopy(pOut, pIn1, MEM_Ephem); 01053 REGISTER_TRACE(pOp->p2, pOut); 01054 break; 01055 } 01056 01057 /* Opcode: ResultRow P1 P2 * * * 01058 ** 01059 ** The registers P1 through P1+P2-1 contain a single row of 01060 ** results. This opcode causes the sqlite3_step() call to terminate 01061 ** with an SQLITE_ROW return code and it sets up the sqlite3_stmt 01062 ** structure to provide access to the top P1 values as the result 01063 ** row. 01064 */ 01065 case OP_ResultRow: { 01066 Mem *pMem; 01067 int i; 01068 assert( p->nResColumn==pOp->p2 ); 01069 assert( pOp->p1>0 ); 01070 assert( pOp->p1+pOp->p2<=p->nMem ); 01071 01072 /* Invalidate all ephemeral cursor row caches */ 01073 p->cacheCtr = (p->cacheCtr + 2)|1; 01074 01075 /* Make sure the results of the current row are \000 terminated 01076 ** and have an assigned type. The results are de-ephemeralized as 01077 ** as side effect. 01078 */ 01079 pMem = p->pResultSet = &p->aMem[pOp->p1]; 01080 for(i=0; i<pOp->p2; i++){ 01081 sqlite3VdbeMemNulTerminate(&pMem[i]); 01082 storeTypeInfo(&pMem[i], encoding); 01083 REGISTER_TRACE(pOp->p1+i, &pMem[i]); 01084 } 01085 if( db->mallocFailed ) goto no_mem; 01086 01087 /* Return SQLITE_ROW 01088 */ 01089 p->nCallback++; 01090 p->pc = pc + 1; 01091 rc = SQLITE_ROW; 01092 goto vdbe_return; 01093 } 01094 01095 /* Opcode: Concat P1 P2 P3 * * 01096 ** 01097 ** Add the text in register P1 onto the end of the text in 01098 ** register P2 and store the result in register P3. 01099 ** If either the P1 or P2 text are NULL then store NULL in P3. 01100 ** 01101 ** P3 = P2 || P1 01102 ** 01103 ** It is illegal for P1 and P3 to be the same register. Sometimes, 01104 ** if P3 is the same register as P2, the implementation is able 01105 ** to avoid a memcpy(). 01106 */ 01107 case OP_Concat: { /* same as TK_CONCAT, in1, in2, out3 */ 01108 i64 nByte; 01109 01110 assert( pIn1!=pOut ); 01111 if( (pIn1->flags | pIn2->flags) & MEM_Null ){ 01112 sqlite3VdbeMemSetNull(pOut); 01113 break; 01114 } 01115 ExpandBlob(pIn1); 01116 Stringify(pIn1, encoding); 01117 ExpandBlob(pIn2); 01118 Stringify(pIn2, encoding); 01119 nByte = pIn1->n + pIn2->n; 01120 if( nByte>db->aLimit[SQLITE_LIMIT_LENGTH] ){ 01121 goto too_big; 01122 } 01123 MemSetTypeFlag(pOut, MEM_Str); 01124 if( sqlite3VdbeMemGrow(pOut, nByte+2, pOut==pIn2) ){ 01125 goto no_mem; 01126 } 01127 if( pOut!=pIn2 ){ 01128 memcpy(pOut->z, pIn2->z, pIn2->n); 01129 } 01130 memcpy(&pOut->z[pIn2->n], pIn1->z, pIn1->n); 01131 pOut->z[nByte] = 0; 01132 pOut->z[nByte+1] = 0; 01133 pOut->flags |= MEM_Term; 01134 pOut->n = nByte; 01135 pOut->enc = encoding; 01136 UPDATE_MAX_BLOBSIZE(pOut); 01137 break; 01138 } 01139 01140 /* Opcode: Add P1 P2 P3 * * 01141 ** 01142 ** Add the value in register P1 to the value in register P2 01143 ** and store the result in register P3. 01144 ** If either input is NULL, the result is NULL. 01145 */ 01146 /* Opcode: Multiply P1 P2 P3 * * 01147 ** 01148 ** 01149 ** Multiply the value in register P1 by the value in register P2 01150 ** and store the result in register P3. 01151 ** If either input is NULL, the result is NULL. 01152 */ 01153 /* Opcode: Subtract P1 P2 P3 * * 01154 ** 01155 ** Subtract the value in register P1 from the value in register P2 01156 ** and store the result in register P3. 01157 ** If either input is NULL, the result is NULL. 01158 */ 01159 /* Opcode: Divide P1 P2 P3 * * 01160 ** 01161 ** Divide the value in register P1 by the value in register P2 01162 ** and store the result in register P3. If the value in register P2 01163 ** is zero, then the result is NULL. 01164 ** If either input is NULL, the result is NULL. 01165 */ 01166 /* Opcode: Remainder P1 P2 P3 * * 01167 ** 01168 ** Compute the remainder after integer division of the value in 01169 ** register P1 by the value in register P2 and store the result in P3. 01170 ** If the value in register P2 is zero the result is NULL. 01171 ** If either operand is NULL, the result is NULL. 01172 */ 01173 case OP_Add: /* same as TK_PLUS, in1, in2, out3 */ 01174 case OP_Subtract: /* same as TK_MINUS, in1, in2, out3 */ 01175 case OP_Multiply: /* same as TK_STAR, in1, in2, out3 */ 01176 case OP_Divide: /* same as TK_SLASH, in1, in2, out3 */ 01177 case OP_Remainder: { /* same as TK_REM, in1, in2, out3 */ 01178 int flags; 01179 applyNumericAffinity(pIn1); 01180 applyNumericAffinity(pIn2); 01181 flags = pIn1->flags | pIn2->flags; 01182 if( (flags & MEM_Null)!=0 ) goto arithmetic_result_is_null; 01183 if( (pIn1->flags & pIn2->flags & MEM_Int)==MEM_Int ){ 01184 i64 a, b; 01185 a = pIn1->u.i; 01186 b = pIn2->u.i; 01187 switch( pOp->opcode ){ 01188 case OP_Add: b += a; break; 01189 case OP_Subtract: b -= a; break; 01190 case OP_Multiply: b *= a; break; 01191 case OP_Divide: { 01192 if( a==0 ) goto arithmetic_result_is_null; 01193 /* Dividing the largest possible negative 64-bit integer (1<<63) by 01194 ** -1 returns an integer too large to store in a 64-bit data-type. On 01195 ** some architectures, the value overflows to (1<<63). On others, 01196 ** a SIGFPE is issued. The following statement normalizes this 01197 ** behavior so that all architectures behave as if integer 01198 ** overflow occurred. 01199 */ 01200 if( a==-1 && b==SMALLEST_INT64 ) a = 1; 01201 b /= a; 01202 break; 01203 } 01204 default: { 01205 if( a==0 ) goto arithmetic_result_is_null; 01206 if( a==-1 ) a = 1; 01207 b %= a; 01208 break; 01209 } 01210 } 01211 pOut->u.i = b; 01212 MemSetTypeFlag(pOut, MEM_Int); 01213 }else{ 01214 double a, b; 01215 a = sqlite3VdbeRealValue(pIn1); 01216 b = sqlite3VdbeRealValue(pIn2); 01217 switch( pOp->opcode ){ 01218 case OP_Add: b += a; break; 01219 case OP_Subtract: b -= a; break; 01220 case OP_Multiply: b *= a; break; 01221 case OP_Divide: { 01222 if( a==0.0 ) goto arithmetic_result_is_null; 01223 b /= a; 01224 break; 01225 } 01226 default: { 01227 i64 ia = (i64)a; 01228 i64 ib = (i64)b; 01229 if( ia==0 ) goto arithmetic_result_is_null; 01230 if( ia==-1 ) ia = 1; 01231 b = ib % ia; 01232 break; 01233 } 01234 } 01235 if( sqlite3IsNaN(b) ){ 01236 goto arithmetic_result_is_null; 01237 } 01238 pOut->r = b; 01239 MemSetTypeFlag(pOut, MEM_Real); 01240 if( (flags & MEM_Real)==0 ){ 01241 sqlite3VdbeIntegerAffinity(pOut); 01242 } 01243 } 01244 break; 01245 01246 arithmetic_result_is_null: 01247 sqlite3VdbeMemSetNull(pOut); 01248 break; 01249 } 01250 01251 /* Opcode: CollSeq * * P4 01252 ** 01253 ** P4 is a pointer to a CollSeq struct. If the next call to a user function 01254 ** or aggregate calls sqlite3GetFuncCollSeq(), this collation sequence will 01255 ** be returned. This is used by the built-in min(), max() and nullif() 01256 ** functions. 01257 ** 01258 ** The interface used by the implementation of the aforementioned functions 01259 ** to retrieve the collation sequence set by this opcode is not available 01260 ** publicly, only to user functions defined in func.c. 01261 */ 01262 case OP_CollSeq: { 01263 assert( pOp->p4type==P4_COLLSEQ ); 01264 break; 01265 } 01266 01267 /* Opcode: Function P1 P2 P3 P4 P5 01268 ** 01269 ** Invoke a user function (P4 is a pointer to a Function structure that 01270 ** defines the function) with P5 arguments taken from register P2 and 01271 ** successors. The result of the function is stored in register P3. 01272 ** Register P3 must not be one of the function inputs. 01273 ** 01274 ** P1 is a 32-bit bitmask indicating whether or not each argument to the 01275 ** function was determined to be constant at compile time. If the first 01276 ** argument was constant then bit 0 of P1 is set. This is used to determine 01277 ** whether meta data associated with a user function argument using the 01278 ** sqlite3_set_auxdata() API may be safely retained until the next 01279 ** invocation of this opcode. 01280 ** 01281 ** See also: AggStep and AggFinal 01282 */ 01283 case OP_Function: { 01284 int i; 01285 Mem *pArg; 01286 sqlite3_context ctx; 01287 sqlite3_value **apVal; 01288 int n = pOp->p5; 01289 01290 apVal = p->apArg; 01291 assert( apVal || n==0 ); 01292 01293 assert( n==0 || (pOp->p2>0 && pOp->p2+n<=p->nMem) ); 01294 assert( pOp->p3<pOp->p2 || pOp->p3>=pOp->p2+n ); 01295 pArg = &p->aMem[pOp->p2]; 01296 for(i=0; i<n; i++, pArg++){ 01297 apVal[i] = pArg; 01298 storeTypeInfo(pArg, encoding); 01299 REGISTER_TRACE(pOp->p2, pArg); 01300 } 01301 01302 assert( pOp->p4type==P4_FUNCDEF || pOp->p4type==P4_VDBEFUNC ); 01303 if( pOp->p4type==P4_FUNCDEF ){ 01304 ctx.pFunc = pOp->p4.pFunc; 01305 ctx.pVdbeFunc = 0; 01306 }else{ 01307 ctx.pVdbeFunc = (VdbeFunc*)pOp->p4.pVdbeFunc; 01308 ctx.pFunc = ctx.pVdbeFunc->pFunc; 01309 } 01310 01311 assert( pOp->p3>0 && pOp->p3<=p->nMem ); 01312 pOut = &p->aMem[pOp->p3]; 01313 ctx.s.flags = MEM_Null; 01314 ctx.s.db = db; 01315 ctx.s.xDel = 0; 01316 ctx.s.zMalloc = 0; 01317 01318 /* The output cell may already have a buffer allocated. Move 01319 ** the pointer to ctx.s so in case the user-function can use 01320 ** the already allocated buffer instead of allocating a new one. 01321 */ 01322 sqlite3VdbeMemMove(&ctx.s, pOut); 01323 MemSetTypeFlag(&ctx.s, MEM_Null); 01324 01325 ctx.isError = 0; 01326 if( ctx.pFunc->flags & SQLITE_FUNC_NEEDCOLL ){ 01327 assert( pOp>p->aOp ); 01328 assert( pOp[-1].p4type==P4_COLLSEQ ); 01329 assert( pOp[-1].opcode==OP_CollSeq ); 01330 ctx.pColl = pOp[-1].p4.pColl; 01331 } 01332 if( sqlite3SafetyOff(db) ) goto abort_due_to_misuse; 01333 (*ctx.pFunc->xFunc)(&ctx, n, apVal); 01334 if( sqlite3SafetyOn(db) ){ 01335 sqlite3VdbeMemRelease(&ctx.s); 01336 goto abort_due_to_misuse; 01337 } 01338 if( db->mallocFailed ){ 01339 /* Even though a malloc() has failed, the implementation of the 01340 ** user function may have called an sqlite3_result_XXX() function 01341 ** to return a value. The following call releases any resources 01342 ** associated with such a value. 01343 ** 01344 ** Note: Maybe MemRelease() should be called if sqlite3SafetyOn() 01345 ** fails also (the if(...) statement above). But if people are 01346 ** misusing sqlite, they have bigger problems than a leaked value. 01347 */ 01348 sqlite3VdbeMemRelease(&ctx.s); 01349 goto no_mem; 01350 } 01351 01352 /* If any auxiliary data functions have been called by this user function, 01353 ** immediately call the destructor for any non-static values. 01354 */ 01355 if( ctx.pVdbeFunc ){ 01356 sqlite3VdbeDeleteAuxData(ctx.pVdbeFunc, pOp->p1); 01357 pOp->p4.pVdbeFunc = ctx.pVdbeFunc; 01358 pOp->p4type = P4_VDBEFUNC; 01359 } 01360 01361 /* If the function returned an error, throw an exception */ 01362 if( ctx.isError ){ 01363 sqlite3SetString(&p->zErrMsg, db, "%s", sqlite3_value_text(&ctx.s)); 01364 rc = ctx.isError; 01365 } 01366 01367 /* Copy the result of the function into register P3 */ 01368 sqlite3VdbeChangeEncoding(&ctx.s, encoding); 01369 sqlite3VdbeMemMove(pOut, &ctx.s); 01370 if( sqlite3VdbeMemTooBig(pOut) ){ 01371 goto too_big; 01372 } 01373 REGISTER_TRACE(pOp->p3, pOut); 01374 UPDATE_MAX_BLOBSIZE(pOut); 01375 break; 01376 } 01377 01378 /* Opcode: BitAnd P1 P2 P3 * * 01379 ** 01380 ** Take the bit-wise AND of the values in register P1 and P2 and 01381 ** store the result in register P3. 01382 ** If either input is NULL, the result is NULL. 01383 */ 01384 /* Opcode: BitOr P1 P2 P3 * * 01385 ** 01386 ** Take the bit-wise OR of the values in register P1 and P2 and 01387 ** store the result in register P3. 01388 ** If either input is NULL, the result is NULL. 01389 */ 01390 /* Opcode: ShiftLeft P1 P2 P3 * * 01391 ** 01392 ** Shift the integer value in register P2 to the left by the 01393 ** number of bits specified by the integer in regiser P1. 01394 ** Store the result in register P3. 01395 ** If either input is NULL, the result is NULL. 01396 */ 01397 /* Opcode: ShiftRight P1 P2 P3 * * 01398 ** 01399 ** Shift the integer value in register P2 to the right by the 01400 ** number of bits specified by the integer in register P1. 01401 ** Store the result in register P3. 01402 ** If either input is NULL, the result is NULL. 01403 */ 01404 case OP_BitAnd: /* same as TK_BITAND, in1, in2, out3 */ 01405 case OP_BitOr: /* same as TK_BITOR, in1, in2, out3 */ 01406 case OP_ShiftLeft: /* same as TK_LSHIFT, in1, in2, out3 */ 01407 case OP_ShiftRight: { /* same as TK_RSHIFT, in1, in2, out3 */ 01408 i64 a, b; 01409 01410 if( (pIn1->flags | pIn2->flags) & MEM_Null ){ 01411 sqlite3VdbeMemSetNull(pOut); 01412 break; 01413 } 01414 a = sqlite3VdbeIntValue(pIn2); 01415 b = sqlite3VdbeIntValue(pIn1); 01416 switch( pOp->opcode ){ 01417 case OP_BitAnd: a &= b; break; 01418 case OP_BitOr: a |= b; break; 01419 case OP_ShiftLeft: a <<= b; break; 01420 default: assert( pOp->opcode==OP_ShiftRight ); 01421 a >>= b; break; 01422 } 01423 pOut->u.i = a; 01424 MemSetTypeFlag(pOut, MEM_Int); 01425 break; 01426 } 01427 01428 /* Opcode: AddImm P1 P2 * * * 01429 ** 01430 ** Add the constant P2 to the value in register P1. 01431 ** The result is always an integer. 01432 ** 01433 ** To force any register to be an integer, just add 0. 01434 */ 01435 case OP_AddImm: { /* in1 */ 01436 sqlite3VdbeMemIntegerify(pIn1); 01437 pIn1->u.i += pOp->p2; 01438 break; 01439 } 01440 01441 /* Opcode: ForceInt P1 P2 P3 * * 01442 ** 01443 ** Convert value in register P1 into an integer. If the value 01444 ** in P1 is not numeric (meaning that is is a NULL or a string that 01445 ** does not look like an integer or floating point number) then 01446 ** jump to P2. If the value in P1 is numeric then 01447 ** convert it into the least integer that is greater than or equal to its 01448 ** current value if P3==0, or to the least integer that is strictly 01449 ** greater than its current value if P3==1. 01450 */ 01451 case OP_ForceInt: { /* jump, in1 */ 01452 i64 v; 01453 applyAffinity(pIn1, SQLITE_AFF_NUMERIC, encoding); 01454 if( (pIn1->flags & (MEM_Int|MEM_Real))==0 ){ 01455 pc = pOp->p2 - 1; 01456 break; 01457 } 01458 if( pIn1->flags & MEM_Int ){ 01459 v = pIn1->u.i + (pOp->p3!=0); 01460 }else{ 01461 assert( pIn1->flags & MEM_Real ); 01462 v = (sqlite3_int64)pIn1->r; 01463 if( pIn1->r>(double)v ) v++; 01464 if( pOp->p3 && pIn1->r==(double)v ) v++; 01465 } 01466 pIn1->u.i = v; 01467 MemSetTypeFlag(pIn1, MEM_Int); 01468 break; 01469 } 01470 01471 /* Opcode: MustBeInt P1 P2 * * * 01472 ** 01473 ** Force the value in register P1 to be an integer. If the value 01474 ** in P1 is not an integer and cannot be converted into an integer 01475 ** without data loss, then jump immediately to P2, or if P2==0 01476 ** raise an SQLITE_MISMATCH exception. 01477 */ 01478 case OP_MustBeInt: { /* jump, in1 */ 01479 applyAffinity(pIn1, SQLITE_AFF_NUMERIC, encoding); 01480 if( (pIn1->flags & MEM_Int)==0 ){ 01481 if( pOp->p2==0 ){ 01482 rc = SQLITE_MISMATCH; 01483 goto abort_due_to_error; 01484 }else{ 01485 pc = pOp->p2 - 1; 01486 } 01487 }else{ 01488 MemSetTypeFlag(pIn1, MEM_Int); 01489 } 01490 break; 01491 } 01492 01493 /* Opcode: RealAffinity P1 * * * * 01494 ** 01495 ** If register P1 holds an integer convert it to a real value. 01496 ** 01497 ** This opcode is used when extracting information from a column that 01498 ** has REAL affinity. Such column values may still be stored as 01499 ** integers, for space efficiency, but after extraction we want them 01500 ** to have only a real value. 01501 */ 01502 case OP_RealAffinity: { /* in1 */ 01503 if( pIn1->flags & MEM_Int ){ 01504 sqlite3VdbeMemRealify(pIn1); 01505 } 01506 break; 01507 } 01508 01509 #ifndef SQLITE_OMIT_CAST 01510 /* Opcode: ToText P1 * * * * 01511 ** 01512 ** Force the value in register P1 to be text. 01513 ** If the value is numeric, convert it to a string using the 01514 ** equivalent of printf(). Blob values are unchanged and 01515 ** are afterwards simply interpreted as text. 01516 ** 01517 ** A NULL value is not changed by this routine. It remains NULL. 01518 */ 01519 case OP_ToText: { /* same as TK_TO_TEXT, in1 */ 01520 if( pIn1->flags & MEM_Null ) break; 01521 assert( MEM_Str==(MEM_Blob>>3) ); 01522 pIn1->flags |= (pIn1->flags&MEM_Blob)>>3; 01523 applyAffinity(pIn1, SQLITE_AFF_TEXT, encoding); 01524 rc = ExpandBlob(pIn1); 01525 assert( pIn1->flags & MEM_Str || db->mallocFailed ); 01526 pIn1->flags &= ~(MEM_Int|MEM_Real|MEM_Blob); 01527 UPDATE_MAX_BLOBSIZE(pIn1); 01528 break; 01529 } 01530 01531 /* Opcode: ToBlob P1 * * * * 01532 ** 01533 ** Force the value in register P1 to be a BLOB. 01534 ** If the value is numeric, convert it to a string first. 01535 ** Strings are simply reinterpreted as blobs with no change 01536 ** to the underlying data. 01537 ** 01538 ** A NULL value is not changed by this routine. It remains NULL. 01539 */ 01540 case OP_ToBlob: { /* same as TK_TO_BLOB, in1 */ 01541 if( pIn1->flags & MEM_Null ) break; 01542 if( (pIn1->flags & MEM_Blob)==0 ){ 01543 applyAffinity(pIn1, SQLITE_AFF_TEXT, encoding); 01544 assert( pIn1->flags & MEM_Str || db->mallocFailed ); 01545 } 01546 MemSetTypeFlag(pIn1, MEM_Blob); 01547 UPDATE_MAX_BLOBSIZE(pIn1); 01548 break; 01549 } 01550 01551 /* Opcode: ToNumeric P1 * * * * 01552 ** 01553 ** Force the value in register P1 to be numeric (either an 01554 ** integer or a floating-point number.) 01555 ** If the value is text or blob, try to convert it to an using the 01556 ** equivalent of atoi() or atof() and store 0 if no such conversion 01557 ** is possible. 01558 ** 01559 ** A NULL value is not changed by this routine. It remains NULL. 01560 */ 01561 case OP_ToNumeric: { /* same as TK_TO_NUMERIC, in1 */ 01562 if( (pIn1->flags & (MEM_Null|MEM_Int|MEM_Real))==0 ){ 01563 sqlite3VdbeMemNumerify(pIn1); 01564 } 01565 break; 01566 } 01567 #endif /* SQLITE_OMIT_CAST */ 01568 01569 /* Opcode: ToInt P1 * * * * 01570 ** 01571 ** Force the value in register P1 be an integer. If 01572 ** The value is currently a real number, drop its fractional part. 01573 ** If the value is text or blob, try to convert it to an integer using the 01574 ** equivalent of atoi() and store 0 if no such conversion is possible. 01575 ** 01576 ** A NULL value is not changed by this routine. It remains NULL. 01577 */ 01578 case OP_ToInt: { /* same as TK_TO_INT, in1 */ 01579 if( (pIn1->flags & MEM_Null)==0 ){ 01580 sqlite3VdbeMemIntegerify(pIn1); 01581 } 01582 break; 01583 } 01584 01585 #ifndef SQLITE_OMIT_CAST 01586 /* Opcode: ToReal P1 * * * * 01587 ** 01588 ** Force the value in register P1 to be a floating point number. 01589 ** If The value is currently an integer, convert it. 01590 ** If the value is text or blob, try to convert it to an integer using the 01591 ** equivalent of atoi() and store 0.0 if no such conversion is possible. 01592 ** 01593 ** A NULL value is not changed by this routine. It remains NULL. 01594 */ 01595 case OP_ToReal: { /* same as TK_TO_REAL, in1 */ 01596 if( (pIn1->flags & MEM_Null)==0 ){ 01597 sqlite3VdbeMemRealify(pIn1); 01598 } 01599 break; 01600 } 01601 #endif /* SQLITE_OMIT_CAST */ 01602 01603 /* Opcode: Lt P1 P2 P3 P4 P5 01604 ** 01605 ** Compare the values in register P1 and P3. If reg(P3)<reg(P1) then 01606 ** jump to address P2. 01607 ** 01608 ** If the SQLITE_JUMPIFNULL bit of P5 is set and either reg(P1) or 01609 ** reg(P3) is NULL then take the jump. If the SQLITE_JUMPIFNULL 01610 ** bit is clear then fall thru if either operand is NULL. 01611 ** 01612 ** The SQLITE_AFF_MASK portion of P5 must be an affinity character - 01613 ** SQLITE_AFF_TEXT, SQLITE_AFF_INTEGER, and so forth. An attempt is made 01614 ** to coerce both inputs according to this affinity before the 01615 ** comparison is made. If the SQLITE_AFF_MASK is 0x00, then numeric 01616 ** affinity is used. Note that the affinity conversions are stored 01617 ** back into the input registers P1 and P3. So this opcode can cause 01618 ** persistent changes to registers P1 and P3. 01619 ** 01620 ** Once any conversions have taken place, and neither value is NULL, 01621 ** the values are compared. If both values are blobs then memcmp() is 01622 ** used to determine the results of the comparison. If both values 01623 ** are text, then the appropriate collating function specified in 01624 ** P4 is used to do the comparison. If P4 is not specified then 01625 ** memcmp() is used to compare text string. If both values are 01626 ** numeric, then a numeric comparison is used. If the two values 01627 ** are of different types, then numbers are considered less than 01628 ** strings and strings are considered less than blobs. 01629 ** 01630 ** If the SQLITE_STOREP2 bit of P5 is set, then do not jump. Instead, 01631 ** store a boolean result (either 0, or 1, or NULL) in register P2. 01632 */ 01633 /* Opcode: Ne P1 P2 P3 P4 P5 01634 ** 01635 ** This works just like the Lt opcode except that the jump is taken if 01636 ** the operands in registers P1 and P3 are not equal. See the Lt opcode for 01637 ** additional information. 01638 */ 01639 /* Opcode: Eq P1 P2 P3 P4 P5 01640 ** 01641 ** This works just like the Lt opcode except that the jump is taken if 01642 ** the operands in registers P1 and P3 are equal. 01643 ** See the Lt opcode for additional information. 01644 */ 01645 /* Opcode: Le P1 P2 P3 P4 P5 01646 ** 01647 ** This works just like the Lt opcode except that the jump is taken if 01648 ** the content of register P3 is less than or equal to the content of 01649 ** register P1. See the Lt opcode for additional information. 01650 */ 01651 /* Opcode: Gt P1 P2 P3 P4 P5 01652 ** 01653 ** This works just like the Lt opcode except that the jump is taken if 01654 ** the content of register P3 is greater than the content of 01655 ** register P1. See the Lt opcode for additional information. 01656 */ 01657 /* Opcode: Ge P1 P2 P3 P4 P5 01658 ** 01659 ** This works just like the Lt opcode except that the jump is taken if 01660 ** the content of register P3 is greater than or equal to the content of 01661 ** register P1. See the Lt opcode for additional information. 01662 */ 01663 case OP_Eq: /* same as TK_EQ, jump, in1, in3 */ 01664 case OP_Ne: /* same as TK_NE, jump, in1, in3 */ 01665 case OP_Lt: /* same as TK_LT, jump, in1, in3 */ 01666 case OP_Le: /* same as TK_LE, jump, in1, in3 */ 01667 case OP_Gt: /* same as TK_GT, jump, in1, in3 */ 01668 case OP_Ge: { /* same as TK_GE, jump, in1, in3 */ 01669 int flags; 01670 int res; 01671 char affinity; 01672 01673 flags = pIn1->flags|pIn3->flags; 01674 01675 if( flags&MEM_Null ){ 01676 /* If either operand is NULL then the result is always NULL. 01677 ** The jump is taken if the SQLITE_JUMPIFNULL bit is set. 01678 */ 01679 if( pOp->p5 & SQLITE_STOREP2 ){ 01680 pOut = &p->aMem[pOp->p2]; 01681 MemSetTypeFlag(pOut, MEM_Null); 01682 REGISTER_TRACE(pOp->p2, pOut); 01683 }else if( pOp->p5 & SQLITE_JUMPIFNULL ){ 01684 pc = pOp->p2-1; 01685 } 01686 break; 01687 } 01688 01689 affinity = pOp->p5 & SQLITE_AFF_MASK; 01690 if( affinity ){ 01691 applyAffinity(pIn1, affinity, encoding); 01692 applyAffinity(pIn3, affinity, encoding); 01693 } 01694 01695 assert( pOp->p4type==P4_COLLSEQ || pOp->p4.pColl==0 ); 01696 ExpandBlob(pIn1); 01697 ExpandBlob(pIn3); 01698 res = sqlite3MemCompare(pIn3, pIn1, pOp->p4.pColl); 01699 switch( pOp->opcode ){ 01700 case OP_Eq: res = res==0; break; 01701 case OP_Ne: res = res!=0; break; 01702 case OP_Lt: res = res<0; break; 01703 case OP_Le: res = res<=0; break; 01704 case OP_Gt: res = res>0; break; 01705 default: res = res>=0; break; 01706 } 01707 01708 if( pOp->p5 & SQLITE_STOREP2 ){ 01709 pOut = &p->aMem[pOp->p2]; 01710 MemSetTypeFlag(pOut, MEM_Int); 01711 pOut->u.i = res; 01712 REGISTER_TRACE(pOp->p2, pOut); 01713 }else if( res ){ 01714 pc = pOp->p2-1; 01715 } 01716 break; 01717 } 01718 01719 /* Opcode: Permutation * * * P4 * 01720 ** 01721 ** Set the permuation used by the OP_Compare operator to be the array 01722 ** of integers in P4. 01723 ** 01724 ** The permutation is only valid until the next OP_Permutation, OP_Compare, 01725 ** OP_Halt, or OP_ResultRow. Typically the OP_Permutation should occur 01726 ** immediately prior to the OP_Compare. 01727 */ 01728 case OP_Permutation: { 01729 assert( pOp->p4type==P4_INTARRAY ); 01730 assert( pOp->p4.ai ); 01731 aPermute = pOp->p4.ai; 01732 break; 01733 } 01734 01735 /* Opcode: Compare P1 P2 P3 P4 * 01736 ** 01737 ** Compare to vectors of registers in reg(P1)..reg(P1+P3-1) (all this 01738 ** one "A") and in reg(P2)..reg(P2+P3-1) ("B"). Save the result of 01739 ** the comparison for use by the next OP_Jump instruct. 01740 ** 01741 ** P4 is a KeyInfo structure that defines collating sequences and sort 01742 ** orders for the comparison. The permutation applies to registers 01743 ** only. The KeyInfo elements are used sequentially. 01744 ** 01745 ** The comparison is a sort comparison, so NULLs compare equal, 01746 ** NULLs are less than numbers, numbers are less than strings, 01747 ** and strings are less than blobs. 01748 */ 01749 case OP_Compare: { 01750 int n = pOp->p3; 01751 int i, p1, p2; 01752 const KeyInfo *pKeyInfo = pOp->p4.pKeyInfo; 01753 assert( n>0 ); 01754 assert( pKeyInfo!=0 ); 01755 p1 = pOp->p1; 01756 assert( p1>0 && p1+n-1<p->nMem ); 01757 p2 = pOp->p2; 01758 assert( p2>0 && p2+n-1<p->nMem ); 01759 for(i=0; i<n; i++){ 01760 int idx = aPermute ? aPermute[i] : i; 01761 CollSeq *pColl; /* Collating sequence to use on this term */ 01762 int bRev; /* True for DESCENDING sort order */ 01763 REGISTER_TRACE(p1+idx, &p->aMem[p1+idx]); 01764 REGISTER_TRACE(p2+idx, &p->aMem[p2+idx]); 01765 assert( i<pKeyInfo->nField ); 01766 pColl = pKeyInfo->aColl[i]; 01767 bRev = pKeyInfo->aSortOrder[i]; 01768 iCompare = sqlite3MemCompare(&p->aMem[p1+idx], &p->aMem[p2+idx], pColl); 01769 if( iCompare ){ 01770 if( bRev ) iCompare = -iCompare; 01771 break; 01772 } 01773 } 01774 aPermute = 0; 01775 break; 01776 } 01777 01778 /* Opcode: Jump P1 P2 P3 * * 01779 ** 01780 ** Jump to the instruction at address P1, P2, or P3 depending on whether 01781 ** in the most recent OP_Compare instruction the P1 vector was less than 01782 ** equal to, or greater than the P2 vector, respectively. 01783 */ 01784 case OP_Jump: { /* jump */ 01785 if( iCompare<0 ){ 01786 pc = pOp->p1 - 1; 01787 }else if( iCompare==0 ){ 01788 pc = pOp->p2 - 1; 01789 }else{ 01790 pc = pOp->p3 - 1; 01791 } 01792 break; 01793 } 01794 01795 /* Opcode: And P1 P2 P3 * * 01796 ** 01797 ** Take the logical AND of the values in registers P1 and P2 and 01798 ** write the result into register P3. 01799 ** 01800 ** If either P1 or P2 is 0 (false) then the result is 0 even if 01801 ** the other input is NULL. A NULL and true or two NULLs give 01802 ** a NULL output. 01803 */ 01804 /* Opcode: Or P1 P2 P3 * * 01805 ** 01806 ** Take the logical OR of the values in register P1 and P2 and 01807 ** store the answer in register P3. 01808 ** 01809 ** If either P1 or P2 is nonzero (true) then the result is 1 (true) 01810 ** even if the other input is NULL. A NULL and false or two NULLs 01811 ** give a NULL output. 01812 */ 01813 case OP_And: /* same as TK_AND, in1, in2, out3 */ 01814 case OP_Or: { /* same as TK_OR, in1, in2, out3 */ 01815 int v1, v2; /* 0==FALSE, 1==TRUE, 2==UNKNOWN or NULL */ 01816 01817 if( pIn1->flags & MEM_Null ){ 01818 v1 = 2; 01819 }else{ 01820 v1 = sqlite3VdbeIntValue(pIn1)!=0; 01821 } 01822 if( pIn2->flags & MEM_Null ){ 01823 v2 = 2; 01824 }else{ 01825 v2 = sqlite3VdbeIntValue(pIn2)!=0; 01826 } 01827 if( pOp->opcode==OP_And ){ 01828 static const unsigned char and_logic[] = { 0, 0, 0, 0, 1, 2, 0, 2, 2 }; 01829 v1 = and_logic[v1*3+v2]; 01830 }else{ 01831 static const unsigned char or_logic[] = { 0, 1, 2, 1, 1, 1, 2, 1, 2 }; 01832 v1 = or_logic[v1*3+v2]; 01833 } 01834 if( v1==2 ){ 01835 MemSetTypeFlag(pOut, MEM_Null); 01836 }else{ 01837 pOut->u.i = v1; 01838 MemSetTypeFlag(pOut, MEM_Int); 01839 } 01840 break; 01841 } 01842 01843 /* Opcode: Not P1 * * * * 01844 ** 01845 ** Interpret the value in register P1 as a boolean value. Replace it 01846 ** with its complement. If the value in register P1 is NULL its value 01847 ** is unchanged. 01848 */ 01849 case OP_Not: { /* same as TK_NOT, in1 */ 01850 if( pIn1->flags & MEM_Null ) break; /* Do nothing to NULLs */ 01851 sqlite3VdbeMemIntegerify(pIn1); 01852 pIn1->u.i = !pIn1->u.i; 01853 assert( pIn1->flags&MEM_Int ); 01854 break; 01855 } 01856 01857 /* Opcode: BitNot P1 * * * * 01858 ** 01859 ** Interpret the content of register P1 as an integer. Replace it 01860 ** with its ones-complement. If the value is originally NULL, leave 01861 ** it unchanged. 01862 */ 01863 case OP_BitNot: { /* same as TK_BITNOT, in1 */ 01864 if( pIn1->flags & MEM_Null ) break; /* Do nothing to NULLs */ 01865 sqlite3VdbeMemIntegerify(pIn1); 01866 pIn1->u.i = ~pIn1->u.i; 01867 assert( pIn1->flags&MEM_Int ); 01868 break; 01869 } 01870 01871 /* Opcode: If P1 P2 P3 * * 01872 ** 01873 ** Jump to P2 if the value in register P1 is true. The value is 01874 ** is considered true if it is numeric and non-zero. If the value 01875 ** in P1 is NULL then take the jump if P3 is true. 01876 */ 01877 /* Opcode: IfNot P1 P2 P3 * * 01878 ** 01879 ** Jump to P2 if the value in register P1 is False. The value is 01880 ** is considered true if it has a numeric value of zero. If the value 01881 ** in P1 is NULL then take the jump if P3 is true. 01882 */ 01883 case OP_If: /* jump, in1 */ 01884 case OP_IfNot: { /* jump, in1 */ 01885 int c; 01886 if( pIn1->flags & MEM_Null ){ 01887 c = pOp->p3; 01888 }else{ 01889 #ifdef SQLITE_OMIT_FLOATING_POINT 01890 c = sqlite3VdbeIntValue(pIn1); 01891 #else 01892 c = sqlite3VdbeRealValue(pIn1)!=0.0; 01893 #endif 01894 if( pOp->opcode==OP_IfNot ) c = !c; 01895 } 01896 if( c ){ 01897 pc = pOp->p2-1; 01898 } 01899 break; 01900 } 01901 01902 /* Opcode: IsNull P1 P2 P3 * * 01903 ** 01904 ** Jump to P2 if the value in register P1 is NULL. If P3 is greater 01905 ** than zero, then check all values reg(P1), reg(P1+1), 01906 ** reg(P1+2), ..., reg(P1+P3-1). 01907 */ 01908 case OP_IsNull: { /* same as TK_ISNULL, jump, in1 */ 01909 int n = pOp->p3; 01910 assert( pOp->p3==0 || pOp->p1>0 ); 01911 do{ 01912 if( (pIn1->flags & MEM_Null)!=0 ){ 01913 pc = pOp->p2 - 1; 01914 break; 01915 } 01916 pIn1++; 01917 }while( --n > 0 ); 01918 break; 01919 } 01920 01921 /* Opcode: NotNull P1 P2 * * * 01922 ** 01923 ** Jump to P2 if the value in register P1 is not NULL. 01924 */ 01925 case OP_NotNull: { /* same as TK_NOTNULL, jump, in1 */ 01926 if( (pIn1->flags & MEM_Null)==0 ){ 01927 pc = pOp->p2 - 1; 01928 } 01929 break; 01930 } 01931 01932 /* Opcode: SetNumColumns * P2 * * * 01933 ** 01934 ** This opcode sets the number of columns for the cursor opened by the 01935 ** following instruction to P2. 01936 ** 01937 ** An OP_SetNumColumns is only useful if it occurs immediately before 01938 ** one of the following opcodes: 01939 ** 01940 ** OpenRead 01941 ** OpenWrite 01942 ** OpenPseudo 01943 ** 01944 ** If the OP_Column opcode is to be executed on a cursor, then 01945 ** this opcode must be present immediately before the opcode that 01946 ** opens the cursor. 01947 */ 01948 case OP_SetNumColumns: { 01949 break; 01950 } 01951 01952 /* Opcode: Column P1 P2 P3 P4 * 01953 ** 01954 ** Interpret the data that cursor P1 points to as a structure built using 01955 ** the MakeRecord instruction. (See the MakeRecord opcode for additional 01956 ** information about the format of the data.) Extract the P2-th column 01957 ** from this record. If there are less that (P2+1) 01958 ** values in the record, extract a NULL. 01959 ** 01960 ** The value extracted is stored in register P3. 01961 ** 01962 ** If the column contains fewer than P2 fields, then extract a NULL. Or, 01963 ** if the P4 argument is a P4_MEM use the value of the P4 argument as 01964 ** the result. 01965 */ 01966 case OP_Column: { 01967 u32 payloadSize; /* Number of bytes in the record */ 01968 int p1 = pOp->p1; /* P1 value of the opcode */ 01969 int p2 = pOp->p2; /* column number to retrieve */ 01970 VdbeCursor *pC = 0;/* The VDBE cursor */ 01971 char *zRec; /* Pointer to complete record-data */ 01972 BtCursor *pCrsr; /* The BTree cursor */ 01973 u32 *aType; /* aType[i] holds the numeric type of the i-th column */ 01974 u32 *aOffset; /* aOffset[i] is offset to start of data for i-th column */ 01975 u32 nField; /* number of fields in the record */ 01976 int len; /* The length of the serialized data for the column */ 01977 int i; /* Loop counter */ 01978 char *zData; /* Part of the record being decoded */ 01979 Mem *pDest; /* Where to write the extracted value */ 01980 Mem sMem; /* For storing the record being decoded */ 01981 01982 sMem.flags = 0; 01983 sMem.db = 0; 01984 sMem.zMalloc = 0; 01985 assert( p1<p->nCursor ); 01986 assert( pOp->p3>0 && pOp->p3<=p->nMem ); 01987 pDest = &p->aMem[pOp->p3]; 01988 MemSetTypeFlag(pDest, MEM_Null); 01989 01990 /* This block sets the variable payloadSize to be the total number of 01991 ** bytes in the record. 01992 ** 01993 ** zRec is set to be the complete text of the record if it is available. 01994 ** The complete record text is always available for pseudo-tables 01995 ** If the record is stored in a cursor, the complete record text 01996 ** might be available in the pC->aRow cache. Or it might not be. 01997 ** If the data is unavailable, zRec is set to NULL. 01998 ** 01999 ** We also compute the number of columns in the record. For cursors, 02000 ** the number of columns is stored in the VdbeCursor.nField element. 02001 */ 02002 pC = p->apCsr[p1]; 02003 assert( pC!=0 ); 02004 #ifndef SQLITE_OMIT_VIRTUALTABLE 02005 assert( pC->pVtabCursor==0 ); 02006 #endif 02007 if( pC->pCursor!=0 ){ 02008 /* The record is stored in a B-Tree */ 02009 rc = sqlite3VdbeCursorMoveto(pC); 02010 if( rc ) goto abort_due_to_error; 02011 zRec = 0; 02012 pCrsr = pC->pCursor; 02013 if( pC->nullRow ){ 02014 payloadSize = 0; 02015 }else if( pC->cacheStatus==p->cacheCtr ){ 02016 payloadSize = pC->payloadSize; 02017 zRec = (char*)pC->aRow; 02018 }else if( pC->isIndex ){ 02019 i64 payloadSize64; 02020 sqlite3BtreeKeySize(pCrsr, &payloadSize64); 02021 payloadSize = payloadSize64; 02022 }else{ 02023 sqlite3BtreeDataSize(pCrsr, &payloadSize); 02024 } 02025 nField = pC->nField; 02026 }else{ 02027 assert( pC->pseudoTable ); 02028 /* The record is the sole entry of a pseudo-table */ 02029 payloadSize = pC->nData; 02030 zRec = pC->pData; 02031 pC->cacheStatus = CACHE_STALE; 02032 assert( payloadSize==0 || zRec!=0 ); 02033 nField = pC->nField; 02034 pCrsr = 0; 02035 } 02036 02037 /* If payloadSize is 0, then just store a NULL */ 02038 if( payloadSize==0 ){ 02039 assert( pDest->flags&MEM_Null ); 02040 goto op_column_out; 02041 } 02042 if( payloadSize>db->aLimit[SQLITE_LIMIT_LENGTH] ){ 02043 goto too_big; 02044 } 02045 02046 assert( p2<nField ); 02047 02048 /* Read and parse the table header. Store the results of the parse 02049 ** into the record header cache fields of the cursor. 02050 */ 02051 aType = pC->aType; 02052 if( pC->cacheStatus==p->cacheCtr ){ 02053 aOffset = pC->aOffset; 02054 }else{ 02055 u8 *zIdx; /* Index into header */ 02056 u8 *zEndHdr; /* Pointer to first byte after the header */ 02057 u32 offset; /* Offset into the data */ 02058 int szHdrSz; /* Size of the header size field at start of record */ 02059 int avail; /* Number of bytes of available data */ 02060 02061 assert(aType); 02062 pC->aOffset = aOffset = &aType[nField]; 02063 pC->payloadSize = payloadSize; 02064 pC->cacheStatus = p->cacheCtr; 02065 02066 /* Figure out how many bytes are in the header */ 02067 if( zRec ){ 02068 zData = zRec; 02069 }else{ 02070 if( pC->isIndex ){ 02071 zData = (char*)sqlite3BtreeKeyFetch(pCrsr, &avail); 02072 }else{ 02073 zData = (char*)sqlite3BtreeDataFetch(pCrsr, &avail); 02074 } 02075 /* If KeyFetch()/DataFetch() managed to get the entire payload, 02076 ** save the payload in the pC->aRow cache. That will save us from 02077 ** having to make additional calls to fetch the content portion of 02078 ** the record. 02079 */ 02080 if( avail>=payloadSize ){ 02081 zRec = zData; 02082 pC->aRow = (u8*)zData; 02083 }else{ 02084 pC->aRow = 0; 02085 } 02086 } 02087 /* The following assert is true in all cases accept when 02088 ** the database file has been corrupted externally. 02089 ** assert( zRec!=0 || avail>=payloadSize || avail>=9 ); */ 02090 szHdrSz = getVarint32((u8*)zData, offset); 02091 02092 /* The KeyFetch() or DataFetch() above are fast and will get the entire 02093 ** record header in most cases. But they will fail to get the complete 02094 ** record header if the record header does not fit on a single page 02095 ** in the B-Tree. When that happens, use sqlite3VdbeMemFromBtree() to 02096 ** acquire the complete header text. 02097 */ 02098 if( !zRec && avail<offset ){ 02099 sMem.flags = 0; 02100 sMem.db = 0; 02101 rc = sqlite3VdbeMemFromBtree(pCrsr, 0, offset, pC->isIndex, &sMem); 02102 if( rc!=SQLITE_OK ){ 02103 goto op_column_out; 02104 } 02105 zData = sMem.z; 02106 } 02107 zEndHdr = (u8 *)&zData[offset]; 02108 zIdx = (u8 *)&zData[szHdrSz]; 02109 02110 /* Scan the header and use it to fill in the aType[] and aOffset[] 02111 ** arrays. aType[i] will contain the type integer for the i-th 02112 ** column and aOffset[i] will contain the offset from the beginning 02113 ** of the record to the start of the data for the i-th column 02114 */ 02115 for(i=0; i<nField; i++){ 02116 if( zIdx<zEndHdr ){ 02117 aOffset[i] = offset; 02118 zIdx += getVarint32(zIdx, aType[i]); 02119 offset += sqlite3VdbeSerialTypeLen(aType[i]); 02120 }else{ 02121 /* If i is less that nField, then there are less fields in this 02122 ** record than SetNumColumns indicated there are columns in the 02123 ** table. Set the offset for any extra columns not present in 02124 ** the record to 0. This tells code below to store a NULL 02125 ** instead of deserializing a value from the record. 02126 */ 02127 aOffset[i] = 0; 02128 } 02129 } 02130 sqlite3VdbeMemRelease(&sMem); 02131 sMem.flags = MEM_Null; 02132 02133 /* If we have read more header data than was contained in the header, 02134 ** or if the end of the last field appears to be past the end of the 02135 ** record, or if the end of the last field appears to be before the end 02136 ** of the record (when all fields present), then we must be dealing 02137 ** with a corrupt database. 02138 */ 02139 if( zIdx>zEndHdr || offset>payloadSize 02140 || (zIdx==zEndHdr && offset!=payloadSize) ){ 02141 rc = SQLITE_CORRUPT_BKPT; 02142 goto op_column_out; 02143 } 02144 } 02145 02146 /* Get the column information. If aOffset[p2] is non-zero, then 02147 ** deserialize the value from the record. If aOffset[p2] is zero, 02148 ** then there are not enough fields in the record to satisfy the 02149 ** request. In this case, set the value NULL or to P4 if P4 is 02150 ** a pointer to a Mem object. 02151 */ 02152 if( aOffset[p2] ){ 02153 assert( rc==SQLITE_OK ); 02154 if( zRec ){ 02155 sqlite3VdbeMemReleaseExternal(pDest); 02156 sqlite3VdbeSerialGet((u8 *)&zRec[aOffset[p2]], aType[p2], pDest); 02157 }else{ 02158 len = sqlite3VdbeSerialTypeLen(aType[p2]); 02159 sqlite3VdbeMemMove(&sMem, pDest); 02160 rc = sqlite3VdbeMemFromBtree(pCrsr, aOffset[p2], len, pC->isIndex, &sMem); 02161 if( rc!=SQLITE_OK ){ 02162 goto op_column_out; 02163 } 02164 zData = sMem.z; 02165 sqlite3VdbeSerialGet((u8*)zData, aType[p2], pDest); 02166 } 02167 pDest->enc = encoding; 02168 }else{ 02169 if( pOp->p4type==P4_MEM ){ 02170 sqlite3VdbeMemShallowCopy(pDest, pOp->p4.pMem, MEM_Static); 02171 }else{ 02172 assert( pDest->flags&MEM_Null ); 02173 } 02174 } 02175 02176 /* If we dynamically allocated space to hold the data (in the 02177 ** sqlite3VdbeMemFromBtree() call above) then transfer control of that 02178 ** dynamically allocated space over to the pDest structure. 02179 ** This prevents a memory copy. 02180 */ 02181 if( sMem.zMalloc ){ 02182 assert( sMem.z==sMem.zMalloc ); 02183 assert( !(pDest->flags & MEM_Dyn) ); 02184 assert( !(pDest->flags & (MEM_Blob|MEM_Str)) || pDest->z==sMem.z ); 02185 pDest->flags &= ~(MEM_Ephem|MEM_Static); 02186 pDest->flags |= MEM_Term; 02187 pDest->z = sMem.z; 02188 pDest->zMalloc = sMem.zMalloc; 02189 } 02190 02191 rc = sqlite3VdbeMemMakeWriteable(pDest); 02192 02193 op_column_out: 02194 UPDATE_MAX_BLOBSIZE(pDest); 02195 REGISTER_TRACE(pOp->p3, pDest); 02196 break; 02197 } 02198 02199 /* Opcode: Affinity P1 P2 * P4 * 02200 ** 02201 ** Apply affinities to a range of P2 registers starting with P1. 02202 ** 02203 ** P4 is a string that is P2 characters long. The nth character of the 02204 ** string indicates the column affinity that should be used for the nth 02205 ** memory cell in the range. 02206 */ 02207 case OP_Affinity: { 02208 char *zAffinity = pOp->p4.z; 02209 Mem *pData0 = &p->aMem[pOp->p1]; 02210 Mem *pLast = &pData0[pOp->p2-1]; 02211 Mem *pRec; 02212 02213 for(pRec=pData0; pRec<=pLast; pRec++){ 02214 ExpandBlob(pRec); 02215 applyAffinity(pRec, zAffinity[pRec-pData0], encoding); 02216 } 02217 break; 02218 } 02219 02220 /* Opcode: MakeRecord P1 P2 P3 P4 * 02221 ** 02222 ** Convert P2 registers beginning with P1 into a single entry 02223 ** suitable for use as a data record in a database table or as a key 02224 ** in an index. The details of the format are irrelevant as long as 02225 ** the OP_Column opcode can decode the record later. 02226 ** Refer to source code comments for the details of the record 02227 ** format. 02228 ** 02229 ** P4 may be a string that is P2 characters long. The nth character of the 02230 ** string indicates the column affinity that should be used for the nth 02231 ** field of the index key. 02232 ** 02233 ** The mapping from character to affinity is given by the SQLITE_AFF_ 02234 ** macros defined in sqliteInt.h. 02235 ** 02236 ** If P4 is NULL then all index fields have the affinity NONE. 02237 */ 02238 case OP_MakeRecord: { 02239 /* Assuming the record contains N fields, the record format looks 02240 ** like this: 02241 ** 02242 ** ------------------------------------------------------------------------ 02243 ** | hdr-size | type 0 | type 1 | ... | type N-1 | data0 | ... | data N-1 | 02244 ** ------------------------------------------------------------------------ 02245 ** 02246 ** Data(0) is taken from register P1. Data(1) comes from register P1+1 02247 ** and so froth. 02248 ** 02249 ** Each type field is a varint representing the serial type of the 02250 ** corresponding data element (see sqlite3VdbeSerialType()). The 02251 ** hdr-size field is also a varint which is the offset from the beginning 02252 ** of the record to data0. 02253 */ 02254 u8 *zNewRecord; /* A buffer to hold the data for the new record */ 02255 Mem *pRec; /* The new record */ 02256 u64 nData = 0; /* Number of bytes of data space */ 02257 int nHdr = 0; /* Number of bytes of header space */ 02258 u64 nByte = 0; /* Data space required for this record */ 02259 int nZero = 0; /* Number of zero bytes at the end of the record */ 02260 int nVarint; /* Number of bytes in a varint */ 02261 u32 serial_type; /* Type field */ 02262 Mem *pData0; /* First field to be combined into the record */ 02263 Mem *pLast; /* Last field of the record */ 02264 int nField; /* Number of fields in the record */ 02265 char *zAffinity; /* The affinity string for the record */ 02266 int file_format; /* File format to use for encoding */ 02267 int i; /* Space used in zNewRecord[] */ 02268 02269 nField = pOp->p1; 02270 zAffinity = pOp->p4.z; 02271 assert( nField>0 && pOp->p2>0 && pOp->p2+nField<=p->nMem ); 02272 pData0 = &p->aMem[nField]; 02273 nField = pOp->p2; 02274 pLast = &pData0[nField-1]; 02275 file_format = p->minWriteFileFormat; 02276 02277 /* Loop through the elements that will make up the record to figure 02278 ** out how much space is required for the new record. 02279 */ 02280 for(pRec=pData0; pRec<=pLast; pRec++){ 02281 int len; 02282 if( zAffinity ){ 02283 applyAffinity(pRec, zAffinity[pRec-pData0], encoding); 02284 } 02285 if( pRec->flags&MEM_Zero && pRec->n>0 ){ 02286 sqlite3VdbeMemExpandBlob(pRec); 02287 } 02288 serial_type = sqlite3VdbeSerialType(pRec, file_format); 02289 len = sqlite3VdbeSerialTypeLen(serial_type); 02290 nData += len; 02291 nHdr += sqlite3VarintLen(serial_type); 02292 if( pRec->flags & MEM_Zero ){ 02293 /* Only pure zero-filled BLOBs can be input to this Opcode. 02294 ** We do not allow blobs with a prefix and a zero-filled tail. */ 02295 nZero += pRec->u.i; 02296 }else if( len ){ 02297 nZero = 0; 02298 } 02299 } 02300 02301 /* Add the initial header varint and total the size */ 02302 nHdr += nVarint = sqlite3VarintLen(nHdr); 02303 if( nVarint<sqlite3VarintLen(nHdr) ){ 02304 nHdr++; 02305 } 02306 nByte = nHdr+nData-nZero; 02307 if( nByte>db->aLimit[SQLITE_LIMIT_LENGTH] ){ 02308 goto too_big; 02309 } 02310 02311 /* Make sure the output register has a buffer large enough to store 02312 ** the new record. The output register (pOp->p3) is not allowed to 02313 ** be one of the input registers (because the following call to 02314 ** sqlite3VdbeMemGrow() could clobber the value before it is used). 02315 */ 02316 assert( pOp->p3<pOp->p1 || pOp->p3>=pOp->p1+pOp->p2 ); 02317 pOut = &p->aMem[pOp->p3]; 02318 if( sqlite3VdbeMemGrow(pOut, nByte, 0) ){ 02319 goto no_mem; 02320 } 02321 zNewRecord = (u8 *)pOut->z; 02322 02323 /* Write the record */ 02324 i = putVarint32(zNewRecord, nHdr); 02325 for(pRec=pData0; pRec<=pLast; pRec++){ 02326 serial_type = sqlite3VdbeSerialType(pRec, file_format); 02327 i += putVarint32(&zNewRecord[i], serial_type); /* serial type */ 02328 } 02329 for(pRec=pData0; pRec<=pLast; pRec++){ /* serial data */ 02330 i += sqlite3VdbeSerialPut(&zNewRecord[i], nByte-i, pRec, file_format); 02331 } 02332 assert( i==nByte ); 02333 02334 assert( pOp->p3>0 && pOp->p3<=p->nMem ); 02335 pOut->n = nByte; 02336 pOut->flags = MEM_Blob | MEM_Dyn; 02337 pOut->xDel = 0; 02338 if( nZero ){ 02339 pOut->u.i = nZero; 02340 pOut->flags |= MEM_Zero; 02341 } 02342 pOut->enc = SQLITE_UTF8; /* In case the blob is ever converted to text */ 02343 REGISTER_TRACE(pOp->p3, pOut); 02344 UPDATE_MAX_BLOBSIZE(pOut); 02345 break; 02346 } 02347 02348 /* Opcode: Statement P1 * * * * 02349 ** 02350 ** Begin an individual statement transaction which is part of a larger 02351 ** transaction. This is needed so that the statement 02352 ** can be rolled back after an error without having to roll back the 02353 ** entire transaction. The statement transaction will automatically 02354 ** commit when the VDBE halts. 02355 ** 02356 ** If the database connection is currently in autocommit mode (that 02357 ** is to say, if it is in between BEGIN and COMMIT) 02358 ** and if there are no other active statements on the same database 02359 ** connection, then this operation is a no-op. No statement transaction 02360 ** is needed since any error can use the normal ROLLBACK process to 02361 ** undo changes. 02362 ** 02363 ** If a statement transaction is started, then a statement journal file 02364 ** will be allocated and initialized. 02365 ** 02366 ** The statement is begun on the database file with index P1. The main 02367 ** database file has an index of 0 and the file used for temporary tables 02368 ** has an index of 1. 02369 */ 02370 case OP_Statement: { 02371 if( db->autoCommit==0 || db->activeVdbeCnt>1 ){ 02372 int i = pOp->p1; 02373 Btree *pBt; 02374 assert( i>=0 && i<db->nDb ); 02375 assert( db->aDb[i].pBt!=0 ); 02376 pBt = db->aDb[i].pBt; 02377 assert( sqlite3BtreeIsInTrans(pBt) ); 02378 assert( (p->btreeMask & (1<<i))!=0 ); 02379 if( !sqlite3BtreeIsInStmt(pBt) ){ 02380 rc = sqlite3BtreeBeginStmt(pBt); 02381 p->openedStatement = 1; 02382 } 02383 } 02384 break; 02385 } 02386 02387 /* Opcode: AutoCommit P1 P2 * * * 02388 ** 02389 ** Set the database auto-commit flag to P1 (1 or 0). If P2 is true, roll 02390 ** back any currently active btree transactions. If there are any active 02391 ** VMs (apart from this one), then the COMMIT or ROLLBACK statement fails. 02392 ** 02393 ** This instruction causes the VM to halt. 02394 */ 02395 case OP_AutoCommit: { 02396 int desiredAutoCommit = pOp->p1; 02397 int rollback = pOp->p2; 02398 int turnOnAC = desiredAutoCommit && !db->autoCommit; 02399 02400 assert( desiredAutoCommit==1 || desiredAutoCommit==0 ); 02401 assert( desiredAutoCommit==1 || rollback==0 ); 02402 02403 assert( db->activeVdbeCnt>0 ); /* At least this one VM is active */ 02404 02405 if( turnOnAC && rollback && db->activeVdbeCnt>1 ){ 02406 /* If this instruction implements a ROLLBACK and other VMs are 02407 ** still running, and a transaction is active, return an error indicating 02408 ** that the other VMs must complete first. 02409 */ 02410 sqlite3SetString(&p->zErrMsg, db, "cannot rollback transaction - " 02411 "SQL statements in progress"); 02412 rc = SQLITE_BUSY; 02413 }else if( turnOnAC && !rollback && db->writeVdbeCnt>1 ){ 02414 /* If this instruction implements a COMMIT and other VMs are writing 02415 ** return an error indicating that the other VMs must complete first. 02416 */ 02417 sqlite3SetString(&p->zErrMsg, db, "cannot commit transaction - " 02418 "SQL statements in progress"); 02419 rc = SQLITE_BUSY; 02420 }else if( desiredAutoCommit!=db->autoCommit ){ 02421 if( pOp->p2 ){ 02422 assert( desiredAutoCommit==1 ); 02423 sqlite3RollbackAll(db); 02424 db->autoCommit = 1; 02425 }else{ 02426 db->autoCommit = desiredAutoCommit; 02427 if( sqlite3VdbeHalt(p)==SQLITE_BUSY ){ 02428 p->pc = pc; 02429 db->autoCommit = 1-desiredAutoCommit; 02430 p->rc = rc = SQLITE_BUSY; 02431 goto vdbe_return; 02432 } 02433 } 02434 if( p->rc==SQLITE_OK ){ 02435 rc = SQLITE_DONE; 02436 }else{ 02437 rc = SQLITE_ERROR; 02438 } 02439 goto vdbe_return; 02440 }else{ 02441 sqlite3SetString(&p->zErrMsg, db, 02442 (!desiredAutoCommit)?"cannot start a transaction within a transaction":( 02443 (rollback)?"cannot rollback - no transaction is active": 02444 "cannot commit - no transaction is active")); 02445 02446 rc = SQLITE_ERROR; 02447 } 02448 break; 02449 } 02450 02451 /* Opcode: Transaction P1 P2 * * * 02452 ** 02453 ** Begin a transaction. The transaction ends when a Commit or Rollback 02454 ** opcode is encountered. Depending on the ON CONFLICT setting, the 02455 ** transaction might also be rolled back if an error is encountered. 02456 ** 02457 ** P1 is the index of the database file on which the transaction is 02458 ** started. Index 0 is the main database file and index 1 is the 02459 ** file used for temporary tables. Indices of 2 or more are used for 02460 ** attached databases. 02461 ** 02462 ** If P2 is non-zero, then a write-transaction is started. A RESERVED lock is 02463 ** obtained on the database file when a write-transaction is started. No 02464 ** other process can start another write transaction while this transaction is 02465 ** underway. Starting a write transaction also creates a rollback journal. A 02466 ** write transaction must be started before any changes can be made to the 02467 ** database. If P2 is 2 or greater then an EXCLUSIVE lock is also obtained 02468 ** on the file. 02469 ** 02470 ** If P2 is zero, then a read-lock is obtained on the database file. 02471 */ 02472 case OP_Transaction: { 02473 int i = pOp->p1; 02474 Btree *pBt; 02475 02476 assert( i>=0 && i<db->nDb ); 02477 assert( (p->btreeMask & (1<<i))!=0 ); 02478 pBt = db->aDb[i].pBt; 02479 02480 if( pBt ){ 02481 rc = sqlite3BtreeBeginTrans(pBt, pOp->p2); 02482 if( rc==SQLITE_BUSY ){ 02483 p->pc = pc; 02484 p->rc = rc = SQLITE_BUSY; 02485 goto vdbe_return; 02486 } 02487 if( rc!=SQLITE_OK && rc!=SQLITE_READONLY /* && rc!=SQLITE_BUSY */ ){ 02488 goto abort_due_to_error; 02489 } 02490 } 02491 break; 02492 } 02493 02494 /* Opcode: ReadCookie P1 P2 P3 * * 02495 ** 02496 ** Read cookie number P3 from database P1 and write it into register P2. 02497 ** P3==0 is the schema version. P3==1 is the database format. 02498 ** P3==2 is the recommended pager cache size, and so forth. P1==0 is 02499 ** the main database file and P1==1 is the database file used to store 02500 ** temporary tables. 02501 ** 02502 ** If P1 is negative, then this is a request to read the size of a 02503 ** databases free-list. P3 must be set to 1 in this case. The actual 02504 ** database accessed is ((P1+1)*-1). For example, a P1 parameter of -1 02505 ** corresponds to database 0 ("main"), a P1 of -2 is database 1 ("temp"). 02506 ** 02507 ** There must be a read-lock on the database (either a transaction 02508 ** must be started or there must be an open cursor) before 02509 ** executing this instruction. 02510 */ 02511 case OP_ReadCookie: { /* out2-prerelease */ 02512 int iMeta; 02513 int iDb = pOp->p1; 02514 int iCookie = pOp->p3; 02515 02516 assert( pOp->p3<SQLITE_N_BTREE_META ); 02517 if( iDb<0 ){ 02518 iDb = (-1*(iDb+1)); 02519 iCookie *= -1; 02520 } 02521 assert( iDb>=0 && iDb<db->nDb ); 02522 assert( db->aDb[iDb].pBt!=0 ); 02523 assert( (p->btreeMask & (1<<iDb))!=0 ); 02524 /* The indexing of meta values at the schema layer is off by one from 02525 ** the indexing in the btree layer. The btree considers meta[0] to 02526 ** be the number of free pages in the database (a read-only value) 02527 ** and meta[1] to be the schema cookie. The schema layer considers 02528 ** meta[1] to be the schema cookie. So we have to shift the index 02529 ** by one in the following statement. 02530 */ 02531 rc = sqlite3BtreeGetMeta(db->aDb[iDb].pBt, 1 + iCookie, (u32 *)&iMeta); 02532 pOut->u.i = iMeta; 02533 MemSetTypeFlag(pOut, MEM_Int); 02534 break; 02535 } 02536 02537 /* Opcode: SetCookie P1 P2 P3 * * 02538 ** 02539 ** Write the content of register P3 (interpreted as an integer) 02540 ** into cookie number P2 of database P1. 02541 ** P2==0 is the schema version. P2==1 is the database format. 02542 ** P2==2 is the recommended pager cache size, and so forth. P1==0 is 02543 ** the main database file and P1==1 is the database file used to store 02544 ** temporary tables. 02545 ** 02546 ** A transaction must be started before executing this opcode. 02547 */ 02548 case OP_SetCookie: { /* in3 */ 02549 Db *pDb; 02550 assert( pOp->p2<SQLITE_N_BTREE_META ); 02551 assert( pOp->p1>=0 && pOp->p1<db->nDb ); 02552 assert( (p->btreeMask & (1<<pOp->p1))!=0 ); 02553 pDb = &db->aDb[pOp->p1]; 02554 assert( pDb->pBt!=0 ); 02555 sqlite3VdbeMemIntegerify(pIn3); 02556 /* See note about index shifting on OP_ReadCookie */ 02557 rc = sqlite3BtreeUpdateMeta(pDb->pBt, 1+pOp->p2, (int)pIn3->u.i); 02558 if( pOp->p2==0 ){ 02559 /* When the schema cookie changes, record the new cookie internally */ 02560 pDb->pSchema->schema_cookie = pIn3->u.i; 02561 db->flags |= SQLITE_InternChanges; 02562 }else if( pOp->p2==1 ){ 02563 /* Record changes in the file format */ 02564 pDb->pSchema->file_format = pIn3->u.i; 02565 } 02566 if( pOp->p1==1 ){ 02567 /* Invalidate all prepared statements whenever the TEMP database 02568 ** schema is changed. Ticket #1644 */ 02569 sqlite3ExpirePreparedStatements(db); 02570 } 02571 break; 02572 } 02573 02574 /* Opcode: VerifyCookie P1 P2 * 02575 ** 02576 ** Check the value of global database parameter number 0 (the 02577 ** schema version) and make sure it is equal to P2. 02578 ** P1 is the database number which is 0 for the main database file 02579 ** and 1 for the file holding temporary tables and some higher number 02580 ** for auxiliary databases. 02581 ** 02582 ** The cookie changes its value whenever the database schema changes. 02583 ** This operation is used to detect when that the cookie has changed 02584 ** and that the current process needs to reread the schema. 02585 ** 02586 ** Either a transaction needs to have been started or an OP_Open needs 02587 ** to be executed (to establish a read lock) before this opcode is 02588 ** invoked. 02589 */ 02590 case OP_VerifyCookie: { 02591 int iMeta; 02592 Btree *pBt; 02593 assert( pOp->p1>=0 && pOp->p1<db->nDb ); 02594 assert( (p->btreeMask & (1<<pOp->p1))!=0 ); 02595 pBt = db->aDb[pOp->p1].pBt; 02596 if( pBt ){ 02597 rc = sqlite3BtreeGetMeta(pBt, 1, (u32 *)&iMeta); 02598 }else{ 02599 rc = SQLITE_OK; 02600 iMeta = 0; 02601 } 02602 if( rc==SQLITE_OK && iMeta!=pOp->p2 ){ 02603 sqlite3DbFree(db, p->zErrMsg); 02604 p->zErrMsg = sqlite3DbStrDup(db, "database schema has changed"); 02605 /* If the schema-cookie from the database file matches the cookie 02606 ** stored with the in-memory representation of the schema, do 02607 ** not reload the schema from the database file. 02608 ** 02609 ** If virtual-tables are in use, this is not just an optimization. 02610 ** Often, v-tables store their data in other SQLite tables, which 02611 ** are queried from within xNext() and other v-table methods using 02612 ** prepared queries. If such a query is out-of-date, we do not want to 02613 ** discard the database schema, as the user code implementing the 02614 ** v-table would have to be ready for the sqlite3_vtab structure itself 02615 ** to be invalidated whenever sqlite3_step() is called from within 02616 ** a v-table method. 02617 */ 02618 if( db->aDb[pOp->p1].pSchema->schema_cookie!=iMeta ){ 02619 sqlite3ResetInternalSchema(db, pOp->p1); 02620 } 02621 02622 sqlite3ExpirePreparedStatements(db); 02623 rc = SQLITE_SCHEMA; 02624 } 02625 break; 02626 } 02627 02628 /* Opcode: OpenRead P1 P2 P3 P4 P5 02629 ** 02630 ** Open a read-only cursor for the database table whose root page is 02631 ** P2 in a database file. The database file is determined by P3. 02632 ** P3==0 means the main database, P3==1 means the database used for 02633 ** temporary tables, and P3>1 means used the corresponding attached 02634 ** database. Give the new cursor an identifier of P1. The P1 02635 ** values need not be contiguous but all P1 values should be small integers. 02636 ** It is an error for P1 to be negative. 02637 ** 02638 ** If P5!=0 then use the content of register P2 as the root page, not 02639 ** the value of P2 itself. 02640 ** 02641 ** There will be a read lock on the database whenever there is an 02642 ** open cursor. If the database was unlocked prior to this instruction 02643 ** then a read lock is acquired as part of this instruction. A read 02644 ** lock allows other processes to read the database but prohibits 02645 ** any other process from modifying the database. The read lock is 02646 ** released when all cursors are closed. If this instruction attempts 02647 ** to get a read lock but fails, the script terminates with an 02648 ** SQLITE_BUSY error code. 02649 ** 02650 ** The P4 value is a pointer to a KeyInfo structure that defines the 02651 ** content and collating sequence of indices. P4 is NULL for cursors 02652 ** that are not pointing to indices. 02653 ** 02654 ** See also OpenWrite. 02655 */ 02656 /* Opcode: OpenWrite P1 P2 P3 P4 P5 02657 ** 02658 ** Open a read/write cursor named P1 on the table or index whose root 02659 ** page is P2. Or if P5!=0 use the content of register P2 to find the 02660 ** root page. 02661 ** 02662 ** The P4 value is a pointer to a KeyInfo structure that defines the 02663 ** content and collating sequence of indices. P4 is NULL for cursors 02664 ** that are not pointing to indices. 02665 ** 02666 ** This instruction works just like OpenRead except that it opens the cursor 02667 ** in read/write mode. For a given table, there can be one or more read-only 02668 ** cursors or a single read/write cursor but not both. 02669 ** 02670 ** See also OpenRead. 02671 */ 02672 case OP_OpenRead: 02673 case OP_OpenWrite: { 02674 int i = pOp->p1; 02675 int p2 = pOp->p2; 02676 int iDb = pOp->p3; 02677 int wrFlag; 02678 Btree *pX; 02679 VdbeCursor *pCur; 02680 Db *pDb; 02681 02682 assert( iDb>=0 && iDb<db->nDb ); 02683 assert( (p->btreeMask & (1<<iDb))!=0 ); 02684 pDb = &db->aDb[iDb]; 02685 pX = pDb->pBt; 02686 assert( pX!=0 ); 02687 if( pOp->opcode==OP_OpenWrite ){ 02688 wrFlag = 1; 02689 if( pDb->pSchema->file_format < p->minWriteFileFormat ){ 02690 p->minWriteFileFormat = pDb->pSchema->file_format; 02691 } 02692 }else{ 02693 wrFlag = 0; 02694 } 02695 if( pOp->p5 ){ 02696 assert( p2>0 ); 02697 assert( p2<=p->nMem ); 02698 pIn2 = &p->aMem[p2]; 02699 sqlite3VdbeMemIntegerify(pIn2); 02700 p2 = pIn2->u.i; 02701 assert( p2>=2 ); 02702 } 02703 assert( i>=0 ); 02704 pCur = allocateCursor(p, i, &pOp[-1], iDb, 1); 02705 if( pCur==0 ) goto no_mem; 02706 pCur->nullRow = 1; 02707 rc = sqlite3BtreeCursor(pX, p2, wrFlag, pOp->p4.p, pCur->pCursor); 02708 if( pOp->p4type==P4_KEYINFO ){ 02709 pCur->pKeyInfo = pOp->p4.pKeyInfo; 02710 pCur->pKeyInfo->enc = ENC(p->db); 02711 }else{ 02712 pCur->pKeyInfo = 0; 02713 } 02714 switch( rc ){ 02715 case SQLITE_BUSY: { 02716 p->pc = pc; 02717 p->rc = rc = SQLITE_BUSY; 02718 goto vdbe_return; 02719 } 02720 case SQLITE_OK: { 02721 int flags = sqlite3BtreeFlags(pCur->pCursor); 02722 /* Sanity checking. Only the lower four bits of the flags byte should 02723 ** be used. Bit 3 (mask 0x08) is unpredictable. The lower 3 bits 02724 ** (mask 0x07) should be either 5 (intkey+leafdata for tables) or 02725 ** 2 (zerodata for indices). If these conditions are not met it can 02726 ** only mean that we are dealing with a corrupt database file 02727 */ 02728 if( (flags & 0xf0)!=0 || ((flags & 0x07)!=5 && (flags & 0x07)!=2) ){ 02729 rc = SQLITE_CORRUPT_BKPT; 02730 goto abort_due_to_error; 02731 } 02732 pCur->isTable = (flags & BTREE_INTKEY)!=0; 02733 pCur->isIndex = (flags & BTREE_ZERODATA)!=0; 02734 /* If P4==0 it means we are expected to open a table. If P4!=0 then 02735 ** we expect to be opening an index. If this is not what happened, 02736 ** then the database is corrupt 02737 */ 02738 if( (pCur->isTable && pOp->p4type==P4_KEYINFO) 02739 || (pCur->isIndex && pOp->p4type!=P4_KEYINFO) ){ 02740 rc = SQLITE_CORRUPT_BKPT; 02741 goto abort_due_to_error; 02742 } 02743 break; 02744 } 02745 case SQLITE_EMPTY: { 02746 pCur->isTable = pOp->p4type!=P4_KEYINFO; 02747 pCur->isIndex = !pCur->isTable; 02748 pCur->pCursor = 0; 02749 rc = SQLITE_OK; 02750 break; 02751 } 02752 default: { 02753 goto abort_due_to_error; 02754 } 02755 } 02756 break; 02757 } 02758 02759 /* Opcode: OpenEphemeral P1 P2 * P4 * 02760 ** 02761 ** Open a new cursor P1 to a transient table. 02762 ** The cursor is always opened read/write even if 02763 ** the main database is read-only. The transient or virtual 02764 ** table is deleted automatically when the cursor is closed. 02765 ** 02766 ** P2 is the number of columns in the virtual table. 02767 ** The cursor points to a BTree table if P4==0 and to a BTree index 02768 ** if P4 is not 0. If P4 is not NULL, it points to a KeyInfo structure 02769 ** that defines the format of keys in the index. 02770 ** 02771 ** This opcode was once called OpenTemp. But that created 02772 ** confusion because the term "temp table", might refer either 02773 ** to a TEMP table at the SQL level, or to a table opened by 02774 ** this opcode. Then this opcode was call OpenVirtual. But 02775 ** that created confusion with the whole virtual-table idea. 02776 */ 02777 case OP_OpenEphemeral: { 02778 int i = pOp->p1; 02779 VdbeCursor *pCx; 02780 static const int openFlags = 02781 SQLITE_OPEN_READWRITE | 02782 SQLITE_OPEN_CREATE | 02783 SQLITE_OPEN_EXCLUSIVE | 02784 SQLITE_OPEN_DELETEONCLOSE | 02785 SQLITE_OPEN_TRANSIENT_DB; 02786 02787 assert( i>=0 ); 02788 pCx = allocateCursor(p, i, pOp, -1, 1); 02789 if( pCx==0 ) goto no_mem; 02790 pCx->nullRow = 1; 02791 rc = sqlite3BtreeFactory(db, 0, 1, SQLITE_DEFAULT_TEMP_CACHE_SIZE, openFlags, 02792 &pCx->pBt); 02793 if( rc==SQLITE_OK ){ 02794 rc = sqlite3BtreeBeginTrans(pCx->pBt, 1); 02795 } 02796 if( rc==SQLITE_OK ){ 02797 /* If a transient index is required, create it by calling 02798 ** sqlite3BtreeCreateTable() with the BTREE_ZERODATA flag before 02799 ** opening it. If a transient table is required, just use the 02800 ** automatically created table with root-page 1 (an INTKEY table). 02801 */ 02802 if( pOp->p4.pKeyInfo ){ 02803 int pgno; 02804 assert( pOp->p4type==P4_KEYINFO ); 02805 rc = sqlite3BtreeCreateTable(pCx->pBt, &pgno, BTREE_ZERODATA); 02806 if( rc==SQLITE_OK ){ 02807 assert( pgno==MASTER_ROOT+1 ); 02808 rc = sqlite3BtreeCursor(pCx->pBt, pgno, 1, 02809 (KeyInfo*)pOp->p4.z, pCx->pCursor); 02810 pCx->pKeyInfo = pOp->p4.pKeyInfo; 02811 pCx->pKeyInfo->enc = ENC(p->db); 02812 } 02813 pCx->isTable = 0; 02814 }else{ 02815 rc = sqlite3BtreeCursor(pCx->pBt, MASTER_ROOT, 1, 0, pCx->pCursor); 02816 pCx->isTable = 1; 02817 } 02818 } 02819 pCx->isIndex = !pCx->isTable; 02820 break; 02821 } 02822 02823 /* Opcode: OpenPseudo P1 P2 * * * 02824 ** 02825 ** Open a new cursor that points to a fake table that contains a single 02826 ** row of data. Any attempt to write a second row of data causes the 02827 ** first row to be deleted. All data is deleted when the cursor is 02828 ** closed. 02829 ** 02830 ** A pseudo-table created by this opcode is useful for holding the 02831 ** NEW or OLD tables in a trigger. Also used to hold the a single 02832 ** row output from the sorter so that the row can be decomposed into 02833 ** individual columns using the OP_Column opcode. 02834 ** 02835 ** When OP_Insert is executed to insert a row in to the pseudo table, 02836 ** the pseudo-table cursor may or may not make it's own copy of the 02837 ** original row data. If P2 is 0, then the pseudo-table will copy the 02838 ** original row data. Otherwise, a pointer to the original memory cell 02839 ** is stored. In this case, the vdbe program must ensure that the 02840 ** memory cell containing the row data is not overwritten until the 02841 ** pseudo table is closed (or a new row is inserted into it). 02842 */ 02843 case OP_OpenPseudo: { 02844 int i = pOp->p1; 02845 VdbeCursor *pCx; 02846 assert( i>=0 ); 02847 pCx = allocateCursor(p, i, &pOp[-1], -1, 0); 02848 if( pCx==0 ) goto no_mem; 02849 pCx->nullRow = 1; 02850 pCx->pseudoTable = 1; 02851 pCx->ephemPseudoTable = pOp->p2; 02852 pCx->isTable = 1; 02853 pCx->isIndex = 0; 02854 break; 02855 } 02856 02857 /* Opcode: Close P1 * * * * 02858 ** 02859 ** Close a cursor previously opened as P1. If P1 is not 02860 ** currently open, this instruction is a no-op. 02861 */ 02862 case OP_Close: { 02863 int i = pOp->p1; 02864 assert( i>=0 && i<p->nCursor ); 02865 sqlite3VdbeFreeCursor(p, p->apCsr[i]); 02866 p->apCsr[i] = 0; 02867 break; 02868 } 02869 02870 /* Opcode: MoveGe P1 P2 P3 P4 * 02871 ** 02872 ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys), 02873 ** use the integer value in register P3 as a key. If cursor P1 refers 02874 ** to an SQL index, then P3 is the first in an array of P4 registers 02875 ** that are used as an unpacked index key. 02876 ** 02877 ** Reposition cursor P1 so that it points to the smallest entry that 02878 ** is greater than or equal to the key value. If there are no records 02879 ** greater than or equal to the key and P2 is not zero, then jump to P2. 02880 ** 02881 ** A special feature of this opcode (and different from the 02882 ** related OP_MoveGt, OP_MoveLt, and OP_MoveLe) is that if P2 is 02883 ** zero and P1 is an SQL table (a b-tree with integer keys) then 02884 ** the seek is deferred until it is actually needed. It might be 02885 ** the case that the cursor is never accessed. By deferring the 02886 ** seek, we avoid unnecessary seeks. 02887 ** 02888 ** See also: Found, NotFound, Distinct, MoveLt, MoveGt, MoveLe 02889 */ 02890 /* Opcode: MoveGt P1 P2 P3 P4 * 02891 ** 02892 ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys), 02893 ** use the integer value in register P3 as a key. If cursor P1 refers 02894 ** to an SQL index, then P3 is the first in an array of P4 registers 02895 ** that are used as an unpacked index key. 02896 ** 02897 ** Reposition cursor P1 so that it points to the smallest entry that 02898 ** is greater than the key value. If there are no records greater than 02899 ** the key and P2 is not zero, then jump to P2. 02900 ** 02901 ** See also: Found, NotFound, Distinct, MoveLt, MoveGe, MoveLe 02902 */ 02903 /* Opcode: MoveLt P1 P2 P3 P4 * 02904 ** 02905 ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys), 02906 ** use the integer value in register P3 as a key. If cursor P1 refers 02907 ** to an SQL index, then P3 is the first in an array of P4 registers 02908 ** that are used as an unpacked index key. 02909 ** 02910 ** Reposition cursor P1 so that it points to the largest entry that 02911 ** is less than the key value. If there are no records less than 02912 ** the key and P2 is not zero, then jump to P2. 02913 ** 02914 ** See also: Found, NotFound, Distinct, MoveGt, MoveGe, MoveLe 02915 */ 02916 /* Opcode: MoveLe P1 P2 P3 P4 * 02917 ** 02918 ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys), 02919 ** use the integer value in register P3 as a key. If cursor P1 refers 02920 ** to an SQL index, then P3 is the first in an array of P4 registers 02921 ** that are used as an unpacked index key. 02922 ** 02923 ** Reposition cursor P1 so that it points to the largest entry that 02924 ** is less than or equal to the key value. If there are no records 02925 ** less than or equal to the key and P2 is not zero, then jump to P2. 02926 ** 02927 ** See also: Found, NotFound, Distinct, MoveGt, MoveGe, MoveLt 02928 */ 02929 case OP_MoveLt: /* jump, in3 */ 02930 case OP_MoveLe: /* jump, in3 */ 02931 case OP_MoveGe: /* jump, in3 */ 02932 case OP_MoveGt: { /* jump, in3 */ 02933 int i = pOp->p1; 02934 VdbeCursor *pC; 02935 02936 assert( i>=0 && i<p->nCursor ); 02937 pC = p->apCsr[i]; 02938 assert( pC!=0 ); 02939 if( pC->pCursor!=0 ){ 02940 int res, oc; 02941 oc = pOp->opcode; 02942 pC->nullRow = 0; 02943 if( pC->isTable ){ 02944 i64 iKey = sqlite3VdbeIntValue(pIn3); 02945 if( pOp->p2==0 ){ 02946 assert( pOp->opcode==OP_MoveGe ); 02947 pC->movetoTarget = iKey; 02948 pC->rowidIsValid = 0; 02949 pC->deferredMoveto = 1; 02950 break; 02951 } 02952 rc = sqlite3BtreeMovetoUnpacked(pC->pCursor, 0, (u64)iKey, 0, &res); 02953 if( rc!=SQLITE_OK ){ 02954 goto abort_due_to_error; 02955 } 02956 pC->lastRowid = iKey; 02957 pC->rowidIsValid = res==0; 02958 }else{ 02959 UnpackedRecord r; 02960 int nField = pOp->p4.i; 02961 assert( pOp->p4type==P4_INT32 ); 02962 assert( nField>0 ); 02963 r.pKeyInfo = pC->pKeyInfo; 02964 r.nField = nField; 02965 if( oc==OP_MoveGt || oc==OP_MoveLe ){ 02966 r.flags = UNPACKED_INCRKEY; 02967 }else{ 02968 r.flags = 0; 02969 } 02970 r.aMem = &p->aMem[pOp->p3]; 02971 rc = sqlite3BtreeMovetoUnpacked(pC->pCursor, &r, 0, 0, &res); 02972 if( rc!=SQLITE_OK ){ 02973 goto abort_due_to_error; 02974 } 02975 pC->rowidIsValid = 0; 02976 } 02977 pC->deferredMoveto = 0; 02978 pC->cacheStatus = CACHE_STALE; 02979 #ifdef SQLITE_TEST 02980 sqlite3_search_count++; 02981 #endif 02982 if( oc==OP_MoveGe || oc==OP_MoveGt ){ 02983 if( res<0 ){ 02984 rc = sqlite3BtreeNext(pC->pCursor, &res); 02985 if( rc!=SQLITE_OK ) goto abort_due_to_error; 02986 pC->rowidIsValid = 0; 02987 }else{ 02988 res = 0; 02989 } 02990 }else{ 02991 assert( oc==OP_MoveLt || oc==OP_MoveLe ); 02992 if( res>=0 ){ 02993 rc = sqlite3BtreePrevious(pC->pCursor, &res); 02994 if( rc!=SQLITE_OK ) goto abort_due_to_error; 02995 pC->rowidIsValid = 0; 02996 }else{ 02997 /* res might be negative because the table is empty. Check to 02998 ** see if this is the case. 02999 */ 03000 res = sqlite3BtreeEof(pC->pCursor); 03001 } 03002 } 03003 assert( pOp->p2>0 ); 03004 if( res ){ 03005 pc = pOp->p2 - 1; 03006 } 03007 }else if( !pC->pseudoTable ){ 03008 /* This happens when attempting to open the sqlite3_master table 03009 ** for read access returns SQLITE_EMPTY. In this case always 03010 ** take the jump (since there are no records in the table). 03011 */ 03012 pc = pOp->p2 - 1; 03013 } 03014 break; 03015 } 03016 03017 /* Opcode: Found P1 P2 P3 * * 03018 ** 03019 ** Register P3 holds a blob constructed by MakeRecord. P1 is an index. 03020 ** If an entry that matches the value in register p3 exists in P1 then 03021 ** jump to P2. If the P3 value does not match any entry in P1 03022 ** then fall thru. The P1 cursor is left pointing at the matching entry 03023 ** if it exists. 03024 ** 03025 ** This instruction is used to implement the IN operator where the 03026 ** left-hand side is a SELECT statement. P1 may be a true index, or it 03027 ** may be a temporary index that holds the results of the SELECT 03028 ** statement. This instruction is also used to implement the 03029 ** DISTINCT keyword in SELECT statements. 03030 ** 03031 ** This instruction checks if index P1 contains a record for which 03032 ** the first N serialized values exactly match the N serialized values 03033 ** in the record in register P3, where N is the total number of values in 03034 ** the P3 record (the P3 record is a prefix of the P1 record). 03035 ** 03036 ** See also: NotFound, IsUnique, NotExists 03037 */ 03038 /* Opcode: NotFound P1 P2 P3 * * 03039 ** 03040 ** Register P3 holds a blob constructed by MakeRecord. P1 is 03041 ** an index. If no entry exists in P1 that matches the blob then jump 03042 ** to P2. If an entry does existing, fall through. The cursor is left 03043 ** pointing to the entry that matches. 03044 ** 03045 ** See also: Found, NotExists, IsUnique 03046 */ 03047 case OP_NotFound: /* jump, in3 */ 03048 case OP_Found: { /* jump, in3 */ 03049 int i = pOp->p1; 03050 int alreadyExists = 0; 03051 VdbeCursor *pC; 03052 assert( i>=0 && i<p->nCursor ); 03053 assert( p->apCsr[i]!=0 ); 03054 if( (pC = p->apCsr[i])->pCursor!=0 ){ 03055 int res; 03056 UnpackedRecord *pIdxKey; 03057 03058 assert( pC->isTable==0 ); 03059 assert( pIn3->flags & MEM_Blob ); 03060 pIdxKey = sqlite3VdbeRecordUnpack(pC->pKeyInfo, pIn3->n, pIn3->z, 03061 aTempRec, sizeof(aTempRec)); 03062 if( pIdxKey==0 ){ 03063 goto no_mem; 03064 } 03065 if( pOp->opcode==OP_Found ){ 03066 pIdxKey->flags |= UNPACKED_PREFIX_MATCH; 03067 } 03068 rc = sqlite3BtreeMovetoUnpacked(pC->pCursor, pIdxKey, 0, 0, &res); 03069 sqlite3VdbeDeleteUnpackedRecord(pIdxKey); 03070 if( rc!=SQLITE_OK ){ 03071 break; 03072 } 03073 alreadyExists = (res==0); 03074 pC->deferredMoveto = 0; 03075 pC->cacheStatus = CACHE_STALE; 03076 } 03077 if( pOp->opcode==OP_Found ){ 03078 if( alreadyExists ) pc = pOp->p2 - 1; 03079 }else{ 03080 if( !alreadyExists ) pc = pOp->p2 - 1; 03081 } 03082 break; 03083 } 03084 03085 /* Opcode: IsUnique P1 P2 P3 P4 * 03086 ** 03087 ** The P3 register contains an integer record number. Call this 03088 ** record number R. The P4 register contains an index key created 03089 ** using MakeRecord. Call it K. 03090 ** 03091 ** P1 is an index. So it has no data and its key consists of a 03092 ** record generated by OP_MakeRecord where the last field is the 03093 ** rowid of the entry that the index refers to. 03094 ** 03095 ** This instruction asks if there is an entry in P1 where the 03096 ** fields matches K but the rowid is different from R. 03097 ** If there is no such entry, then there is an immediate 03098 ** jump to P2. If any entry does exist where the index string 03099 ** matches K but the record number is not R, then the record 03100 ** number for that entry is written into P3 and control 03101 ** falls through to the next instruction. 03102 ** 03103 ** See also: NotFound, NotExists, Found 03104 */ 03105 case OP_IsUnique: { /* jump, in3 */ 03106 int i = pOp->p1; 03107 VdbeCursor *pCx; 03108 BtCursor *pCrsr; 03109 Mem *pK; 03110 i64 R; 03111 03112 /* Pop the value R off the top of the stack 03113 */ 03114 assert( pOp->p4type==P4_INT32 ); 03115 assert( pOp->p4.i>0 && pOp->p4.i<=p->nMem ); 03116 pK = &p->aMem[pOp->p4.i]; 03117 sqlite3VdbeMemIntegerify(pIn3); 03118 R = pIn3->u.i; 03119 assert( i>=0 && i<p->nCursor ); 03120 pCx = p->apCsr[i]; 03121 assert( pCx!=0 ); 03122 pCrsr = pCx->pCursor; 03123 if( pCrsr!=0 ){ 03124 int res; 03125 i64 v; /* The record number that matches K */ 03126 UnpackedRecord *pIdxKey; /* Unpacked version of P4 */ 03127 03128 /* Make sure K is a string and make zKey point to K 03129 */ 03130 assert( pK->flags & MEM_Blob ); 03131 pIdxKey = sqlite3VdbeRecordUnpack(pCx->pKeyInfo, pK->n, pK->z, 03132 aTempRec, sizeof(aTempRec)); 03133 if( pIdxKey==0 ){ 03134 goto no_mem; 03135 } 03136 pIdxKey->flags |= UNPACKED_IGNORE_ROWID; 03137 03138 /* Search for an entry in P1 where all but the last rowid match K 03139 ** If there is no such entry, jump immediately to P2. 03140 */ 03141 assert( pCx->deferredMoveto==0 ); 03142 pCx->cacheStatus = CACHE_STALE; 03143 rc = sqlite3BtreeMovetoUnpacked(pCrsr, pIdxKey, 0, 0, &res); 03144 if( rc!=SQLITE_OK ){ 03145 sqlite3VdbeDeleteUnpackedRecord(pIdxKey); 03146 goto abort_due_to_error; 03147 } 03148 if( res<0 ){ 03149 rc = sqlite3BtreeNext(pCrsr, &res); 03150 if( res ){ 03151 pc = pOp->p2 - 1; 03152 sqlite3VdbeDeleteUnpackedRecord(pIdxKey); 03153 break; 03154 } 03155 } 03156 rc = sqlite3VdbeIdxKeyCompare(pCx, pIdxKey, &res); 03157 sqlite3VdbeDeleteUnpackedRecord(pIdxKey); 03158 if( rc!=SQLITE_OK ) goto abort_due_to_error; 03159 if( res>0 ){ 03160 pc = pOp->p2 - 1; 03161 break; 03162 } 03163 03164 /* At this point, pCrsr is pointing to an entry in P1 where all but 03165 ** the final entry (the rowid) matches K. Check to see if the 03166 ** final rowid column is different from R. If it equals R then jump 03167 ** immediately to P2. 03168 */ 03169 rc = sqlite3VdbeIdxRowid(pCrsr, &v); 03170 if( rc!=SQLITE_OK ){ 03171 goto abort_due_to_error; 03172 } 03173 if( v==R ){ 03174 pc = pOp->p2 - 1; 03175 break; 03176 } 03177 03178 /* The final varint of the key is different from R. Store it back 03179 ** into register R3. (The record number of an entry that violates 03180 ** a UNIQUE constraint.) 03181 */ 03182 pIn3->u.i = v; 03183 assert( pIn3->flags&MEM_Int ); 03184 } 03185 break; 03186 } 03187 03188 /* Opcode: NotExists P1 P2 P3 * * 03189 ** 03190 ** Use the content of register P3 as a integer key. If a record 03191 ** with that key does not exist in table of P1, then jump to P2. 03192 ** If the record does exist, then fall thru. The cursor is left 03193 ** pointing to the record if it exists. 03194 ** 03195 ** The difference between this operation and NotFound is that this 03196 ** operation assumes the key is an integer and that P1 is a table whereas 03197 ** NotFound assumes key is a blob constructed from MakeRecord and 03198 ** P1 is an index. 03199 ** 03200 ** See also: Found, NotFound, IsUnique 03201 */ 03202 case OP_NotExists: { /* jump, in3 */ 03203 int i = pOp->p1; 03204 VdbeCursor *pC; 03205 BtCursor *pCrsr; 03206 assert( i>=0 && i<p->nCursor ); 03207 assert( p->apCsr[i]!=0 ); 03208 if( (pCrsr = (pC = p->apCsr[i])->pCursor)!=0 ){ 03209 int res; 03210 u64 iKey; 03211 assert( pIn3->flags & MEM_Int ); 03212 assert( p->apCsr[i]->isTable ); 03213 iKey = intToKey(pIn3->u.i); 03214 rc = sqlite3BtreeMovetoUnpacked(pCrsr, 0, iKey, 0,&res); 03215 pC->lastRowid = pIn3->u.i; 03216 pC->rowidIsValid = res==0; 03217 pC->nullRow = 0; 03218 pC->cacheStatus = CACHE_STALE; 03219 /* res might be uninitialized if rc!=SQLITE_OK. But if rc!=SQLITE_OK 03220 ** processing is about to abort so we really do not care whether or not 03221 ** the following jump is taken. (In other words, do not stress over 03222 ** the error that valgrind sometimes shows on the next statement when 03223 ** running ioerr.test and similar failure-recovery test scripts.) */ 03224 if( res!=0 ){ 03225 pc = pOp->p2 - 1; 03226 assert( pC->rowidIsValid==0 ); 03227 } 03228 }else if( !pC->pseudoTable ){ 03229 /* This happens when an attempt to open a read cursor on the 03230 ** sqlite_master table returns SQLITE_EMPTY. 03231 */ 03232 assert( pC->isTable ); 03233 pc = pOp->p2 - 1; 03234 assert( pC->rowidIsValid==0 ); 03235 } 03236 break; 03237 } 03238 03239 /* Opcode: Sequence P1 P2 * * * 03240 ** 03241 ** Find the next available sequence number for cursor P1. 03242 ** Write the sequence number into register P2. 03243 ** The sequence number on the cursor is incremented after this 03244 ** instruction. 03245 */ 03246 case OP_Sequence: { /* out2-prerelease */ 03247 int i = pOp->p1; 03248 assert( i>=0 && i<p->nCursor ); 03249 assert( p->apCsr[i]!=0 ); 03250 pOut->u.i = p->apCsr[i]->seqCount++; 03251 MemSetTypeFlag(pOut, MEM_Int); 03252 break; 03253 } 03254 03255 03256 /* Opcode: NewRowid P1 P2 P3 * * 03257 ** 03258 ** Get a new integer record number (a.k.a "rowid") used as the key to a table. 03259 ** The record number is not previously used as a key in the database 03260 ** table that cursor P1 points to. The new record number is written 03261 ** written to register P2. 03262 ** 03263 ** If P3>0 then P3 is a register that holds the largest previously 03264 ** generated record number. No new record numbers are allowed to be less 03265 ** than this value. When this value reaches its maximum, a SQLITE_FULL 03266 ** error is generated. The P3 register is updated with the generated 03267 ** record number. This P3 mechanism is used to help implement the 03268 ** AUTOINCREMENT feature. 03269 */ 03270 case OP_NewRowid: { /* out2-prerelease */ 03271 int i = pOp->p1; 03272 i64 v = 0; 03273 VdbeCursor *pC; 03274 assert( i>=0 && i<p->nCursor ); 03275 assert( p->apCsr[i]!=0 ); 03276 if( (pC = p->apCsr[i])->pCursor==0 ){ 03277 /* The zero initialization above is all that is needed */ 03278 }else{ 03279 /* The next rowid or record number (different terms for the same 03280 ** thing) is obtained in a two-step algorithm. 03281 ** 03282 ** First we attempt to find the largest existing rowid and add one 03283 ** to that. But if the largest existing rowid is already the maximum 03284 ** positive integer, we have to fall through to the second 03285 ** probabilistic algorithm 03286 ** 03287 ** The second algorithm is to select a rowid at random and see if 03288 ** it already exists in the table. If it does not exist, we have 03289 ** succeeded. If the random rowid does exist, we select a new one 03290 ** and try again, up to 1000 times. 03291 ** 03292 ** For a table with less than 2 billion entries, the probability 03293 ** of not finding a unused rowid is about 1.0e-300. This is a 03294 ** non-zero probability, but it is still vanishingly small and should 03295 ** never cause a problem. You are much, much more likely to have a 03296 ** hardware failure than for this algorithm to fail. 03297 ** 03298 ** The analysis in the previous paragraph assumes that you have a good 03299 ** source of random numbers. Is a library function like lrand48() 03300 ** good enough? Maybe. Maybe not. It's hard to know whether there 03301 ** might be subtle bugs is some implementations of lrand48() that 03302 ** could cause problems. To avoid uncertainty, SQLite uses its own 03303 ** random number generator based on the RC4 algorithm. 03304 ** 03305 ** To promote locality of reference for repetitive inserts, the 03306 ** first few attempts at choosing a random rowid pick values just a little 03307 ** larger than the previous rowid. This has been shown experimentally 03308 ** to double the speed of the COPY operation. 03309 */ 03310 int res, rx=SQLITE_OK, cnt; 03311 i64 x; 03312 cnt = 0; 03313 if( (sqlite3BtreeFlags(pC->pCursor)&(BTREE_INTKEY|BTREE_ZERODATA)) != 03314 BTREE_INTKEY ){ 03315 rc = SQLITE_CORRUPT_BKPT; 03316 goto abort_due_to_error; 03317 } 03318 assert( (sqlite3BtreeFlags(pC->pCursor) & BTREE_INTKEY)!=0 ); 03319 assert( (sqlite3BtreeFlags(pC->pCursor) & BTREE_ZERODATA)==0 ); 03320 03321 #ifdef SQLITE_32BIT_ROWID 03322 # define MAX_ROWID 0x7fffffff 03323 #else 03324 /* Some compilers complain about constants of the form 0x7fffffffffffffff. 03325 ** Others complain about 0x7ffffffffffffffffLL. The following macro seems 03326 ** to provide the constant while making all compilers happy. 03327 */ 03328 # define MAX_ROWID ( (((u64)0x7fffffff)<<32) | (u64)0xffffffff ) 03329 #endif 03330 03331 if( !pC->useRandomRowid ){ 03332 if( pC->nextRowidValid ){ 03333 v = pC->nextRowid; 03334 }else{ 03335 rc = sqlite3BtreeLast(pC->pCursor, &res); 03336 if( rc!=SQLITE_OK ){ 03337 goto abort_due_to_error; 03338 } 03339 if( res ){ 03340 v = 1; 03341 }else{ 03342 sqlite3BtreeKeySize(pC->pCursor, &v); 03343 v = keyToInt(v); 03344 if( v==MAX_ROWID ){ 03345 pC->useRandomRowid = 1; 03346 }else{ 03347 v++; 03348 } 03349 } 03350 } 03351 03352 #ifndef SQLITE_OMIT_AUTOINCREMENT 03353 if( pOp->p3 ){ 03354 Mem *pMem; 03355 assert( pOp->p3>0 && pOp->p3<=p->nMem ); /* P3 is a valid memory cell */ 03356 pMem = &p->aMem[pOp->p3]; 03357 REGISTER_TRACE(pOp->p3, pMem); 03358 sqlite3VdbeMemIntegerify(pMem); 03359 assert( (pMem->flags & MEM_Int)!=0 ); /* mem(P3) holds an integer */ 03360 if( pMem->u.i==MAX_ROWID || pC->useRandomRowid ){ 03361 rc = SQLITE_FULL; 03362 goto abort_due_to_error; 03363 } 03364 if( v<pMem->u.i+1 ){ 03365 v = pMem->u.i + 1; 03366 } 03367 pMem->u.i = v; 03368 } 03369 #endif 03370 03371 if( v<MAX_ROWID ){ 03372 pC->nextRowidValid = 1; 03373 pC->nextRowid = v+1; 03374 }else{ 03375 pC->nextRowidValid = 0; 03376 } 03377 } 03378 if( pC->useRandomRowid ){ 03379 assert( pOp->p3==0 ); /* SQLITE_FULL must have occurred prior to this */ 03380 v = db->priorNewRowid; 03381 cnt = 0; 03382 do{ 03383 if( cnt==0 && (v&0xffffff)==v ){ 03384 v++; 03385 }else{ 03386 sqlite3_randomness(sizeof(v), &v); 03387 if( cnt<5 ) v &= 0xffffff; 03388 } 03389 if( v==0 ) continue; 03390 x = intToKey(v); 03391 rx = sqlite3BtreeMovetoUnpacked(pC->pCursor, 0, (u64)x, 0, &res); 03392 cnt++; 03393 }while( cnt<100 && rx==SQLITE_OK && res==0 ); 03394 db->priorNewRowid = v; 03395 if( rx==SQLITE_OK && res==0 ){ 03396 rc = SQLITE_FULL; 03397 goto abort_due_to_error; 03398 } 03399 } 03400 pC->rowidIsValid = 0; 03401 pC->deferredMoveto = 0; 03402 pC->cacheStatus = CACHE_STALE; 03403 } 03404 MemSetTypeFlag(pOut, MEM_Int); 03405 pOut->u.i = v; 03406 break; 03407 } 03408 03409 /* Opcode: Insert P1 P2 P3 P4 P5 03410 ** 03411 ** Write an entry into the table of cursor P1. A new entry is 03412 ** created if it doesn't already exist or the data for an existing 03413 ** entry is overwritten. The data is the value stored register 03414 ** number P2. The key is stored in register P3. The key must 03415 ** be an integer. 03416 ** 03417 ** If the OPFLAG_NCHANGE flag of P5 is set, then the row change count is 03418 ** incremented (otherwise not). If the OPFLAG_LASTROWID flag of P5 is set, 03419 ** then rowid is stored for subsequent return by the 03420 ** sqlite3_last_insert_rowid() function (otherwise it is unmodified). 03421 ** 03422 ** Parameter P4 may point to a string containing the table-name, or 03423 ** may be NULL. If it is not NULL, then the update-hook 03424 ** (sqlite3.xUpdateCallback) is invoked following a successful insert. 03425 ** 03426 ** (WARNING/TODO: If P1 is a pseudo-cursor and P2 is dynamically 03427 ** allocated, then ownership of P2 is transferred to the pseudo-cursor 03428 ** and register P2 becomes ephemeral. If the cursor is changed, the 03429 ** value of register P2 will then change. Make sure this does not 03430 ** cause any problems.) 03431 ** 03432 ** This instruction only works on tables. The equivalent instruction 03433 ** for indices is OP_IdxInsert. 03434 */ 03435 case OP_Insert: { 03436 Mem *pData = &p->aMem[pOp->p2]; 03437 Mem *pKey = &p->aMem[pOp->p3]; 03438 03439 i64 iKey; /* The integer ROWID or key for the record to be inserted */ 03440 int i = pOp->p1; 03441 VdbeCursor *pC; 03442 assert( i>=0 && i<p->nCursor ); 03443 pC = p->apCsr[i]; 03444 assert( pC!=0 ); 03445 assert( pC->pCursor!=0 || pC->pseudoTable ); 03446 assert( pKey->flags & MEM_Int ); 03447 assert( pC->isTable ); 03448 REGISTER_TRACE(pOp->p2, pData); 03449 REGISTER_TRACE(pOp->p3, pKey); 03450 03451 iKey = intToKey(pKey->u.i); 03452 if( pOp->p5 & OPFLAG_NCHANGE ) p->nChange++; 03453 if( pOp->p5 & OPFLAG_LASTROWID ) db->lastRowid = pKey->u.i; 03454 if( pC->nextRowidValid && pKey->u.i>=pC->nextRowid ){ 03455 pC->nextRowidValid = 0; 03456 } 03457 if( pData->flags & MEM_Null ){ 03458 pData->z = 0; 03459 pData->n = 0; 03460 }else{ 03461 assert( pData->flags & (MEM_Blob|MEM_Str) ); 03462 } 03463 if( pC->pseudoTable ){ 03464 if( !pC->ephemPseudoTable ){ 03465 sqlite3DbFree(db, pC->pData); 03466 } 03467 pC->iKey = iKey; 03468 pC->nData = pData->n; 03469 if( pData->z==pData->zMalloc || pC->ephemPseudoTable ){ 03470 pC->pData = pData->z; 03471 if( !pC->ephemPseudoTable ){ 03472 pData->flags &= ~MEM_Dyn; 03473 pData->flags |= MEM_Ephem; 03474 pData->zMalloc = 0; 03475 } 03476 }else{ 03477 pC->pData = sqlite3Malloc( pC->nData+2 ); 03478 if( !pC->pData ) goto no_mem; 03479 memcpy(pC->pData, pData->z, pC->nData); 03480 pC->pData[pC->nData] = 0; 03481 pC->pData[pC->nData+1] = 0; 03482 } 03483 pC->nullRow = 0; 03484 }else{ 03485 int nZero; 03486 if( pData->flags & MEM_Zero ){ 03487 nZero = pData->u.i; 03488 }else{ 03489 nZero = 0; 03490 } 03491 rc = sqlite3BtreeInsert(pC->pCursor, 0, iKey, 03492 pData->z, pData->n, nZero, 03493 pOp->p5 & OPFLAG_APPEND); 03494 } 03495 03496 pC->rowidIsValid = 0; 03497 pC->deferredMoveto = 0; 03498 pC->cacheStatus = CACHE_STALE; 03499 03500 /* Invoke the update-hook if required. */ 03501 if( rc==SQLITE_OK && db->xUpdateCallback && pOp->p4.z ){ 03502 const char *zDb = db->aDb[pC->iDb].zName; 03503 const char *zTbl = pOp->p4.z; 03504 int op = ((pOp->p5 & OPFLAG_ISUPDATE) ? SQLITE_UPDATE : SQLITE_INSERT); 03505 assert( pC->isTable ); 03506 db->xUpdateCallback(db->pUpdateArg, op, zDb, zTbl, iKey); 03507 assert( pC->iDb>=0 ); 03508 } 03509 break; 03510 } 03511 03512 /* Opcode: Delete P1 P2 * P4 * 03513 ** 03514 ** Delete the record at which the P1 cursor is currently pointing. 03515 ** 03516 ** The cursor will be left pointing at either the next or the previous 03517 ** record in the table. If it is left pointing at the next record, then 03518 ** the next Next instruction will be a no-op. Hence it is OK to delete 03519 ** a record from within an Next loop. 03520 ** 03521 ** If the OPFLAG_NCHANGE flag of P2 is set, then the row change count is 03522 ** incremented (otherwise not). 03523 ** 03524 ** P1 must not be pseudo-table. It has to be a real table with 03525 ** multiple rows. 03526 ** 03527 ** If P4 is not NULL, then it is the name of the table that P1 is 03528 ** pointing to. The update hook will be invoked, if it exists. 03529 ** If P4 is not NULL then the P1 cursor must have been positioned 03530 ** using OP_NotFound prior to invoking this opcode. 03531 */ 03532 case OP_Delete: { 03533 int i = pOp->p1; 03534 i64 iKey; 03535 VdbeCursor *pC; 03536 03537 assert( i>=0 && i<p->nCursor ); 03538 pC = p->apCsr[i]; 03539 assert( pC!=0 ); 03540 assert( pC->pCursor!=0 ); /* Only valid for real tables, no pseudotables */ 03541 03542 /* If the update-hook will be invoked, set iKey to the rowid of the 03543 ** row being deleted. 03544 */ 03545 if( db->xUpdateCallback && pOp->p4.z ){ 03546 assert( pC->isTable ); 03547 assert( pC->rowidIsValid ); /* lastRowid set by previous OP_NotFound */ 03548 iKey = pC->lastRowid; 03549 } 03550 03551 rc = sqlite3VdbeCursorMoveto(pC); 03552 if( rc ) goto abort_due_to_error; 03553 rc = sqlite3BtreeDelete(pC->pCursor); 03554 pC->nextRowidValid = 0; 03555 pC->cacheStatus = CACHE_STALE; 03556 03557 /* Invoke the update-hook if required. */ 03558 if( rc==SQLITE_OK && db->xUpdateCallback && pOp->p4.z ){ 03559 const char *zDb = db->aDb[pC->iDb].zName; 03560 const char *zTbl = pOp->p4.z; 03561 db->xUpdateCallback(db->pUpdateArg, SQLITE_DELETE, zDb, zTbl, iKey); 03562 assert( pC->iDb>=0 ); 03563 } 03564 if( pOp->p2 & OPFLAG_NCHANGE ) p->nChange++; 03565 break; 03566 } 03567 03568 /* Opcode: ResetCount P1 * * 03569 ** 03570 ** This opcode resets the VMs internal change counter to 0. If P1 is true, 03571 ** then the value of the change counter is copied to the database handle 03572 ** change counter (returned by subsequent calls to sqlite3_changes()) 03573 ** before it is reset. This is used by trigger programs. 03574 */ 03575 case OP_ResetCount: { 03576 if( pOp->p1 ){ 03577 sqlite3VdbeSetChanges(db, p->nChange); 03578 } 03579 p->nChange = 0; 03580 break; 03581 } 03582 03583 /* Opcode: RowData P1 P2 * * * 03584 ** 03585 ** Write into register P2 the complete row data for cursor P1. 03586 ** There is no interpretation of the data. 03587 ** It is just copied onto the P2 register exactly as 03588 ** it is found in the database file. 03589 ** 03590 ** If the P1 cursor must be pointing to a valid row (not a NULL row) 03591 ** of a real table, not a pseudo-table. 03592 */ 03593 /* Opcode: RowKey P1 P2 * * * 03594 ** 03595 ** Write into register P2 the complete row key for cursor P1. 03596 ** There is no interpretation of the data. 03597 ** The key is copied onto the P3 register exactly as 03598 ** it is found in the database file. 03599 ** 03600 ** If the P1 cursor must be pointing to a valid row (not a NULL row) 03601 ** of a real table, not a pseudo-table. 03602 */ 03603 case OP_RowKey: 03604 case OP_RowData: { 03605 int i = pOp->p1; 03606 VdbeCursor *pC; 03607 BtCursor *pCrsr; 03608 u32 n; 03609 03610 pOut = &p->aMem[pOp->p2]; 03611 03612 /* Note that RowKey and RowData are really exactly the same instruction */ 03613 assert( i>=0 && i<p->nCursor ); 03614 pC = p->apCsr[i]; 03615 assert( pC->isTable || pOp->opcode==OP_RowKey ); 03616 assert( pC->isIndex || pOp->opcode==OP_RowData ); 03617 assert( pC!=0 ); 03618 assert( pC->nullRow==0 ); 03619 assert( pC->pseudoTable==0 ); 03620 assert( pC->pCursor!=0 ); 03621 pCrsr = pC->pCursor; 03622 rc = sqlite3VdbeCursorMoveto(pC); 03623 if( rc ) goto abort_due_to_error; 03624 if( pC->isIndex ){ 03625 i64 n64; 03626 assert( !pC->isTable ); 03627 sqlite3BtreeKeySize(pCrsr, &n64); 03628 if( n64>db->aLimit[SQLITE_LIMIT_LENGTH] ){ 03629 goto too_big; 03630 } 03631 n = n64; 03632 }else{ 03633 sqlite3BtreeDataSize(pCrsr, &n); 03634 if( n>db->aLimit[SQLITE_LIMIT_LENGTH] ){ 03635 goto too_big; 03636 } 03637 } 03638 if( sqlite3VdbeMemGrow(pOut, n, 0) ){ 03639 goto no_mem; 03640 } 03641 pOut->n = n; 03642 MemSetTypeFlag(pOut, MEM_Blob); 03643 if( pC->isIndex ){ 03644 rc = sqlite3BtreeKey(pCrsr, 0, n, pOut->z); 03645 }else{ 03646 rc = sqlite3BtreeData(pCrsr, 0, n, pOut->z); 03647 } 03648 pOut->enc = SQLITE_UTF8; /* In case the blob is ever cast to text */ 03649 UPDATE_MAX_BLOBSIZE(pOut); 03650 break; 03651 } 03652 03653 /* Opcode: Rowid P1 P2 * * * 03654 ** 03655 ** Store in register P2 an integer which is the key of the table entry that 03656 ** P1 is currently point to. 03657 */ 03658 case OP_Rowid: { /* out2-prerelease */ 03659 int i = pOp->p1; 03660 VdbeCursor *pC; 03661 i64 v; 03662 03663 assert( i>=0 && i<p->nCursor ); 03664 pC = p->apCsr[i]; 03665 assert( pC!=0 ); 03666 rc = sqlite3VdbeCursorMoveto(pC); 03667 if( rc ) goto abort_due_to_error; 03668 if( pC->rowidIsValid ){ 03669 v = pC->lastRowid; 03670 }else if( pC->pseudoTable ){ 03671 v = keyToInt(pC->iKey); 03672 }else if( pC->nullRow ){ 03673 /* Leave the rowid set to a NULL */ 03674 break; 03675 }else{ 03676 assert( pC->pCursor!=0 ); 03677 sqlite3BtreeKeySize(pC->pCursor, &v); 03678 v = keyToInt(v); 03679 } 03680 pOut->u.i = v; 03681 MemSetTypeFlag(pOut, MEM_Int); 03682 break; 03683 } 03684 03685 /* Opcode: NullRow P1 * * * * 03686 ** 03687 ** Move the cursor P1 to a null row. Any OP_Column operations 03688 ** that occur while the cursor is on the null row will always 03689 ** write a NULL. 03690 */ 03691 case OP_NullRow: { 03692 int i = pOp->p1; 03693 VdbeCursor *pC; 03694 03695 assert( i>=0 && i<p->nCursor ); 03696 pC = p->apCsr[i]; 03697 assert( pC!=0 ); 03698 pC->nullRow = 1; 03699 pC->rowidIsValid = 0; 03700 if( pC->pCursor ){ 03701 sqlite3BtreeClearCursor(pC->pCursor); 03702 } 03703 break; 03704 } 03705 03706 /* Opcode: Last P1 P2 * * * 03707 ** 03708 ** The next use of the Rowid or Column or Next instruction for P1 03709 ** will refer to the last entry in the database table or index. 03710 ** If the table or index is empty and P2>0, then jump immediately to P2. 03711 ** If P2 is 0 or if the table or index is not empty, fall through 03712 ** to the following instruction. 03713 */ 03714 case OP_Last: { /* jump */ 03715 int i = pOp->p1; 03716 VdbeCursor *pC; 03717 BtCursor *pCrsr; 03718 int res; 03719 03720 assert( i>=0 && i<p->nCursor ); 03721 pC = p->apCsr[i]; 03722 assert( pC!=0 ); 03723 pCrsr = pC->pCursor; 03724 assert( pCrsr!=0 ); 03725 rc = sqlite3BtreeLast(pCrsr, &res); 03726 pC->nullRow = res; 03727 pC->deferredMoveto = 0; 03728 pC->cacheStatus = CACHE_STALE; 03729 if( res && pOp->p2>0 ){ 03730 pc = pOp->p2 - 1; 03731 } 03732 break; 03733 } 03734 03735 03736 /* Opcode: Sort P1 P2 * * * 03737 ** 03738 ** This opcode does exactly the same thing as OP_Rewind except that 03739 ** it increments an undocumented global variable used for testing. 03740 ** 03741 ** Sorting is accomplished by writing records into a sorting index, 03742 ** then rewinding that index and playing it back from beginning to 03743 ** end. We use the OP_Sort opcode instead of OP_Rewind to do the 03744 ** rewinding so that the global variable will be incremented and 03745 ** regression tests can determine whether or not the optimizer is 03746 ** correctly optimizing out sorts. 03747 */ 03748 case OP_Sort: { /* jump */ 03749 #ifdef SQLITE_TEST 03750 sqlite3_sort_count++; 03751 sqlite3_search_count--; 03752 #endif 03753 p->aCounter[SQLITE_STMTSTATUS_SORT-1]++; 03754 /* Fall through into OP_Rewind */ 03755 } 03756 /* Opcode: Rewind P1 P2 * * * 03757 ** 03758 ** The next use of the Rowid or Column or Next instruction for P1 03759 ** will refer to the first entry in the database table or index. 03760 ** If the table or index is empty and P2>0, then jump immediately to P2. 03761 ** If P2 is 0 or if the table or index is not empty, fall through 03762 ** to the following instruction. 03763 */ 03764 case OP_Rewind: { /* jump */ 03765 int i = pOp->p1; 03766 VdbeCursor *pC; 03767 BtCursor *pCrsr; 03768 int res; 03769 03770 assert( i>=0 && i<p->nCursor ); 03771 pC = p->apCsr[i]; 03772 assert( pC!=0 ); 03773 if( (pCrsr = pC->pCursor)!=0 ){ 03774 rc = sqlite3BtreeFirst(pCrsr, &res); 03775 pC->atFirst = res==0; 03776 pC->deferredMoveto = 0; 03777 pC->cacheStatus = CACHE_STALE; 03778 }else{ 03779 res = 1; 03780 } 03781 pC->nullRow = res; 03782 assert( pOp->p2>0 && pOp->p2<p->nOp ); 03783 if( res ){ 03784 pc = pOp->p2 - 1; 03785 } 03786 break; 03787 } 03788 03789 /* Opcode: Next P1 P2 * * * 03790 ** 03791 ** Advance cursor P1 so that it points to the next key/data pair in its 03792 ** table or index. If there are no more key/value pairs then fall through 03793 ** to the following instruction. But if the cursor advance was successful, 03794 ** jump immediately to P2. 03795 ** 03796 ** The P1 cursor must be for a real table, not a pseudo-table. 03797 ** 03798 ** See also: Prev 03799 */ 03800 /* Opcode: Prev P1 P2 * * * 03801 ** 03802 ** Back up cursor P1 so that it points to the previous key/data pair in its 03803 ** table or index. If there is no previous key/value pairs then fall through 03804 ** to the following instruction. But if the cursor backup was successful, 03805 ** jump immediately to P2. 03806 ** 03807 ** The P1 cursor must be for a real table, not a pseudo-table. 03808 */ 03809 case OP_Prev: /* jump */ 03810 case OP_Next: { /* jump */ 03811 VdbeCursor *pC; 03812 BtCursor *pCrsr; 03813 int res; 03814 03815 CHECK_FOR_INTERRUPT; 03816 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 03817 pC = p->apCsr[pOp->p1]; 03818 if( pC==0 ){ 03819 break; /* See ticket #2273 */ 03820 } 03821 pCrsr = pC->pCursor; 03822 assert( pCrsr ); 03823 res = 1; 03824 assert( pC->deferredMoveto==0 ); 03825 rc = pOp->opcode==OP_Next ? sqlite3BtreeNext(pCrsr, &res) : 03826 sqlite3BtreePrevious(pCrsr, &res); 03827 pC->nullRow = res; 03828 pC->cacheStatus = CACHE_STALE; 03829 if( res==0 ){ 03830 pc = pOp->p2 - 1; 03831 if( pOp->p5 ) p->aCounter[pOp->p5-1]++; 03832 #ifdef SQLITE_TEST 03833 sqlite3_search_count++; 03834 #endif 03835 } 03836 pC->rowidIsValid = 0; 03837 break; 03838 } 03839 03840 /* Opcode: IdxInsert P1 P2 P3 * * 03841 ** 03842 ** Register P2 holds a SQL index key made using the 03843 ** MakeIdxRec instructions. This opcode writes that key 03844 ** into the index P1. Data for the entry is nil. 03845 ** 03846 ** P3 is a flag that provides a hint to the b-tree layer that this 03847 ** insert is likely to be an append. 03848 ** 03849 ** This instruction only works for indices. The equivalent instruction 03850 ** for tables is OP_Insert. 03851 */ 03852 case OP_IdxInsert: { /* in2 */ 03853 int i = pOp->p1; 03854 VdbeCursor *pC; 03855 BtCursor *pCrsr; 03856 assert( i>=0 && i<p->nCursor ); 03857 assert( p->apCsr[i]!=0 ); 03858 assert( pIn2->flags & MEM_Blob ); 03859 if( (pCrsr = (pC = p->apCsr[i])->pCursor)!=0 ){ 03860 assert( pC->isTable==0 ); 03861 rc = ExpandBlob(pIn2); 03862 if( rc==SQLITE_OK ){ 03863 int nKey = pIn2->n; 03864 const char *zKey = pIn2->z; 03865 rc = sqlite3BtreeInsert(pCrsr, zKey, nKey, "", 0, 0, pOp->p3); 03866 assert( pC->deferredMoveto==0 ); 03867 pC->cacheStatus = CACHE_STALE; 03868 } 03869 } 03870 break; 03871 } 03872 03873 /* Opcode: IdxDelete P1 P2 P3 * * 03874 ** 03875 ** The content of P3 registers starting at register P2 form 03876 ** an unpacked index key. This opcode removes that entry from the 03877 ** index opened by cursor P1. 03878 */ 03879 case OP_IdxDelete: { 03880 int i = pOp->p1; 03881 VdbeCursor *pC; 03882 BtCursor *pCrsr; 03883 assert( pOp->p3>0 ); 03884 assert( pOp->p2>0 && pOp->p2+pOp->p3<=p->nMem ); 03885 assert( i>=0 && i<p->nCursor ); 03886 assert( p->apCsr[i]!=0 ); 03887 if( (pCrsr = (pC = p->apCsr[i])->pCursor)!=0 ){ 03888 int res; 03889 UnpackedRecord r; 03890 r.pKeyInfo = pC->pKeyInfo; 03891 r.nField = pOp->p3; 03892 r.flags = 0; 03893 r.aMem = &p->aMem[pOp->p2]; 03894 rc = sqlite3BtreeMovetoUnpacked(pCrsr, &r, 0, 0, &res); 03895 if( rc==SQLITE_OK && res==0 ){ 03896 rc = sqlite3BtreeDelete(pCrsr); 03897 } 03898 assert( pC->deferredMoveto==0 ); 03899 pC->cacheStatus = CACHE_STALE; 03900 } 03901 break; 03902 } 03903 03904 /* Opcode: IdxRowid P1 P2 * * * 03905 ** 03906 ** Write into register P2 an integer which is the last entry in the record at 03907 ** the end of the index key pointed to by cursor P1. This integer should be 03908 ** the rowid of the table entry to which this index entry points. 03909 ** 03910 ** See also: Rowid, MakeIdxRec. 03911 */ 03912 case OP_IdxRowid: { /* out2-prerelease */ 03913 int i = pOp->p1; 03914 BtCursor *pCrsr; 03915 VdbeCursor *pC; 03916 03917 assert( i>=0 && i<p->nCursor ); 03918 assert( p->apCsr[i]!=0 ); 03919 if( (pCrsr = (pC = p->apCsr[i])->pCursor)!=0 ){ 03920 i64 rowid; 03921 03922 assert( pC->deferredMoveto==0 ); 03923 assert( pC->isTable==0 ); 03924 if( !pC->nullRow ){ 03925 rc = sqlite3VdbeIdxRowid(pCrsr, &rowid); 03926 if( rc!=SQLITE_OK ){ 03927 goto abort_due_to_error; 03928 } 03929 MemSetTypeFlag(pOut, MEM_Int); 03930 pOut->u.i = rowid; 03931 } 03932 } 03933 break; 03934 } 03935 03936 /* Opcode: IdxGE P1 P2 P3 P4 P5 03937 ** 03938 ** The P4 register values beginning with P3 form an unpacked index 03939 ** key that omits the ROWID. Compare this key value against the index 03940 ** that P1 is currently pointing to, ignoring the ROWID on the P1 index. 03941 ** 03942 ** If the P1 index entry is greater than or equal to the key value 03943 ** then jump to P2. Otherwise fall through to the next instruction. 03944 ** 03945 ** If P5 is non-zero then the key value is increased by an epsilon 03946 ** prior to the comparison. This make the opcode work like IdxGT except 03947 ** that if the key from register P3 is a prefix of the key in the cursor, 03948 ** the result is false whereas it would be true with IdxGT. 03949 */ 03950 /* Opcode: IdxLT P1 P2 P3 * P5 03951 ** 03952 ** The P4 register values beginning with P3 form an unpacked index 03953 ** key that omits the ROWID. Compare this key value against the index 03954 ** that P1 is currently pointing to, ignoring the ROWID on the P1 index. 03955 ** 03956 ** If the P1 index entry is less than the key value then jump to P2. 03957 ** Otherwise fall through to the next instruction. 03958 ** 03959 ** If P5 is non-zero then the key value is increased by an epsilon prior 03960 ** to the comparison. This makes the opcode work like IdxLE. 03961 */ 03962 case OP_IdxLT: /* jump, in3 */ 03963 case OP_IdxGE: { /* jump, in3 */ 03964 int i= pOp->p1; 03965 VdbeCursor *pC; 03966 03967 assert( i>=0 && i<p->nCursor ); 03968 assert( p->apCsr[i]!=0 ); 03969 if( (pC = p->apCsr[i])->pCursor!=0 ){ 03970 int res; 03971 UnpackedRecord r; 03972 assert( pC->deferredMoveto==0 ); 03973 assert( pOp->p5==0 || pOp->p5==1 ); 03974 assert( pOp->p4type==P4_INT32 ); 03975 r.pKeyInfo = pC->pKeyInfo; 03976 r.nField = pOp->p4.i; 03977 if( pOp->p5 ){ 03978 r.flags = UNPACKED_INCRKEY | UNPACKED_IGNORE_ROWID; 03979 }else{ 03980 r.flags = UNPACKED_IGNORE_ROWID; 03981 } 03982 r.aMem = &p->aMem[pOp->p3]; 03983 rc = sqlite3VdbeIdxKeyCompare(pC, &r, &res); 03984 if( pOp->opcode==OP_IdxLT ){ 03985 res = -res; 03986 }else{ 03987 assert( pOp->opcode==OP_IdxGE ); 03988 res++; 03989 } 03990 if( res>0 ){ 03991 pc = pOp->p2 - 1 ; 03992 } 03993 } 03994 break; 03995 } 03996 03997 /* Opcode: Destroy P1 P2 P3 * * 03998 ** 03999 ** Delete an entire database table or index whose root page in the database 04000 ** file is given by P1. 04001 ** 04002 ** The table being destroyed is in the main database file if P3==0. If 04003 ** P3==1 then the table to be clear is in the auxiliary database file 04004 ** that is used to store tables create using CREATE TEMPORARY TABLE. 04005 ** 04006 ** If AUTOVACUUM is enabled then it is possible that another root page 04007 ** might be moved into the newly deleted root page in order to keep all 04008 ** root pages contiguous at the beginning of the database. The former 04009 ** value of the root page that moved - its value before the move occurred - 04010 ** is stored in register P2. If no page 04011 ** movement was required (because the table being dropped was already 04012 ** the last one in the database) then a zero is stored in register P2. 04013 ** If AUTOVACUUM is disabled then a zero is stored in register P2. 04014 ** 04015 ** See also: Clear 04016 */ 04017 case OP_Destroy: { /* out2-prerelease */ 04018 int iMoved; 04019 int iCnt; 04020 #ifndef SQLITE_OMIT_VIRTUALTABLE 04021 Vdbe *pVdbe; 04022 iCnt = 0; 04023 for(pVdbe=db->pVdbe; pVdbe; pVdbe=pVdbe->pNext){ 04024 if( pVdbe->magic==VDBE_MAGIC_RUN && pVdbe->inVtabMethod<2 && pVdbe->pc>=0 ){ 04025 iCnt++; 04026 } 04027 } 04028 #else 04029 iCnt = db->activeVdbeCnt; 04030 #endif 04031 if( iCnt>1 ){ 04032 rc = SQLITE_LOCKED; 04033 p->errorAction = OE_Abort; 04034 }else{ 04035 int iDb = pOp->p3; 04036 assert( iCnt==1 ); 04037 assert( (p->btreeMask & (1<<iDb))!=0 ); 04038 rc = sqlite3BtreeDropTable(db->aDb[iDb].pBt, pOp->p1, &iMoved); 04039 MemSetTypeFlag(pOut, MEM_Int); 04040 pOut->u.i = iMoved; 04041 #ifndef SQLITE_OMIT_AUTOVACUUM 04042 if( rc==SQLITE_OK && iMoved!=0 ){ 04043 sqlite3RootPageMoved(&db->aDb[iDb], iMoved, pOp->p1); 04044 } 04045 #endif 04046 } 04047 break; 04048 } 04049 04050 /* Opcode: Clear P1 P2 P3 04051 ** 04052 ** Delete all contents of the database table or index whose root page 04053 ** in the database file is given by P1. But, unlike Destroy, do not 04054 ** remove the table or index from the database file. 04055 ** 04056 ** The table being clear is in the main database file if P2==0. If 04057 ** P2==1 then the table to be clear is in the auxiliary database file 04058 ** that is used to store tables create using CREATE TEMPORARY TABLE. 04059 ** 04060 ** If the P3 value is non-zero, then the table refered to must be an 04061 ** intkey table (an SQL table, not an index). In this case the row change 04062 ** count is incremented by the number of rows in the table being cleared. 04063 ** If P3 is greater than zero, then the value stored in register P3 is 04064 ** also incremented by the number of rows in the table being cleared. 04065 ** 04066 ** See also: Destroy 04067 */ 04068 case OP_Clear: { 04069 int nChange = 0; 04070 assert( (p->btreeMask & (1<<pOp->p2))!=0 ); 04071 rc = sqlite3BtreeClearTable( 04072 db->aDb[pOp->p2].pBt, pOp->p1, (pOp->p3 ? &nChange : 0) 04073 ); 04074 if( pOp->p3 ){ 04075 p->nChange += nChange; 04076 if( pOp->p3>0 ){ 04077 p->aMem[pOp->p3].u.i += nChange; 04078 } 04079 } 04080 break; 04081 } 04082 04083 /* Opcode: CreateTable P1 P2 * * * 04084 ** 04085 ** Allocate a new table in the main database file if P1==0 or in the 04086 ** auxiliary database file if P1==1 or in an attached database if 04087 ** P1>1. Write the root page number of the new table into 04088 ** register P2 04089 ** 04090 ** The difference between a table and an index is this: A table must 04091 ** have a 4-byte integer key and can have arbitrary data. An index 04092 ** has an arbitrary key but no data. 04093 ** 04094 ** See also: CreateIndex 04095 */ 04096 /* Opcode: CreateIndex P1 P2 * * * 04097 ** 04098 ** Allocate a new index in the main database file if P1==0 or in the 04099 ** auxiliary database file if P1==1 or in an attached database if 04100 ** P1>1. Write the root page number of the new table into 04101 ** register P2. 04102 ** 04103 ** See documentation on OP_CreateTable for additional information. 04104 */ 04105 case OP_CreateIndex: /* out2-prerelease */ 04106 case OP_CreateTable: { /* out2-prerelease */ 04107 int pgno; 04108 int flags; 04109 Db *pDb; 04110 assert( pOp->p1>=0 && pOp->p1<db->nDb ); 04111 assert( (p->btreeMask & (1<<pOp->p1))!=0 ); 04112 pDb = &db->aDb[pOp->p1]; 04113 assert( pDb->pBt!=0 ); 04114 if( pOp->opcode==OP_CreateTable ){ 04115 /* flags = BTREE_INTKEY; */ 04116 flags = BTREE_LEAFDATA|BTREE_INTKEY; 04117 }else{ 04118 flags = BTREE_ZERODATA; 04119 } 04120 rc = sqlite3BtreeCreateTable(pDb->pBt, &pgno, flags); 04121 if( rc==SQLITE_OK ){ 04122 pOut->u.i = pgno; 04123 MemSetTypeFlag(pOut, MEM_Int); 04124 } 04125 break; 04126 } 04127 04128 /* Opcode: ParseSchema P1 P2 * P4 * 04129 ** 04130 ** Read and parse all entries from the SQLITE_MASTER table of database P1 04131 ** that match the WHERE clause P4. P2 is the "force" flag. Always do 04132 ** the parsing if P2 is true. If P2 is false, then this routine is a 04133 ** no-op if the schema is not currently loaded. In other words, if P2 04134 ** is false, the SQLITE_MASTER table is only parsed if the rest of the 04135 ** schema is already loaded into the symbol table. 04136 ** 04137 ** This opcode invokes the parser to create a new virtual machine, 04138 ** then runs the new virtual machine. It is thus a re-entrant opcode. 04139 */ 04140 case OP_ParseSchema: { 04141 char *zSql; 04142 int iDb = pOp->p1; 04143 const char *zMaster; 04144 InitData initData; 04145 04146 assert( iDb>=0 && iDb<db->nDb ); 04147 if( !pOp->p2 && !DbHasProperty(db, iDb, DB_SchemaLoaded) ){ 04148 break; 04149 } 04150 zMaster = SCHEMA_TABLE(iDb); 04151 initData.db = db; 04152 initData.iDb = pOp->p1; 04153 initData.pzErrMsg = &p->zErrMsg; 04154 zSql = sqlite3MPrintf(db, 04155 "SELECT name, rootpage, sql FROM '%q'.%s WHERE %s", 04156 db->aDb[iDb].zName, zMaster, pOp->p4.z); 04157 if( zSql==0 ) goto no_mem; 04158 (void)sqlite3SafetyOff(db); 04159 assert( db->init.busy==0 ); 04160 db->init.busy = 1; 04161 initData.rc = SQLITE_OK; 04162 assert( !db->mallocFailed ); 04163 rc = sqlite3_exec(db, zSql, sqlite3InitCallback, &initData, 0); 04164 if( rc==SQLITE_OK ) rc = initData.rc; 04165 sqlite3DbFree(db, zSql); 04166 db->init.busy = 0; 04167 (void)sqlite3SafetyOn(db); 04168 if( rc==SQLITE_NOMEM ){ 04169 goto no_mem; 04170 } 04171 break; 04172 } 04173 04174 #if !defined(SQLITE_OMIT_ANALYZE) && !defined(SQLITE_OMIT_PARSER) 04175 /* Opcode: LoadAnalysis P1 * * * * 04176 ** 04177 ** Read the sqlite_stat1 table for database P1 and load the content 04178 ** of that table into the internal index hash table. This will cause 04179 ** the analysis to be used when preparing all subsequent queries. 04180 */ 04181 case OP_LoadAnalysis: { 04182 int iDb = pOp->p1; 04183 assert( iDb>=0 && iDb<db->nDb ); 04184 rc = sqlite3AnalysisLoad(db, iDb); 04185 break; 04186 } 04187 #endif /* !defined(SQLITE_OMIT_ANALYZE) && !defined(SQLITE_OMIT_PARSER) */ 04188 04189 /* Opcode: DropTable P1 * * P4 * 04190 ** 04191 ** Remove the internal (in-memory) data structures that describe 04192 ** the table named P4 in database P1. This is called after a table 04193 ** is dropped in order to keep the internal representation of the 04194 ** schema consistent with what is on disk. 04195 */ 04196 case OP_DropTable: { 04197 sqlite3UnlinkAndDeleteTable(db, pOp->p1, pOp->p4.z); 04198 break; 04199 } 04200 04201 /* Opcode: DropIndex P1 * * P4 * 04202 ** 04203 ** Remove the internal (in-memory) data structures that describe 04204 ** the index named P4 in database P1. This is called after an index 04205 ** is dropped in order to keep the internal representation of the 04206 ** schema consistent with what is on disk. 04207 */ 04208 case OP_DropIndex: { 04209 sqlite3UnlinkAndDeleteIndex(db, pOp->p1, pOp->p4.z); 04210 break; 04211 } 04212 04213 /* Opcode: DropTrigger P1 * * P4 * 04214 ** 04215 ** Remove the internal (in-memory) data structures that describe 04216 ** the trigger named P4 in database P1. This is called after a trigger 04217 ** is dropped in order to keep the internal representation of the 04218 ** schema consistent with what is on disk. 04219 */ 04220 case OP_DropTrigger: { 04221 sqlite3UnlinkAndDeleteTrigger(db, pOp->p1, pOp->p4.z); 04222 break; 04223 } 04224 04225 04226 #ifndef SQLITE_OMIT_INTEGRITY_CHECK 04227 /* Opcode: IntegrityCk P1 P2 P3 * P5 04228 ** 04229 ** Do an analysis of the currently open database. Store in 04230 ** register P1 the text of an error message describing any problems. 04231 ** If no problems are found, store a NULL in register P1. 04232 ** 04233 ** The register P3 contains the maximum number of allowed errors. 04234 ** At most reg(P3) errors will be reported. 04235 ** In other words, the analysis stops as soon as reg(P1) errors are 04236 ** seen. Reg(P1) is updated with the number of errors remaining. 04237 ** 04238 ** The root page numbers of all tables in the database are integer 04239 ** stored in reg(P1), reg(P1+1), reg(P1+2), .... There are P2 tables 04240 ** total. 04241 ** 04242 ** If P5 is not zero, the check is done on the auxiliary database 04243 ** file, not the main database file. 04244 ** 04245 ** This opcode is used to implement the integrity_check pragma. 04246 */ 04247 case OP_IntegrityCk: { 04248 int nRoot; /* Number of tables to check. (Number of root pages.) */ 04249 int *aRoot; /* Array of rootpage numbers for tables to be checked */ 04250 int j; /* Loop counter */ 04251 int nErr; /* Number of errors reported */ 04252 char *z; /* Text of the error report */ 04253 Mem *pnErr; /* Register keeping track of errors remaining */ 04254 04255 nRoot = pOp->p2; 04256 assert( nRoot>0 ); 04257 aRoot = sqlite3DbMallocRaw(db, sizeof(int)*(nRoot+1) ); 04258 if( aRoot==0 ) goto no_mem; 04259 assert( pOp->p3>0 && pOp->p3<=p->nMem ); 04260 pnErr = &p->aMem[pOp->p3]; 04261 assert( (pnErr->flags & MEM_Int)!=0 ); 04262 assert( (pnErr->flags & (MEM_Str|MEM_Blob))==0 ); 04263 pIn1 = &p->aMem[pOp->p1]; 04264 for(j=0; j<nRoot; j++){ 04265 aRoot[j] = sqlite3VdbeIntValue(&pIn1[j]); 04266 } 04267 aRoot[j] = 0; 04268 assert( pOp->p5<db->nDb ); 04269 assert( (p->btreeMask & (1<<pOp->p5))!=0 ); 04270 z = sqlite3BtreeIntegrityCheck(db->aDb[pOp->p5].pBt, aRoot, nRoot, 04271 pnErr->u.i, &nErr); 04272 sqlite3DbFree(db, aRoot); 04273 pnErr->u.i -= nErr; 04274 sqlite3VdbeMemSetNull(pIn1); 04275 if( nErr==0 ){ 04276 assert( z==0 ); 04277 }else if( z==0 ){ 04278 goto no_mem; 04279 }else{ 04280 sqlite3VdbeMemSetStr(pIn1, z, -1, SQLITE_UTF8, sqlite3_free); 04281 } 04282 UPDATE_MAX_BLOBSIZE(pIn1); 04283 sqlite3VdbeChangeEncoding(pIn1, encoding); 04284 break; 04285 } 04286 #endif /* SQLITE_OMIT_INTEGRITY_CHECK */ 04287 04288 /* Opcode: FifoWrite P1 * * * * 04289 ** 04290 ** Write the integer from register P1 into the Fifo. 04291 */ 04292 case OP_FifoWrite: { /* in1 */ 04293 p->sFifo.db = db; 04294 if( sqlite3VdbeFifoPush(&p->sFifo, sqlite3VdbeIntValue(pIn1))==SQLITE_NOMEM ){ 04295 goto no_mem; 04296 } 04297 break; 04298 } 04299 04300 /* Opcode: FifoRead P1 P2 * * * 04301 ** 04302 ** Attempt to read a single integer from the Fifo. Store that 04303 ** integer in register P1. 04304 ** 04305 ** If the Fifo is empty jump to P2. 04306 */ 04307 case OP_FifoRead: { /* jump */ 04308 CHECK_FOR_INTERRUPT; 04309 assert( pOp->p1>0 && pOp->p1<=p->nMem ); 04310 pOut = &p->aMem[pOp->p1]; 04311 MemSetTypeFlag(pOut, MEM_Int); 04312 if( sqlite3VdbeFifoPop(&p->sFifo, &pOut->u.i)==SQLITE_DONE ){ 04313 pc = pOp->p2 - 1; 04314 } 04315 break; 04316 } 04317 04318 #ifndef SQLITE_OMIT_TRIGGER 04319 /* Opcode: ContextPush * * * 04320 ** 04321 ** Save the current Vdbe context such that it can be restored by a ContextPop 04322 ** opcode. The context stores the last insert row id, the last statement change 04323 ** count, and the current statement change count. 04324 */ 04325 case OP_ContextPush: { 04326 int i = p->contextStackTop++; 04327 Context *pContext; 04328 04329 assert( i>=0 ); 04330 /* FIX ME: This should be allocated as part of the vdbe at compile-time */ 04331 if( i>=p->contextStackDepth ){ 04332 p->contextStackDepth = i+1; 04333 p->contextStack = sqlite3DbReallocOrFree(db, p->contextStack, 04334 sizeof(Context)*(i+1)); 04335 if( p->contextStack==0 ) goto no_mem; 04336 } 04337 pContext = &p->contextStack[i]; 04338 pContext->lastRowid = db->lastRowid; 04339 pContext->nChange = p->nChange; 04340 pContext->sFifo = p->sFifo; 04341 sqlite3VdbeFifoInit(&p->sFifo, db); 04342 break; 04343 } 04344 04345 /* Opcode: ContextPop * * * 04346 ** 04347 ** Restore the Vdbe context to the state it was in when contextPush was last 04348 ** executed. The context stores the last insert row id, the last statement 04349 ** change count, and the current statement change count. 04350 */ 04351 case OP_ContextPop: { 04352 Context *pContext = &p->contextStack[--p->contextStackTop]; 04353 assert( p->contextStackTop>=0 ); 04354 db->lastRowid = pContext->lastRowid; 04355 p->nChange = pContext->nChange; 04356 sqlite3VdbeFifoClear(&p->sFifo); 04357 p->sFifo = pContext->sFifo; 04358 break; 04359 } 04360 #endif /* #ifndef SQLITE_OMIT_TRIGGER */ 04361 04362 #ifndef SQLITE_OMIT_AUTOINCREMENT 04363 /* Opcode: MemMax P1 P2 * * * 04364 ** 04365 ** Set the value of register P1 to the maximum of its current value 04366 ** and the value in register P2. 04367 ** 04368 ** This instruction throws an error if the memory cell is not initially 04369 ** an integer. 04370 */ 04371 case OP_MemMax: { /* in1, in2 */ 04372 sqlite3VdbeMemIntegerify(pIn1); 04373 sqlite3VdbeMemIntegerify(pIn2); 04374 if( pIn1->u.i<pIn2->u.i){ 04375 pIn1->u.i = pIn2->u.i; 04376 } 04377 break; 04378 } 04379 #endif /* SQLITE_OMIT_AUTOINCREMENT */ 04380 04381 /* Opcode: IfPos P1 P2 * * * 04382 ** 04383 ** If the value of register P1 is 1 or greater, jump to P2. 04384 ** 04385 ** It is illegal to use this instruction on a register that does 04386 ** not contain an integer. An assertion fault will result if you try. 04387 */ 04388 case OP_IfPos: { /* jump, in1 */ 04389 assert( pIn1->flags&MEM_Int ); 04390 if( pIn1->u.i>0 ){ 04391 pc = pOp->p2 - 1; 04392 } 04393 break; 04394 } 04395 04396 /* Opcode: IfNeg P1 P2 * * * 04397 ** 04398 ** If the value of register P1 is less than zero, jump to P2. 04399 ** 04400 ** It is illegal to use this instruction on a register that does 04401 ** not contain an integer. An assertion fault will result if you try. 04402 */ 04403 case OP_IfNeg: { /* jump, in1 */ 04404 assert( pIn1->flags&MEM_Int ); 04405 if( pIn1->u.i<0 ){ 04406 pc = pOp->p2 - 1; 04407 } 04408 break; 04409 } 04410 04411 /* Opcode: IfZero P1 P2 * * * 04412 ** 04413 ** If the value of register P1 is exactly 0, jump to P2. 04414 ** 04415 ** It is illegal to use this instruction on a register that does 04416 ** not contain an integer. An assertion fault will result if you try. 04417 */ 04418 case OP_IfZero: { /* jump, in1 */ 04419 assert( pIn1->flags&MEM_Int ); 04420 if( pIn1->u.i==0 ){ 04421 pc = pOp->p2 - 1; 04422 } 04423 break; 04424 } 04425 04426 /* Opcode: AggStep * P2 P3 P4 P5 04427 ** 04428 ** Execute the step function for an aggregate. The 04429 ** function has P5 arguments. P4 is a pointer to the FuncDef 04430 ** structure that specifies the function. Use register 04431 ** P3 as the accumulator. 04432 ** 04433 ** The P5 arguments are taken from register P2 and its 04434 ** successors. 04435 */ 04436 case OP_AggStep: { 04437 int n = pOp->p5; 04438 int i; 04439 Mem *pMem, *pRec; 04440 sqlite3_context ctx; 04441 sqlite3_value **apVal; 04442 04443 assert( n>=0 ); 04444 pRec = &p->aMem[pOp->p2]; 04445 apVal = p->apArg; 04446 assert( apVal || n==0 ); 04447 for(i=0; i<n; i++, pRec++){ 04448 apVal[i] = pRec; 04449 storeTypeInfo(pRec, encoding); 04450 } 04451 ctx.pFunc = pOp->p4.pFunc; 04452 assert( pOp->p3>0 && pOp->p3<=p->nMem ); 04453 ctx.pMem = pMem = &p->aMem[pOp->p3]; 04454 pMem->n++; 04455 ctx.s.flags = MEM_Null; 04456 ctx.s.z = 0; 04457 ctx.s.zMalloc = 0; 04458 ctx.s.xDel = 0; 04459 ctx.s.db = db; 04460 ctx.isError = 0; 04461 ctx.pColl = 0; 04462 if( ctx.pFunc->flags & SQLITE_FUNC_NEEDCOLL ){ 04463 assert( pOp>p->aOp ); 04464 assert( pOp[-1].p4type==P4_COLLSEQ ); 04465 assert( pOp[-1].opcode==OP_CollSeq ); 04466 ctx.pColl = pOp[-1].p4.pColl; 04467 } 04468 (ctx.pFunc->xStep)(&ctx, n, apVal); 04469 if( ctx.isError ){ 04470 sqlite3SetString(&p->zErrMsg, db, "%s", sqlite3_value_text(&ctx.s)); 04471 rc = ctx.isError; 04472 } 04473 sqlite3VdbeMemRelease(&ctx.s); 04474 break; 04475 } 04476 04477 /* Opcode: AggFinal P1 P2 * P4 * 04478 ** 04479 ** Execute the finalizer function for an aggregate. P1 is 04480 ** the memory location that is the accumulator for the aggregate. 04481 ** 04482 ** P2 is the number of arguments that the step function takes and 04483 ** P4 is a pointer to the FuncDef for this function. The P2 04484 ** argument is not used by this opcode. It is only there to disambiguate 04485 ** functions that can take varying numbers of arguments. The 04486 ** P4 argument is only needed for the degenerate case where 04487 ** the step function was not previously called. 04488 */ 04489 case OP_AggFinal: { 04490 Mem *pMem; 04491 assert( pOp->p1>0 && pOp->p1<=p->nMem ); 04492 pMem = &p->aMem[pOp->p1]; 04493 assert( (pMem->flags & ~(MEM_Null|MEM_Agg))==0 ); 04494 rc = sqlite3VdbeMemFinalize(pMem, pOp->p4.pFunc); 04495 if( rc==SQLITE_ERROR ){ 04496 sqlite3SetString(&p->zErrMsg, db, "%s", sqlite3_value_text(pMem)); 04497 } 04498 sqlite3VdbeChangeEncoding(pMem, encoding); 04499 UPDATE_MAX_BLOBSIZE(pMem); 04500 if( sqlite3VdbeMemTooBig(pMem) ){ 04501 goto too_big; 04502 } 04503 break; 04504 } 04505 04506 04507 #if !defined(SQLITE_OMIT_VACUUM) && !defined(SQLITE_OMIT_ATTACH) 04508 /* Opcode: Vacuum * * * * * 04509 ** 04510 ** Vacuum the entire database. This opcode will cause other virtual 04511 ** machines to be created and run. It may not be called from within 04512 ** a transaction. 04513 */ 04514 case OP_Vacuum: { 04515 if( sqlite3SafetyOff(db) ) goto abort_due_to_misuse; 04516 rc = sqlite3RunVacuum(&p->zErrMsg, db); 04517 if( sqlite3SafetyOn(db) ) goto abort_due_to_misuse; 04518 break; 04519 } 04520 #endif 04521 04522 #if !defined(SQLITE_OMIT_AUTOVACUUM) 04523 /* Opcode: IncrVacuum P1 P2 * * * 04524 ** 04525 ** Perform a single step of the incremental vacuum procedure on 04526 ** the P1 database. If the vacuum has finished, jump to instruction 04527 ** P2. Otherwise, fall through to the next instruction. 04528 */ 04529 case OP_IncrVacuum: { /* jump */ 04530 Btree *pBt; 04531 04532 assert( pOp->p1>=0 && pOp->p1<db->nDb ); 04533 assert( (p->btreeMask & (1<<pOp->p1))!=0 ); 04534 pBt = db->aDb[pOp->p1].pBt; 04535 rc = sqlite3BtreeIncrVacuum(pBt); 04536 if( rc==SQLITE_DONE ){ 04537 pc = pOp->p2 - 1; 04538 rc = SQLITE_OK; 04539 } 04540 break; 04541 } 04542 #endif 04543 04544 /* Opcode: Expire P1 * * * * 04545 ** 04546 ** Cause precompiled statements to become expired. An expired statement 04547 ** fails with an error code of SQLITE_SCHEMA if it is ever executed 04548 ** (via sqlite3_step()). 04549 ** 04550 ** If P1 is 0, then all SQL statements become expired. If P1 is non-zero, 04551 ** then only the currently executing statement is affected. 04552 */ 04553 case OP_Expire: { 04554 if( !pOp->p1 ){ 04555 sqlite3ExpirePreparedStatements(db); 04556 }else{ 04557 p->expired = 1; 04558 } 04559 break; 04560 } 04561 04562 #ifndef SQLITE_OMIT_SHARED_CACHE 04563 /* Opcode: TableLock P1 P2 P3 P4 * 04564 ** 04565 ** Obtain a lock on a particular table. This instruction is only used when 04566 ** the shared-cache feature is enabled. 04567 ** 04568 ** If P1 is the index of the database in sqlite3.aDb[] of the database 04569 ** on which the lock is acquired. A readlock is obtained if P3==0 or 04570 ** a write lock if P3==1. 04571 ** 04572 ** P2 contains the root-page of the table to lock. 04573 ** 04574 ** P4 contains a pointer to the name of the table being locked. This is only 04575 ** used to generate an error message if the lock cannot be obtained. 04576 */ 04577 case OP_TableLock: { 04578 int p1 = pOp->p1; 04579 u8 isWriteLock = pOp->p3; 04580 assert( p1>=0 && p1<db->nDb ); 04581 assert( (p->btreeMask & (1<<p1))!=0 ); 04582 assert( isWriteLock==0 || isWriteLock==1 ); 04583 rc = sqlite3BtreeLockTable(db->aDb[p1].pBt, pOp->p2, isWriteLock); 04584 if( rc==SQLITE_LOCKED ){ 04585 const char *z = pOp->p4.z; 04586 sqlite3SetString(&p->zErrMsg, db, "database table is locked: %s", z); 04587 } 04588 break; 04589 } 04590 #endif /* SQLITE_OMIT_SHARED_CACHE */ 04591 04592 #ifndef SQLITE_OMIT_VIRTUALTABLE 04593 /* Opcode: VBegin * * * P4 * 04594 ** 04595 ** P4 may be a pointer to an sqlite3_vtab structure. If so, call the 04596 ** xBegin method for that table. 04597 ** 04598 ** Also, whether or not P4 is set, check that this is not being called from 04599 ** within a callback to a virtual table xSync() method. If it is, set the 04600 ** error code to SQLITE_LOCKED. 04601 */ 04602 case OP_VBegin: { 04603 sqlite3_vtab *pVtab = pOp->p4.pVtab; 04604 rc = sqlite3VtabBegin(db, pVtab); 04605 if( pVtab ){ 04606 sqlite3DbFree(db, p->zErrMsg); 04607 p->zErrMsg = pVtab->zErrMsg; 04608 pVtab->zErrMsg = 0; 04609 } 04610 break; 04611 } 04612 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 04613 04614 #ifndef SQLITE_OMIT_VIRTUALTABLE 04615 /* Opcode: VCreate P1 * * P4 * 04616 ** 04617 ** P4 is the name of a virtual table in database P1. Call the xCreate method 04618 ** for that table. 04619 */ 04620 case OP_VCreate: { 04621 rc = sqlite3VtabCallCreate(db, pOp->p1, pOp->p4.z, &p->zErrMsg); 04622 break; 04623 } 04624 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 04625 04626 #ifndef SQLITE_OMIT_VIRTUALTABLE 04627 /* Opcode: VDestroy P1 * * P4 * 04628 ** 04629 ** P4 is the name of a virtual table in database P1. Call the xDestroy method 04630 ** of that table. 04631 */ 04632 case OP_VDestroy: { 04633 p->inVtabMethod = 2; 04634 rc = sqlite3VtabCallDestroy(db, pOp->p1, pOp->p4.z); 04635 p->inVtabMethod = 0; 04636 break; 04637 } 04638 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 04639 04640 #ifndef SQLITE_OMIT_VIRTUALTABLE 04641 /* Opcode: VOpen P1 * * P4 * 04642 ** 04643 ** P4 is a pointer to a virtual table object, an sqlite3_vtab structure. 04644 ** P1 is a cursor number. This opcode opens a cursor to the virtual 04645 ** table and stores that cursor in P1. 04646 */ 04647 case OP_VOpen: { 04648 VdbeCursor *pCur = 0; 04649 sqlite3_vtab_cursor *pVtabCursor = 0; 04650 04651 sqlite3_vtab *pVtab = pOp->p4.pVtab; 04652 sqlite3_module *pModule = (sqlite3_module *)pVtab->pModule; 04653 04654 assert(pVtab && pModule); 04655 if( sqlite3SafetyOff(db) ) goto abort_due_to_misuse; 04656 rc = pModule->xOpen(pVtab, &pVtabCursor); 04657 sqlite3DbFree(db, p->zErrMsg); 04658 p->zErrMsg = pVtab->zErrMsg; 04659 pVtab->zErrMsg = 0; 04660 if( sqlite3SafetyOn(db) ) goto abort_due_to_misuse; 04661 if( SQLITE_OK==rc ){ 04662 /* Initialize sqlite3_vtab_cursor base class */ 04663 pVtabCursor->pVtab = pVtab; 04664 04665 /* Initialise vdbe cursor object */ 04666 pCur = allocateCursor(p, pOp->p1, &pOp[-1], -1, 0); 04667 if( pCur ){ 04668 pCur->pVtabCursor = pVtabCursor; 04669 pCur->pModule = pVtabCursor->pVtab->pModule; 04670 }else{ 04671 db->mallocFailed = 1; 04672 pModule->xClose(pVtabCursor); 04673 } 04674 } 04675 break; 04676 } 04677 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 04678 04679 #ifndef SQLITE_OMIT_VIRTUALTABLE 04680 /* Opcode: VFilter P1 P2 P3 P4 * 04681 ** 04682 ** P1 is a cursor opened using VOpen. P2 is an address to jump to if 04683 ** the filtered result set is empty. 04684 ** 04685 ** P4 is either NULL or a string that was generated by the xBestIndex 04686 ** method of the module. The interpretation of the P4 string is left 04687 ** to the module implementation. 04688 ** 04689 ** This opcode invokes the xFilter method on the virtual table specified 04690 ** by P1. The integer query plan parameter to xFilter is stored in register 04691 ** P3. Register P3+1 stores the argc parameter to be passed to the 04692 ** xFilter method. Registers P3+2..P3+1+argc are the argc 04693 ** additional parameters which are passed to 04694 ** xFilter as argv. Register P3+2 becomes argv[0] when passed to xFilter. 04695 ** 04696 ** A jump is made to P2 if the result set after filtering would be empty. 04697 */ 04698 case OP_VFilter: { /* jump */ 04699 int nArg; 04700 int iQuery; 04701 const sqlite3_module *pModule; 04702 Mem *pQuery = &p->aMem[pOp->p3]; 04703 Mem *pArgc = &pQuery[1]; 04704 sqlite3_vtab_cursor *pVtabCursor; 04705 sqlite3_vtab *pVtab; 04706 04707 VdbeCursor *pCur = p->apCsr[pOp->p1]; 04708 04709 REGISTER_TRACE(pOp->p3, pQuery); 04710 assert( pCur->pVtabCursor ); 04711 pVtabCursor = pCur->pVtabCursor; 04712 pVtab = pVtabCursor->pVtab; 04713 pModule = pVtab->pModule; 04714 04715 /* Grab the index number and argc parameters */ 04716 assert( (pQuery->flags&MEM_Int)!=0 && pArgc->flags==MEM_Int ); 04717 nArg = pArgc->u.i; 04718 iQuery = pQuery->u.i; 04719 04720 /* Invoke the xFilter method */ 04721 { 04722 int res = 0; 04723 int i; 04724 Mem **apArg = p->apArg; 04725 for(i = 0; i<nArg; i++){ 04726 apArg[i] = &pArgc[i+1]; 04727 storeTypeInfo(apArg[i], 0); 04728 } 04729 04730 if( sqlite3SafetyOff(db) ) goto abort_due_to_misuse; 04731 sqlite3VtabLock(pVtab); 04732 p->inVtabMethod = 1; 04733 rc = pModule->xFilter(pVtabCursor, iQuery, pOp->p4.z, nArg, apArg); 04734 p->inVtabMethod = 0; 04735 sqlite3DbFree(db, p->zErrMsg); 04736 p->zErrMsg = pVtab->zErrMsg; 04737 pVtab->zErrMsg = 0; 04738 sqlite3VtabUnlock(db, pVtab); 04739 if( rc==SQLITE_OK ){ 04740 res = pModule->xEof(pVtabCursor); 04741 } 04742 if( sqlite3SafetyOn(db) ) goto abort_due_to_misuse; 04743 04744 if( res ){ 04745 pc = pOp->p2 - 1; 04746 } 04747 } 04748 pCur->nullRow = 0; 04749 04750 break; 04751 } 04752 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 04753 04754 #ifndef SQLITE_OMIT_VIRTUALTABLE 04755 /* Opcode: VRowid P1 P2 * * * 04756 ** 04757 ** Store into register P2 the rowid of 04758 ** the virtual-table that the P1 cursor is pointing to. 04759 */ 04760 case OP_VRowid: { /* out2-prerelease */ 04761 sqlite3_vtab *pVtab; 04762 const sqlite3_module *pModule; 04763 sqlite_int64 iRow; 04764 VdbeCursor *pCur = p->apCsr[pOp->p1]; 04765 04766 assert( pCur->pVtabCursor ); 04767 if( pCur->nullRow ){ 04768 break; 04769 } 04770 pVtab = pCur->pVtabCursor->pVtab; 04771 pModule = pVtab->pModule; 04772 assert( pModule->xRowid ); 04773 if( sqlite3SafetyOff(db) ) goto abort_due_to_misuse; 04774 rc = pModule->xRowid(pCur->pVtabCursor, &iRow); 04775 sqlite3DbFree(db, p->zErrMsg); 04776 p->zErrMsg = pVtab->zErrMsg; 04777 pVtab->zErrMsg = 0; 04778 if( sqlite3SafetyOn(db) ) goto abort_due_to_misuse; 04779 MemSetTypeFlag(pOut, MEM_Int); 04780 pOut->u.i = iRow; 04781 break; 04782 } 04783 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 04784 04785 #ifndef SQLITE_OMIT_VIRTUALTABLE 04786 /* Opcode: VColumn P1 P2 P3 * * 04787 ** 04788 ** Store the value of the P2-th column of 04789 ** the row of the virtual-table that the 04790 ** P1 cursor is pointing to into register P3. 04791 */ 04792 case OP_VColumn: { 04793 sqlite3_vtab *pVtab; 04794 const sqlite3_module *pModule; 04795 Mem *pDest; 04796 sqlite3_context sContext; 04797 04798 VdbeCursor *pCur = p->apCsr[pOp->p1]; 04799 assert( pCur->pVtabCursor ); 04800 assert( pOp->p3>0 && pOp->p3<=p->nMem ); 04801 pDest = &p->aMem[pOp->p3]; 04802 if( pCur->nullRow ){ 04803 sqlite3VdbeMemSetNull(pDest); 04804 break; 04805 } 04806 pVtab = pCur->pVtabCursor->pVtab; 04807 pModule = pVtab->pModule; 04808 assert( pModule->xColumn ); 04809 memset(&sContext, 0, sizeof(sContext)); 04810 04811 /* The output cell may already have a buffer allocated. Move 04812 ** the current contents to sContext.s so in case the user-function 04813 ** can use the already allocated buffer instead of allocating a 04814 ** new one. 04815 */ 04816 sqlite3VdbeMemMove(&sContext.s, pDest); 04817 MemSetTypeFlag(&sContext.s, MEM_Null); 04818 04819 if( sqlite3SafetyOff(db) ) goto abort_due_to_misuse; 04820 rc = pModule->xColumn(pCur->pVtabCursor, &sContext, pOp->p2); 04821 sqlite3DbFree(db, p->zErrMsg); 04822 p->zErrMsg = pVtab->zErrMsg; 04823 pVtab->zErrMsg = 0; 04824 04825 /* Copy the result of the function to the P3 register. We 04826 ** do this regardless of whether or not an error occured to ensure any 04827 ** dynamic allocation in sContext.s (a Mem struct) is released. 04828 */ 04829 sqlite3VdbeChangeEncoding(&sContext.s, encoding); 04830 REGISTER_TRACE(pOp->p3, pDest); 04831 sqlite3VdbeMemMove(pDest, &sContext.s); 04832 UPDATE_MAX_BLOBSIZE(pDest); 04833 04834 if( sqlite3SafetyOn(db) ){ 04835 goto abort_due_to_misuse; 04836 } 04837 if( sqlite3VdbeMemTooBig(pDest) ){ 04838 goto too_big; 04839 } 04840 break; 04841 } 04842 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 04843 04844 #ifndef SQLITE_OMIT_VIRTUALTABLE 04845 /* Opcode: VNext P1 P2 * * * 04846 ** 04847 ** Advance virtual table P1 to the next row in its result set and 04848 ** jump to instruction P2. Or, if the virtual table has reached 04849 ** the end of its result set, then fall through to the next instruction. 04850 */ 04851 case OP_VNext: { /* jump */ 04852 sqlite3_vtab *pVtab; 04853 const sqlite3_module *pModule; 04854 int res = 0; 04855 04856 VdbeCursor *pCur = p->apCsr[pOp->p1]; 04857 assert( pCur->pVtabCursor ); 04858 if( pCur->nullRow ){ 04859 break; 04860 } 04861 pVtab = pCur->pVtabCursor->pVtab; 04862 pModule = pVtab->pModule; 04863 assert( pModule->xNext ); 04864 04865 /* Invoke the xNext() method of the module. There is no way for the 04866 ** underlying implementation to return an error if one occurs during 04867 ** xNext(). Instead, if an error occurs, true is returned (indicating that 04868 ** data is available) and the error code returned when xColumn or 04869 ** some other method is next invoked on the save virtual table cursor. 04870 */ 04871 if( sqlite3SafetyOff(db) ) goto abort_due_to_misuse; 04872 sqlite3VtabLock(pVtab); 04873 p->inVtabMethod = 1; 04874 rc = pModule->xNext(pCur->pVtabCursor); 04875 p->inVtabMethod = 0; 04876 sqlite3DbFree(db, p->zErrMsg); 04877 p->zErrMsg = pVtab->zErrMsg; 04878 pVtab->zErrMsg = 0; 04879 sqlite3VtabUnlock(db, pVtab); 04880 if( rc==SQLITE_OK ){ 04881 res = pModule->xEof(pCur->pVtabCursor); 04882 } 04883 if( sqlite3SafetyOn(db) ) goto abort_due_to_misuse; 04884 04885 if( !res ){ 04886 /* If there is data, jump to P2 */ 04887 pc = pOp->p2 - 1; 04888 } 04889 break; 04890 } 04891 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 04892 04893 #ifndef SQLITE_OMIT_VIRTUALTABLE 04894 /* Opcode: VRename P1 * * P4 * 04895 ** 04896 ** P4 is a pointer to a virtual table object, an sqlite3_vtab structure. 04897 ** This opcode invokes the corresponding xRename method. The value 04898 ** in register P1 is passed as the zName argument to the xRename method. 04899 */ 04900 case OP_VRename: { 04901 sqlite3_vtab *pVtab = pOp->p4.pVtab; 04902 Mem *pName = &p->aMem[pOp->p1]; 04903 assert( pVtab->pModule->xRename ); 04904 REGISTER_TRACE(pOp->p1, pName); 04905 04906 Stringify(pName, encoding); 04907 04908 if( sqlite3SafetyOff(db) ) goto abort_due_to_misuse; 04909 sqlite3VtabLock(pVtab); 04910 rc = pVtab->pModule->xRename(pVtab, pName->z); 04911 sqlite3DbFree(db, p->zErrMsg); 04912 p->zErrMsg = pVtab->zErrMsg; 04913 pVtab->zErrMsg = 0; 04914 sqlite3VtabUnlock(db, pVtab); 04915 if( sqlite3SafetyOn(db) ) goto abort_due_to_misuse; 04916 04917 break; 04918 } 04919 #endif 04920 04921 #ifndef SQLITE_OMIT_VIRTUALTABLE 04922 /* Opcode: VUpdate P1 P2 P3 P4 * 04923 ** 04924 ** P4 is a pointer to a virtual table object, an sqlite3_vtab structure. 04925 ** This opcode invokes the corresponding xUpdate method. P2 values 04926 ** are contiguous memory cells starting at P3 to pass to the xUpdate 04927 ** invocation. The value in register (P3+P2-1) corresponds to the 04928 ** p2th element of the argv array passed to xUpdate. 04929 ** 04930 ** The xUpdate method will do a DELETE or an INSERT or both. 04931 ** The argv[0] element (which corresponds to memory cell P3) 04932 ** is the rowid of a row to delete. If argv[0] is NULL then no 04933 ** deletion occurs. The argv[1] element is the rowid of the new 04934 ** row. This can be NULL to have the virtual table select the new 04935 ** rowid for itself. The subsequent elements in the array are 04936 ** the values of columns in the new row. 04937 ** 04938 ** If P2==1 then no insert is performed. argv[0] is the rowid of 04939 ** a row to delete. 04940 ** 04941 ** P1 is a boolean flag. If it is set to true and the xUpdate call 04942 ** is successful, then the value returned by sqlite3_last_insert_rowid() 04943 ** is set to the value of the rowid for the row just inserted. 04944 */ 04945 case OP_VUpdate: { 04946 sqlite3_vtab *pVtab = pOp->p4.pVtab; 04947 sqlite3_module *pModule = (sqlite3_module *)pVtab->pModule; 04948 int nArg = pOp->p2; 04949 assert( pOp->p4type==P4_VTAB ); 04950 if( pModule->xUpdate==0 ){ 04951 sqlite3SetString(&p->zErrMsg, db, "read-only table"); 04952 rc = SQLITE_ERROR; 04953 }else{ 04954 int i; 04955 sqlite_int64 rowid; 04956 Mem **apArg = p->apArg; 04957 Mem *pX = &p->aMem[pOp->p3]; 04958 for(i=0; i<nArg; i++){ 04959 storeTypeInfo(pX, 0); 04960 apArg[i] = pX; 04961 pX++; 04962 } 04963 if( sqlite3SafetyOff(db) ) goto abort_due_to_misuse; 04964 sqlite3VtabLock(pVtab); 04965 rc = pModule->xUpdate(pVtab, nArg, apArg, &rowid); 04966 sqlite3DbFree(db, p->zErrMsg); 04967 p->zErrMsg = pVtab->zErrMsg; 04968 pVtab->zErrMsg = 0; 04969 sqlite3VtabUnlock(db, pVtab); 04970 if( sqlite3SafetyOn(db) ) goto abort_due_to_misuse; 04971 if( pOp->p1 && rc==SQLITE_OK ){ 04972 assert( nArg>1 && apArg[0] && (apArg[0]->flags&MEM_Null) ); 04973 db->lastRowid = rowid; 04974 } 04975 p->nChange++; 04976 } 04977 break; 04978 } 04979 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 04980 04981 #ifndef SQLITE_OMIT_PAGER_PRAGMAS 04982 /* Opcode: Pagecount P1 P2 * * * 04983 ** 04984 ** Write the current number of pages in database P1 to memory cell P2. 04985 */ 04986 case OP_Pagecount: { /* out2-prerelease */ 04987 int p1 = pOp->p1; 04988 int nPage; 04989 Pager *pPager = sqlite3BtreePager(db->aDb[p1].pBt); 04990 04991 rc = sqlite3PagerPagecount(pPager, &nPage); 04992 if( rc==SQLITE_OK ){ 04993 pOut->flags = MEM_Int; 04994 pOut->u.i = nPage; 04995 } 04996 break; 04997 } 04998 #endif 04999 05000 #ifndef SQLITE_OMIT_TRACE 05001 /* Opcode: Trace * * * P4 * 05002 ** 05003 ** If tracing is enabled (by the sqlite3_trace()) interface, then 05004 ** the UTF-8 string contained in P4 is emitted on the trace callback. 05005 */ 05006 case OP_Trace: { 05007 if( pOp->p4.z ){ 05008 if( db->xTrace ){ 05009 db->xTrace(db->pTraceArg, pOp->p4.z); 05010 } 05011 #ifdef SQLITE_DEBUG 05012 if( (db->flags & SQLITE_SqlTrace)!=0 ){ 05013 sqlite3DebugPrintf("SQL-trace: %s\n", pOp->p4.z); 05014 } 05015 #endif /* SQLITE_DEBUG */ 05016 } 05017 break; 05018 } 05019 #endif 05020 05021 05022 /* Opcode: Noop * * * * * 05023 ** 05024 ** Do nothing. This instruction is often useful as a jump 05025 ** destination. 05026 */ 05027 /* 05028 ** The magic Explain opcode are only inserted when explain==2 (which 05029 ** is to say when the EXPLAIN QUERY PLAN syntax is used.) 05030 ** This opcode records information from the optimizer. It is the 05031 ** the same as a no-op. This opcodesnever appears in a real VM program. 05032 */ 05033 default: { /* This is really OP_Noop and OP_Explain */ 05034 break; 05035 } 05036 05037 /***************************************************************************** 05038 ** The cases of the switch statement above this line should all be indented 05039 ** by 6 spaces. But the left-most 6 spaces have been removed to improve the 05040 ** readability. From this point on down, the normal indentation rules are 05041 ** restored. 05042 *****************************************************************************/ 05043 } 05044 05045 #ifdef VDBE_PROFILE 05046 { 05047 u64 elapsed = sqlite3Hwtime() - start; 05048 pOp->cycles += elapsed; 05049 pOp->cnt++; 05050 #if 0 05051 fprintf(stdout, "%10llu ", elapsed); 05052 sqlite3VdbePrintOp(stdout, origPc, &p->aOp[origPc]); 05053 #endif 05054 } 05055 #endif 05056 05057 /* The following code adds nothing to the actual functionality 05058 ** of the program. It is only here for testing and debugging. 05059 ** On the other hand, it does burn CPU cycles every time through 05060 ** the evaluator loop. So we can leave it out when NDEBUG is defined. 05061 */ 05062 #ifndef NDEBUG 05063 assert( pc>=-1 && pc<p->nOp ); 05064 05065 #ifdef SQLITE_DEBUG 05066 if( p->trace ){ 05067 if( rc!=0 ) fprintf(p->trace,"rc=%d\n",rc); 05068 if( opProperty & OPFLG_OUT2_PRERELEASE ){ 05069 registerTrace(p->trace, pOp->p2, pOut); 05070 } 05071 if( opProperty & OPFLG_OUT3 ){ 05072 registerTrace(p->trace, pOp->p3, pOut); 05073 } 05074 } 05075 #endif /* SQLITE_DEBUG */ 05076 #endif /* NDEBUG */ 05077 } /* The end of the for(;;) loop the loops through opcodes */ 05078 05079 /* If we reach this point, it means that execution is finished with 05080 ** an error of some kind. 05081 */ 05082 vdbe_error_halt: 05083 assert( rc ); 05084 p->rc = rc; 05085 sqlite3VdbeHalt(p); 05086 if( rc==SQLITE_IOERR_NOMEM ) db->mallocFailed = 1; 05087 rc = SQLITE_ERROR; 05088 05089 /* This is the only way out of this procedure. We have to 05090 ** release the mutexes on btrees that were acquired at the 05091 ** top. */ 05092 vdbe_return: 05093 sqlite3BtreeMutexArrayLeave(&p->aMutex); 05094 return rc; 05095 05096 /* Jump to here if a string or blob larger than SQLITE_MAX_LENGTH 05097 ** is encountered. 05098 */ 05099 too_big: 05100 sqlite3SetString(&p->zErrMsg, db, "string or blob too big"); 05101 rc = SQLITE_TOOBIG; 05102 goto vdbe_error_halt; 05103 05104 /* Jump to here if a malloc() fails. 05105 */ 05106 no_mem: 05107 db->mallocFailed = 1; 05108 sqlite3SetString(&p->zErrMsg, db, "out of memory"); 05109 rc = SQLITE_NOMEM; 05110 goto vdbe_error_halt; 05111 05112 /* Jump to here for an SQLITE_MISUSE error. 05113 */ 05114 abort_due_to_misuse: 05115 rc = SQLITE_MISUSE; 05116 /* Fall thru into abort_due_to_error */ 05117 05118 /* Jump to here for any other kind of fatal error. The "rc" variable 05119 ** should hold the error number. 05120 */ 05121 abort_due_to_error: 05122 assert( p->zErrMsg==0 ); 05123 if( db->mallocFailed ) rc = SQLITE_NOMEM; 05124 if( rc!=SQLITE_IOERR_NOMEM ){ 05125 sqlite3SetString(&p->zErrMsg, db, "%s", sqlite3ErrStr(rc)); 05126 } 05127 goto vdbe_error_halt; 05128 05129 /* Jump to here if the sqlite3_interrupt() API sets the interrupt 05130 ** flag. 05131 */ 05132 abort_due_to_interrupt: 05133 assert( db->u1.isInterrupted ); 05134 rc = SQLITE_INTERRUPT; 05135 p->rc = rc; 05136 sqlite3SetString(&p->zErrMsg, db, "%s", sqlite3ErrStr(rc)); 05137 goto vdbe_error_halt; 05138 }
ContextLogger2—ContextLogger2 Logger Daemon Internals—Generated on Mon May 2 13:49:57 2011 by Doxygen 1.6.1