vdbeaux.c

Go to the documentation of this file.
00001 /*
00002 ** 2003 September 6
00003 **
00004 ** The author disclaims copyright to this source code.  In place of
00005 ** a legal notice, here is a blessing:
00006 **
00007 **    May you do good and not evil.
00008 **    May you find forgiveness for yourself and forgive others.
00009 **    May you share freely, never taking more than you give.
00010 **
00011 *************************************************************************
00012 ** This file contains code used for creating, destroying, and populating
00013 ** a VDBE (or an "sqlite3_stmt" as it is known to the outside world.)  Prior
00014 ** to version 2.8.7, all this code was combined into the vdbe.c source file.
00015 ** But that file was getting too big so this subroutines were split out.
00016 **
00017 ** $Id: vdbeaux.c,v 1.418 2008/11/05 17:41:19 drh Exp $
00018 */
00019 #include "sqliteInt.h"
00020 #include <ctype.h>
00021 #include "vdbeInt.h"
00022 
00023 
00024 
00025 /*
00026 ** When debugging the code generator in a symbolic debugger, one can
00027 ** set the sqlite3VdbeAddopTrace to 1 and all opcodes will be printed
00028 ** as they are added to the instruction stream.
00029 */
00030 #ifdef SQLITE_DEBUG
00031 int sqlite3VdbeAddopTrace = 0;
00032 #endif
00033 
00034 
00035 /*
00036 ** Create a new virtual database engine.
00037 */
00038 Vdbe *sqlite3VdbeCreate(sqlite3 *db){
00039   Vdbe *p;
00040   p = sqlite3DbMallocZero(db, sizeof(Vdbe) );
00041   if( p==0 ) return 0;
00042   p->db = db;
00043   if( db->pVdbe ){
00044     db->pVdbe->pPrev = p;
00045   }
00046   p->pNext = db->pVdbe;
00047   p->pPrev = 0;
00048   db->pVdbe = p;
00049   p->magic = VDBE_MAGIC_INIT;
00050   return p;
00051 }
00052 
00053 /*
00054 ** Remember the SQL string for a prepared statement.
00055 */
00056 void sqlite3VdbeSetSql(Vdbe *p, const char *z, int n){
00057   if( p==0 ) return;
00058   assert( p->zSql==0 );
00059   p->zSql = sqlite3DbStrNDup(p->db, z, n);
00060 }
00061 
00062 /*
00063 ** Return the SQL associated with a prepared statement
00064 */
00065 const char *sqlite3_sql(sqlite3_stmt *pStmt){
00066   return ((Vdbe *)pStmt)->zSql;
00067 }
00068 
00069 /*
00070 ** Swap all content between two VDBE structures.
00071 */
00072 void sqlite3VdbeSwap(Vdbe *pA, Vdbe *pB){
00073   Vdbe tmp, *pTmp;
00074   char *zTmp;
00075   int nTmp;
00076   tmp = *pA;
00077   *pA = *pB;
00078   *pB = tmp;
00079   pTmp = pA->pNext;
00080   pA->pNext = pB->pNext;
00081   pB->pNext = pTmp;
00082   pTmp = pA->pPrev;
00083   pA->pPrev = pB->pPrev;
00084   pB->pPrev = pTmp;
00085   zTmp = pA->zSql;
00086   pA->zSql = pB->zSql;
00087   pB->zSql = zTmp;
00088   nTmp = pA->nSql;
00089   pA->nSql = pB->nSql;
00090   pB->nSql = nTmp;
00091 }
00092 
00093 #ifdef SQLITE_DEBUG
00094 /*
00095 ** Turn tracing on or off
00096 */
00097 void sqlite3VdbeTrace(Vdbe *p, FILE *trace){
00098   p->trace = trace;
00099 }
00100 #endif
00101 
00102 /*
00103 ** Resize the Vdbe.aOp array so that it contains at least N
00104 ** elements.
00105 **
00106 ** If an out-of-memory error occurs while resizing the array,
00107 ** Vdbe.aOp and Vdbe.nOpAlloc remain unchanged (this is so that
00108 ** any opcodes already allocated can be correctly deallocated
00109 ** along with the rest of the Vdbe).
00110 */
00111 static void resizeOpArray(Vdbe *p, int N){
00112   VdbeOp *pNew;
00113   pNew = sqlite3DbRealloc(p->db, p->aOp, N*sizeof(Op));
00114   if( pNew ){
00115     p->nOpAlloc = N;
00116     p->aOp = pNew;
00117   }
00118 }
00119 
00120 /*
00121 ** Add a new instruction to the list of instructions current in the
00122 ** VDBE.  Return the address of the new instruction.
00123 **
00124 ** Parameters:
00125 **
00126 **    p               Pointer to the VDBE
00127 **
00128 **    op              The opcode for this instruction
00129 **
00130 **    p1, p2, p3      Operands
00131 **
00132 ** Use the sqlite3VdbeResolveLabel() function to fix an address and
00133 ** the sqlite3VdbeChangeP4() function to change the value of the P4
00134 ** operand.
00135 */
00136 int sqlite3VdbeAddOp3(Vdbe *p, int op, int p1, int p2, int p3){
00137   int i;
00138   VdbeOp *pOp;
00139 
00140   i = p->nOp;
00141   assert( p->magic==VDBE_MAGIC_INIT );
00142   if( p->nOpAlloc<=i ){
00143     resizeOpArray(p, p->nOpAlloc ? p->nOpAlloc*2 : 1024/sizeof(Op));
00144     if( p->db->mallocFailed ){
00145       return 0;
00146     }
00147   }
00148   p->nOp++;
00149   pOp = &p->aOp[i];
00150   pOp->opcode = op;
00151   pOp->p5 = 0;
00152   pOp->p1 = p1;
00153   pOp->p2 = p2;
00154   pOp->p3 = p3;
00155   pOp->p4.p = 0;
00156   pOp->p4type = P4_NOTUSED;
00157   p->expired = 0;
00158 #ifdef SQLITE_DEBUG
00159   pOp->zComment = 0;
00160   if( sqlite3VdbeAddopTrace ) sqlite3VdbePrintOp(0, i, &p->aOp[i]);
00161 #endif
00162 #ifdef VDBE_PROFILE
00163   pOp->cycles = 0;
00164   pOp->cnt = 0;
00165 #endif
00166   return i;
00167 }
00168 int sqlite3VdbeAddOp0(Vdbe *p, int op){
00169   return sqlite3VdbeAddOp3(p, op, 0, 0, 0);
00170 }
00171 int sqlite3VdbeAddOp1(Vdbe *p, int op, int p1){
00172   return sqlite3VdbeAddOp3(p, op, p1, 0, 0);
00173 }
00174 int sqlite3VdbeAddOp2(Vdbe *p, int op, int p1, int p2){
00175   return sqlite3VdbeAddOp3(p, op, p1, p2, 0);
00176 }
00177 
00178 
00179 /*
00180 ** Add an opcode that includes the p4 value as a pointer.
00181 */
00182 int sqlite3VdbeAddOp4(
00183   Vdbe *p,            /* Add the opcode to this VM */
00184   int op,             /* The new opcode */
00185   int p1,             /* The P1 operand */
00186   int p2,             /* The P2 operand */
00187   int p3,             /* The P3 operand */
00188   const char *zP4,    /* The P4 operand */
00189   int p4type          /* P4 operand type */
00190 ){
00191   int addr = sqlite3VdbeAddOp3(p, op, p1, p2, p3);
00192   sqlite3VdbeChangeP4(p, addr, zP4, p4type);
00193   return addr;
00194 }
00195 
00196 /*
00197 ** Create a new symbolic label for an instruction that has yet to be
00198 ** coded.  The symbolic label is really just a negative number.  The
00199 ** label can be used as the P2 value of an operation.  Later, when
00200 ** the label is resolved to a specific address, the VDBE will scan
00201 ** through its operation list and change all values of P2 which match
00202 ** the label into the resolved address.
00203 **
00204 ** The VDBE knows that a P2 value is a label because labels are
00205 ** always negative and P2 values are suppose to be non-negative.
00206 ** Hence, a negative P2 value is a label that has yet to be resolved.
00207 **
00208 ** Zero is returned if a malloc() fails.
00209 */
00210 int sqlite3VdbeMakeLabel(Vdbe *p){
00211   int i;
00212   i = p->nLabel++;
00213   assert( p->magic==VDBE_MAGIC_INIT );
00214   if( i>=p->nLabelAlloc ){
00215     p->nLabelAlloc = p->nLabelAlloc*2 + 10;
00216     p->aLabel = sqlite3DbReallocOrFree(p->db, p->aLabel,
00217                                     p->nLabelAlloc*sizeof(p->aLabel[0]));
00218   }
00219   if( p->aLabel ){
00220     p->aLabel[i] = -1;
00221   }
00222   return -1-i;
00223 }
00224 
00225 /*
00226 ** Resolve label "x" to be the address of the next instruction to
00227 ** be inserted.  The parameter "x" must have been obtained from
00228 ** a prior call to sqlite3VdbeMakeLabel().
00229 */
00230 void sqlite3VdbeResolveLabel(Vdbe *p, int x){
00231   int j = -1-x;
00232   assert( p->magic==VDBE_MAGIC_INIT );
00233   assert( j>=0 && j<p->nLabel );
00234   if( p->aLabel ){
00235     p->aLabel[j] = p->nOp;
00236   }
00237 }
00238 
00239 /*
00240 ** Loop through the program looking for P2 values that are negative
00241 ** on jump instructions.  Each such value is a label.  Resolve the
00242 ** label by setting the P2 value to its correct non-zero value.
00243 **
00244 ** This routine is called once after all opcodes have been inserted.
00245 **
00246 ** Variable *pMaxFuncArgs is set to the maximum value of any P2 argument 
00247 ** to an OP_Function, OP_AggStep or OP_VFilter opcode. This is used by 
00248 ** sqlite3VdbeMakeReady() to size the Vdbe.apArg[] array.
00249 **
00250 ** This routine also does the following optimization:  It scans for
00251 ** instructions that might cause a statement rollback.  Such instructions
00252 ** are:
00253 **
00254 **   *  OP_Halt with P1=SQLITE_CONSTRAINT and P2=OE_Abort.
00255 **   *  OP_Destroy
00256 **   *  OP_VUpdate
00257 **   *  OP_VRename
00258 **
00259 ** If no such instruction is found, then every Statement instruction 
00260 ** is changed to a Noop.  In this way, we avoid creating the statement 
00261 ** journal file unnecessarily.
00262 */
00263 static void resolveP2Values(Vdbe *p, int *pMaxFuncArgs){
00264   int i;
00265   int nMaxArgs = 0;
00266   Op *pOp;
00267   int *aLabel = p->aLabel;
00268   int doesStatementRollback = 0;
00269   int hasStatementBegin = 0;
00270   p->readOnly = 1;
00271   p->usesStmtJournal = 0;
00272   for(pOp=p->aOp, i=p->nOp-1; i>=0; i--, pOp++){
00273     u8 opcode = pOp->opcode;
00274 
00275     if( opcode==OP_Function || opcode==OP_AggStep ){
00276       if( pOp->p5>nMaxArgs ) nMaxArgs = pOp->p5;
00277 #ifndef SQLITE_OMIT_VIRTUALTABLE
00278     }else if( opcode==OP_VUpdate ){
00279       if( pOp->p2>nMaxArgs ) nMaxArgs = pOp->p2;
00280 #endif
00281     }
00282     if( opcode==OP_Halt ){
00283       if( pOp->p1==SQLITE_CONSTRAINT && pOp->p2==OE_Abort ){
00284         doesStatementRollback = 1;
00285       }
00286     }else if( opcode==OP_Statement ){
00287       hasStatementBegin = 1;
00288       p->usesStmtJournal = 1;
00289     }else if( opcode==OP_Destroy ){
00290       doesStatementRollback = 1;
00291     }else if( opcode==OP_Transaction && pOp->p2!=0 ){
00292       p->readOnly = 0;
00293 #ifndef SQLITE_OMIT_VIRTUALTABLE
00294     }else if( opcode==OP_VUpdate || opcode==OP_VRename ){
00295       doesStatementRollback = 1;
00296     }else if( opcode==OP_VFilter ){
00297       int n;
00298       assert( p->nOp - i >= 3 );
00299       assert( pOp[-1].opcode==OP_Integer );
00300       n = pOp[-1].p1;
00301       if( n>nMaxArgs ) nMaxArgs = n;
00302 #endif
00303     }
00304 
00305     if( sqlite3VdbeOpcodeHasProperty(opcode, OPFLG_JUMP) && pOp->p2<0 ){
00306       assert( -1-pOp->p2<p->nLabel );
00307       pOp->p2 = aLabel[-1-pOp->p2];
00308     }
00309   }
00310   sqlite3DbFree(p->db, p->aLabel);
00311   p->aLabel = 0;
00312 
00313   *pMaxFuncArgs = nMaxArgs;
00314 
00315   /* If we never rollback a statement transaction, then statement
00316   ** transactions are not needed.  So change every OP_Statement
00317   ** opcode into an OP_Noop.  This avoid a call to sqlite3OsOpenExclusive()
00318   ** which can be expensive on some platforms.
00319   */
00320   if( hasStatementBegin && !doesStatementRollback ){
00321     p->usesStmtJournal = 0;
00322     for(pOp=p->aOp, i=p->nOp-1; i>=0; i--, pOp++){
00323       if( pOp->opcode==OP_Statement ){
00324         pOp->opcode = OP_Noop;
00325       }
00326     }
00327   }
00328 }
00329 
00330 /*
00331 ** Return the address of the next instruction to be inserted.
00332 */
00333 int sqlite3VdbeCurrentAddr(Vdbe *p){
00334   assert( p->magic==VDBE_MAGIC_INIT );
00335   return p->nOp;
00336 }
00337 
00338 /*
00339 ** Add a whole list of operations to the operation stack.  Return the
00340 ** address of the first operation added.
00341 */
00342 int sqlite3VdbeAddOpList(Vdbe *p, int nOp, VdbeOpList const *aOp){
00343   int addr;
00344   assert( p->magic==VDBE_MAGIC_INIT );
00345   if( p->nOp + nOp > p->nOpAlloc ){
00346     resizeOpArray(p, p->nOpAlloc ? p->nOpAlloc*2 : 1024/sizeof(Op));
00347     assert( p->nOp+nOp<=p->nOpAlloc || p->db->mallocFailed );
00348   }
00349   if( p->db->mallocFailed ){
00350     return 0;
00351   }
00352   addr = p->nOp;
00353   if( nOp>0 ){
00354     int i;
00355     VdbeOpList const *pIn = aOp;
00356     for(i=0; i<nOp; i++, pIn++){
00357       int p2 = pIn->p2;
00358       VdbeOp *pOut = &p->aOp[i+addr];
00359       pOut->opcode = pIn->opcode;
00360       pOut->p1 = pIn->p1;
00361       if( p2<0 && sqlite3VdbeOpcodeHasProperty(pOut->opcode, OPFLG_JUMP) ){
00362         pOut->p2 = addr + ADDR(p2);
00363       }else{
00364         pOut->p2 = p2;
00365       }
00366       pOut->p3 = pIn->p3;
00367       pOut->p4type = P4_NOTUSED;
00368       pOut->p4.p = 0;
00369       pOut->p5 = 0;
00370 #ifdef SQLITE_DEBUG
00371       pOut->zComment = 0;
00372       if( sqlite3VdbeAddopTrace ){
00373         sqlite3VdbePrintOp(0, i+addr, &p->aOp[i+addr]);
00374       }
00375 #endif
00376     }
00377     p->nOp += nOp;
00378   }
00379   return addr;
00380 }
00381 
00382 /*
00383 ** Change the value of the P1 operand for a specific instruction.
00384 ** This routine is useful when a large program is loaded from a
00385 ** static array using sqlite3VdbeAddOpList but we want to make a
00386 ** few minor changes to the program.
00387 */
00388 void sqlite3VdbeChangeP1(Vdbe *p, int addr, int val){
00389   assert( p==0 || p->magic==VDBE_MAGIC_INIT );
00390   if( p && addr>=0 && p->nOp>addr && p->aOp ){
00391     p->aOp[addr].p1 = val;
00392   }
00393 }
00394 
00395 /*
00396 ** Change the value of the P2 operand for a specific instruction.
00397 ** This routine is useful for setting a jump destination.
00398 */
00399 void sqlite3VdbeChangeP2(Vdbe *p, int addr, int val){
00400   assert( p==0 || p->magic==VDBE_MAGIC_INIT );
00401   if( p && addr>=0 && p->nOp>addr && p->aOp ){
00402     p->aOp[addr].p2 = val;
00403   }
00404 }
00405 
00406 /*
00407 ** Change the value of the P3 operand for a specific instruction.
00408 */
00409 void sqlite3VdbeChangeP3(Vdbe *p, int addr, int val){
00410   assert( p==0 || p->magic==VDBE_MAGIC_INIT );
00411   if( p && addr>=0 && p->nOp>addr && p->aOp ){
00412     p->aOp[addr].p3 = val;
00413   }
00414 }
00415 
00416 /*
00417 ** Change the value of the P5 operand for the most recently
00418 ** added operation.
00419 */
00420 void sqlite3VdbeChangeP5(Vdbe *p, u8 val){
00421   assert( p==0 || p->magic==VDBE_MAGIC_INIT );
00422   if( p && p->aOp ){
00423     assert( p->nOp>0 );
00424     p->aOp[p->nOp-1].p5 = val;
00425   }
00426 }
00427 
00428 /*
00429 ** Change the P2 operand of instruction addr so that it points to
00430 ** the address of the next instruction to be coded.
00431 */
00432 void sqlite3VdbeJumpHere(Vdbe *p, int addr){
00433   sqlite3VdbeChangeP2(p, addr, p->nOp);
00434 }
00435 
00436 
00437 /*
00438 ** If the input FuncDef structure is ephemeral, then free it.  If
00439 ** the FuncDef is not ephermal, then do nothing.
00440 */
00441 static void freeEphemeralFunction(sqlite3 *db, FuncDef *pDef){
00442   if( pDef && (pDef->flags & SQLITE_FUNC_EPHEM)!=0 ){
00443     sqlite3DbFree(db, pDef);
00444   }
00445 }
00446 
00447 /*
00448 ** Delete a P4 value if necessary.
00449 */
00450 static void freeP4(sqlite3 *db, int p4type, void *p4){
00451   if( p4 ){
00452     switch( p4type ){
00453       case P4_REAL:
00454       case P4_INT64:
00455       case P4_MPRINTF:
00456       case P4_DYNAMIC:
00457       case P4_KEYINFO:
00458       case P4_INTARRAY:
00459       case P4_KEYINFO_HANDOFF: {
00460         sqlite3DbFree(db, p4);
00461         break;
00462       }
00463       case P4_VDBEFUNC: {
00464         VdbeFunc *pVdbeFunc = (VdbeFunc *)p4;
00465         freeEphemeralFunction(db, pVdbeFunc->pFunc);
00466         sqlite3VdbeDeleteAuxData(pVdbeFunc, 0);
00467         sqlite3DbFree(db, pVdbeFunc);
00468         break;
00469       }
00470       case P4_FUNCDEF: {
00471         freeEphemeralFunction(db, (FuncDef*)p4);
00472         break;
00473       }
00474       case P4_MEM: {
00475         sqlite3ValueFree((sqlite3_value*)p4);
00476         break;
00477       }
00478     }
00479   }
00480 }
00481 
00482 
00483 /*
00484 ** Change N opcodes starting at addr to No-ops.
00485 */
00486 void sqlite3VdbeChangeToNoop(Vdbe *p, int addr, int N){
00487   if( p && p->aOp ){
00488     VdbeOp *pOp = &p->aOp[addr];
00489     sqlite3 *db = p->db;
00490     while( N-- ){
00491       freeP4(db, pOp->p4type, pOp->p4.p);
00492       memset(pOp, 0, sizeof(pOp[0]));
00493       pOp->opcode = OP_Noop;
00494       pOp++;
00495     }
00496   }
00497 }
00498 
00499 /*
00500 ** Change the value of the P4 operand for a specific instruction.
00501 ** This routine is useful when a large program is loaded from a
00502 ** static array using sqlite3VdbeAddOpList but we want to make a
00503 ** few minor changes to the program.
00504 **
00505 ** If n>=0 then the P4 operand is dynamic, meaning that a copy of
00506 ** the string is made into memory obtained from sqlite3_malloc().
00507 ** A value of n==0 means copy bytes of zP4 up to and including the
00508 ** first null byte.  If n>0 then copy n+1 bytes of zP4.
00509 **
00510 ** If n==P4_KEYINFO it means that zP4 is a pointer to a KeyInfo structure.
00511 ** A copy is made of the KeyInfo structure into memory obtained from
00512 ** sqlite3_malloc, to be freed when the Vdbe is finalized.
00513 ** n==P4_KEYINFO_HANDOFF indicates that zP4 points to a KeyInfo structure
00514 ** stored in memory that the caller has obtained from sqlite3_malloc. The 
00515 ** caller should not free the allocation, it will be freed when the Vdbe is
00516 ** finalized.
00517 ** 
00518 ** Other values of n (P4_STATIC, P4_COLLSEQ etc.) indicate that zP4 points
00519 ** to a string or structure that is guaranteed to exist for the lifetime of
00520 ** the Vdbe. In these cases we can just copy the pointer.
00521 **
00522 ** If addr<0 then change P4 on the most recently inserted instruction.
00523 */
00524 void sqlite3VdbeChangeP4(Vdbe *p, int addr, const char *zP4, int n){
00525   Op *pOp;
00526   sqlite3 *db;
00527   assert( p!=0 );
00528   db = p->db;
00529   assert( p->magic==VDBE_MAGIC_INIT );
00530   if( p->aOp==0 || db->mallocFailed ){
00531     if (n != P4_KEYINFO) {
00532       freeP4(db, n, (void*)*(char**)&zP4);
00533     }
00534     return;
00535   }
00536   assert( addr<p->nOp );
00537   if( addr<0 ){
00538     addr = p->nOp - 1;
00539     if( addr<0 ) return;
00540   }
00541   pOp = &p->aOp[addr];
00542   freeP4(db, pOp->p4type, pOp->p4.p);
00543   pOp->p4.p = 0;
00544   if( n==P4_INT32 ){
00545     /* Note: this cast is safe, because the origin data point was an int
00546     ** that was cast to a (const char *). */
00547     pOp->p4.i = SQLITE_PTR_TO_INT(zP4);
00548     pOp->p4type = n;
00549   }else if( zP4==0 ){
00550     pOp->p4.p = 0;
00551     pOp->p4type = P4_NOTUSED;
00552   }else if( n==P4_KEYINFO ){
00553     KeyInfo *pKeyInfo;
00554     int nField, nByte;
00555 
00556     nField = ((KeyInfo*)zP4)->nField;
00557     nByte = sizeof(*pKeyInfo) + (nField-1)*sizeof(pKeyInfo->aColl[0]) + nField;
00558     pKeyInfo = sqlite3Malloc( nByte );
00559     pOp->p4.pKeyInfo = pKeyInfo;
00560     if( pKeyInfo ){
00561       u8 *aSortOrder;
00562       memcpy(pKeyInfo, zP4, nByte);
00563       aSortOrder = pKeyInfo->aSortOrder;
00564       if( aSortOrder ){
00565         pKeyInfo->aSortOrder = (unsigned char*)&pKeyInfo->aColl[nField];
00566         memcpy(pKeyInfo->aSortOrder, aSortOrder, nField);
00567       }
00568       pOp->p4type = P4_KEYINFO;
00569     }else{
00570       p->db->mallocFailed = 1;
00571       pOp->p4type = P4_NOTUSED;
00572     }
00573   }else if( n==P4_KEYINFO_HANDOFF ){
00574     pOp->p4.p = (void*)zP4;
00575     pOp->p4type = P4_KEYINFO;
00576   }else if( n<0 ){
00577     pOp->p4.p = (void*)zP4;
00578     pOp->p4type = n;
00579   }else{
00580     if( n==0 ) n = strlen(zP4);
00581     pOp->p4.z = sqlite3DbStrNDup(p->db, zP4, n);
00582     pOp->p4type = P4_DYNAMIC;
00583   }
00584 }
00585 
00586 #ifndef NDEBUG
00587 /*
00588 ** Change the comment on the the most recently coded instruction.  Or
00589 ** insert a No-op and add the comment to that new instruction.  This
00590 ** makes the code easier to read during debugging.  None of this happens
00591 ** in a production build.
00592 */
00593 void sqlite3VdbeComment(Vdbe *p, const char *zFormat, ...){
00594   va_list ap;
00595   assert( p->nOp>0 || p->aOp==0 );
00596   assert( p->aOp==0 || p->aOp[p->nOp-1].zComment==0 || p->db->mallocFailed );
00597   if( p->nOp ){
00598     char **pz = &p->aOp[p->nOp-1].zComment;
00599     va_start(ap, zFormat);
00600     sqlite3DbFree(p->db, *pz);
00601     *pz = sqlite3VMPrintf(p->db, zFormat, ap);
00602     va_end(ap);
00603   }
00604 }
00605 void sqlite3VdbeNoopComment(Vdbe *p, const char *zFormat, ...){
00606   va_list ap;
00607   sqlite3VdbeAddOp0(p, OP_Noop);
00608   assert( p->nOp>0 || p->aOp==0 );
00609   assert( p->aOp==0 || p->aOp[p->nOp-1].zComment==0 || p->db->mallocFailed );
00610   if( p->nOp ){
00611     char **pz = &p->aOp[p->nOp-1].zComment;
00612     va_start(ap, zFormat);
00613     sqlite3DbFree(p->db, *pz);
00614     *pz = sqlite3VMPrintf(p->db, zFormat, ap);
00615     va_end(ap);
00616   }
00617 }
00618 #endif  /* NDEBUG */
00619 
00620 /*
00621 ** Return the opcode for a given address.
00622 */
00623 VdbeOp *sqlite3VdbeGetOp(Vdbe *p, int addr){
00624   assert( p->magic==VDBE_MAGIC_INIT );
00625   assert( (addr>=0 && addr<p->nOp) || p->db->mallocFailed );
00626   return ((addr>=0 && addr<p->nOp)?(&p->aOp[addr]):0);
00627 }
00628 
00629 #if !defined(SQLITE_OMIT_EXPLAIN) || !defined(NDEBUG) \
00630      || defined(VDBE_PROFILE) || defined(SQLITE_DEBUG)
00631 /*
00632 ** Compute a string that describes the P4 parameter for an opcode.
00633 ** Use zTemp for any required temporary buffer space.
00634 */
00635 static char *displayP4(Op *pOp, char *zTemp, int nTemp){
00636   char *zP4 = zTemp;
00637   assert( nTemp>=20 );
00638   switch( pOp->p4type ){
00639     case P4_KEYINFO_STATIC:
00640     case P4_KEYINFO: {
00641       int i, j;
00642       KeyInfo *pKeyInfo = pOp->p4.pKeyInfo;
00643       sqlite3_snprintf(nTemp, zTemp, "keyinfo(%d", pKeyInfo->nField);
00644       i = strlen(zTemp);
00645       for(j=0; j<pKeyInfo->nField; j++){
00646         CollSeq *pColl = pKeyInfo->aColl[j];
00647         if( pColl ){
00648           int n = strlen(pColl->zName);
00649           if( i+n>nTemp-6 ){
00650             memcpy(&zTemp[i],",...",4);
00651             break;
00652           }
00653           zTemp[i++] = ',';
00654           if( pKeyInfo->aSortOrder && pKeyInfo->aSortOrder[j] ){
00655             zTemp[i++] = '-';
00656           }
00657           memcpy(&zTemp[i], pColl->zName,n+1);
00658           i += n;
00659         }else if( i+4<nTemp-6 ){
00660           memcpy(&zTemp[i],",nil",4);
00661           i += 4;
00662         }
00663       }
00664       zTemp[i++] = ')';
00665       zTemp[i] = 0;
00666       assert( i<nTemp );
00667       break;
00668     }
00669     case P4_COLLSEQ: {
00670       CollSeq *pColl = pOp->p4.pColl;
00671       sqlite3_snprintf(nTemp, zTemp, "collseq(%.20s)", pColl->zName);
00672       break;
00673     }
00674     case P4_FUNCDEF: {
00675       FuncDef *pDef = pOp->p4.pFunc;
00676       sqlite3_snprintf(nTemp, zTemp, "%s(%d)", pDef->zName, pDef->nArg);
00677       break;
00678     }
00679     case P4_INT64: {
00680       sqlite3_snprintf(nTemp, zTemp, "%lld", *pOp->p4.pI64);
00681       break;
00682     }
00683     case P4_INT32: {
00684       sqlite3_snprintf(nTemp, zTemp, "%d", pOp->p4.i);
00685       break;
00686     }
00687     case P4_REAL: {
00688       sqlite3_snprintf(nTemp, zTemp, "%.16g", *pOp->p4.pReal);
00689       break;
00690     }
00691     case P4_MEM: {
00692       Mem *pMem = pOp->p4.pMem;
00693       assert( (pMem->flags & MEM_Null)==0 );
00694       if( pMem->flags & MEM_Str ){
00695         zP4 = pMem->z;
00696       }else if( pMem->flags & MEM_Int ){
00697         sqlite3_snprintf(nTemp, zTemp, "%lld", pMem->u.i);
00698       }else if( pMem->flags & MEM_Real ){
00699         sqlite3_snprintf(nTemp, zTemp, "%.16g", pMem->r);
00700       }
00701       break;
00702     }
00703 #ifndef SQLITE_OMIT_VIRTUALTABLE
00704     case P4_VTAB: {
00705       sqlite3_vtab *pVtab = pOp->p4.pVtab;
00706       sqlite3_snprintf(nTemp, zTemp, "vtab:%p:%p", pVtab, pVtab->pModule);
00707       break;
00708     }
00709 #endif
00710     case P4_INTARRAY: {
00711       sqlite3_snprintf(nTemp, zTemp, "intarray");
00712       break;
00713     }
00714     default: {
00715       zP4 = pOp->p4.z;
00716       if( zP4==0 ){
00717         zP4 = zTemp;
00718         zTemp[0] = 0;
00719       }
00720     }
00721   }
00722   assert( zP4!=0 );
00723   return zP4;
00724 }
00725 #endif
00726 
00727 /*
00728 ** Declare to the Vdbe that the BTree object at db->aDb[i] is used.
00729 **
00730 */
00731 void sqlite3VdbeUsesBtree(Vdbe *p, int i){
00732   int mask;
00733   assert( i>=0 && i<p->db->nDb );
00734   assert( i<sizeof(p->btreeMask)*8 );
00735   mask = 1<<i;
00736   if( (p->btreeMask & mask)==0 ){
00737     p->btreeMask |= mask;
00738     sqlite3BtreeMutexArrayInsert(&p->aMutex, p->db->aDb[i].pBt);
00739   }
00740 }
00741 
00742 
00743 #if defined(VDBE_PROFILE) || defined(SQLITE_DEBUG)
00744 /*
00745 ** Print a single opcode.  This routine is used for debugging only.
00746 */
00747 void sqlite3VdbePrintOp(FILE *pOut, int pc, Op *pOp){
00748   char *zP4;
00749   char zPtr[50];
00750   static const char *zFormat1 = "%4d %-13s %4d %4d %4d %-4s %.2X %s\n";
00751   if( pOut==0 ) pOut = stdout;
00752   zP4 = displayP4(pOp, zPtr, sizeof(zPtr));
00753   fprintf(pOut, zFormat1, pc, 
00754       sqlite3OpcodeName(pOp->opcode), pOp->p1, pOp->p2, pOp->p3, zP4, pOp->p5,
00755 #ifdef SQLITE_DEBUG
00756       pOp->zComment ? pOp->zComment : ""
00757 #else
00758       ""
00759 #endif
00760   );
00761   fflush(pOut);
00762 }
00763 #endif
00764 
00765 /*
00766 ** Release an array of N Mem elements
00767 */
00768 static void releaseMemArray(Mem *p, int N){
00769   if( p && N ){
00770     Mem *pEnd;
00771     sqlite3 *db = p->db;
00772     int malloc_failed = db->mallocFailed;
00773     for(pEnd=&p[N]; p<pEnd; p++){
00774       assert( (&p[1])==pEnd || p[0].db==p[1].db );
00775 
00776       /* This block is really an inlined version of sqlite3VdbeMemRelease()
00777       ** that takes advantage of the fact that the memory cell value is 
00778       ** being set to NULL after releasing any dynamic resources.
00779       **
00780       ** The justification for duplicating code is that according to 
00781       ** callgrind, this causes a certain test case to hit the CPU 4.7 
00782       ** percent less (x86 linux, gcc version 4.1.2, -O6) than if 
00783       ** sqlite3MemRelease() were called from here. With -O2, this jumps
00784       ** to 6.6 percent. The test case is inserting 1000 rows into a table 
00785       ** with no indexes using a single prepared INSERT statement, bind() 
00786       ** and reset(). Inserts are grouped into a transaction.
00787       */
00788       if( p->flags&(MEM_Agg|MEM_Dyn) ){
00789         sqlite3VdbeMemRelease(p);
00790       }else if( p->zMalloc ){
00791         sqlite3DbFree(db, p->zMalloc);
00792         p->zMalloc = 0;
00793       }
00794 
00795       p->flags = MEM_Null;
00796     }
00797     db->mallocFailed = malloc_failed;
00798   }
00799 }
00800 
00801 #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
00802 int sqlite3VdbeReleaseBuffers(Vdbe *p){
00803   int ii;
00804   int nFree = 0;
00805   assert( sqlite3_mutex_held(p->db->mutex) );
00806   for(ii=1; ii<=p->nMem; ii++){
00807     Mem *pMem = &p->aMem[ii];
00808     if( pMem->z && pMem->flags&MEM_Dyn ){
00809       assert( !pMem->xDel );
00810       nFree += sqlite3DbMallocSize(pMem->db, pMem->z);
00811       sqlite3VdbeMemRelease(pMem);
00812     }
00813   }
00814   return nFree;
00815 }
00816 #endif
00817 
00818 #ifndef SQLITE_OMIT_EXPLAIN
00819 /*
00820 ** Give a listing of the program in the virtual machine.
00821 **
00822 ** The interface is the same as sqlite3VdbeExec().  But instead of
00823 ** running the code, it invokes the callback once for each instruction.
00824 ** This feature is used to implement "EXPLAIN".
00825 **
00826 ** When p->explain==1, each instruction is listed.  When
00827 ** p->explain==2, only OP_Explain instructions are listed and these
00828 ** are shown in a different format.  p->explain==2 is used to implement
00829 ** EXPLAIN QUERY PLAN.
00830 */
00831 int sqlite3VdbeList(
00832   Vdbe *p                   /* The VDBE */
00833 ){
00834   sqlite3 *db = p->db;
00835   int i;
00836   int rc = SQLITE_OK;
00837   Mem *pMem = p->pResultSet = &p->aMem[1];
00838 
00839   assert( p->explain );
00840   if( p->magic!=VDBE_MAGIC_RUN ) return SQLITE_MISUSE;
00841   assert( db->magic==SQLITE_MAGIC_BUSY );
00842   assert( p->rc==SQLITE_OK || p->rc==SQLITE_BUSY );
00843 
00844   /* Even though this opcode does not use dynamic strings for
00845   ** the result, result columns may become dynamic if the user calls
00846   ** sqlite3_column_text16(), causing a translation to UTF-16 encoding.
00847   */
00848   releaseMemArray(pMem, p->nMem);
00849 
00850   do{
00851     i = p->pc++;
00852   }while( i<p->nOp && p->explain==2 && p->aOp[i].opcode!=OP_Explain );
00853   if( i>=p->nOp ){
00854     p->rc = SQLITE_OK;
00855     rc = SQLITE_DONE;
00856   }else if( db->u1.isInterrupted ){
00857     p->rc = SQLITE_INTERRUPT;
00858     rc = SQLITE_ERROR;
00859     sqlite3SetString(&p->zErrMsg, db, "%s", sqlite3ErrStr(p->rc));
00860   }else{
00861     char *z;
00862     Op *pOp = &p->aOp[i];
00863     if( p->explain==1 ){
00864       pMem->flags = MEM_Int;
00865       pMem->type = SQLITE_INTEGER;
00866       pMem->u.i = i;                                /* Program counter */
00867       pMem++;
00868   
00869       pMem->flags = MEM_Static|MEM_Str|MEM_Term;
00870       pMem->z = (char*)sqlite3OpcodeName(pOp->opcode);  /* Opcode */
00871       assert( pMem->z!=0 );
00872       pMem->n = strlen(pMem->z);
00873       pMem->type = SQLITE_TEXT;
00874       pMem->enc = SQLITE_UTF8;
00875       pMem++;
00876     }
00877 
00878     pMem->flags = MEM_Int;
00879     pMem->u.i = pOp->p1;                          /* P1 */
00880     pMem->type = SQLITE_INTEGER;
00881     pMem++;
00882 
00883     pMem->flags = MEM_Int;
00884     pMem->u.i = pOp->p2;                          /* P2 */
00885     pMem->type = SQLITE_INTEGER;
00886     pMem++;
00887 
00888     if( p->explain==1 ){
00889       pMem->flags = MEM_Int;
00890       pMem->u.i = pOp->p3;                          /* P3 */
00891       pMem->type = SQLITE_INTEGER;
00892       pMem++;
00893     }
00894 
00895     if( sqlite3VdbeMemGrow(pMem, 32, 0) ){            /* P4 */
00896       p->db->mallocFailed = 1;
00897       return SQLITE_NOMEM;
00898     }
00899     pMem->flags = MEM_Dyn|MEM_Str|MEM_Term;
00900     z = displayP4(pOp, pMem->z, 32);
00901     if( z!=pMem->z ){
00902       sqlite3VdbeMemSetStr(pMem, z, -1, SQLITE_UTF8, 0);
00903     }else{
00904       assert( pMem->z!=0 );
00905       pMem->n = strlen(pMem->z);
00906       pMem->enc = SQLITE_UTF8;
00907     }
00908     pMem->type = SQLITE_TEXT;
00909     pMem++;
00910 
00911     if( p->explain==1 ){
00912       if( sqlite3VdbeMemGrow(pMem, 4, 0) ){
00913         p->db->mallocFailed = 1;
00914         return SQLITE_NOMEM;
00915       }
00916       pMem->flags = MEM_Dyn|MEM_Str|MEM_Term;
00917       pMem->n = 2;
00918       sqlite3_snprintf(3, pMem->z, "%.2x", pOp->p5);   /* P5 */
00919       pMem->type = SQLITE_TEXT;
00920       pMem->enc = SQLITE_UTF8;
00921       pMem++;
00922   
00923 #ifdef SQLITE_DEBUG
00924       if( pOp->zComment ){
00925         pMem->flags = MEM_Str|MEM_Term;
00926         pMem->z = pOp->zComment;
00927         pMem->n = strlen(pMem->z);
00928         pMem->enc = SQLITE_UTF8;
00929         pMem->type = SQLITE_TEXT;
00930       }else
00931 #endif
00932       {
00933         pMem->flags = MEM_Null;                       /* Comment */
00934         pMem->type = SQLITE_NULL;
00935       }
00936     }
00937 
00938     p->nResColumn = 8 - 5*(p->explain-1);
00939     p->rc = SQLITE_OK;
00940     rc = SQLITE_ROW;
00941   }
00942   return rc;
00943 }
00944 #endif /* SQLITE_OMIT_EXPLAIN */
00945 
00946 #ifdef SQLITE_DEBUG
00947 /*
00948 ** Print the SQL that was used to generate a VDBE program.
00949 */
00950 void sqlite3VdbePrintSql(Vdbe *p){
00951   int nOp = p->nOp;
00952   VdbeOp *pOp;
00953   if( nOp<1 ) return;
00954   pOp = &p->aOp[0];
00955   if( pOp->opcode==OP_Trace && pOp->p4.z!=0 ){
00956     const char *z = pOp->p4.z;
00957     while( isspace(*(u8*)z) ) z++;
00958     printf("SQL: [%s]\n", z);
00959   }
00960 }
00961 #endif
00962 
00963 #if !defined(SQLITE_OMIT_TRACE) && defined(SQLITE_ENABLE_IOTRACE)
00964 /*
00965 ** Print an IOTRACE message showing SQL content.
00966 */
00967 void sqlite3VdbeIOTraceSql(Vdbe *p){
00968   int nOp = p->nOp;
00969   VdbeOp *pOp;
00970   if( sqlite3IoTrace==0 ) return;
00971   if( nOp<1 ) return;
00972   pOp = &p->aOp[0];
00973   if( pOp->opcode==OP_Trace && pOp->p4.z!=0 ){
00974     int i, j;
00975     char z[1000];
00976     sqlite3_snprintf(sizeof(z), z, "%s", pOp->p4.z);
00977     for(i=0; isspace((unsigned char)z[i]); i++){}
00978     for(j=0; z[i]; i++){
00979       if( isspace((unsigned char)z[i]) ){
00980         if( z[i-1]!=' ' ){
00981           z[j++] = ' ';
00982         }
00983       }else{
00984         z[j++] = z[i];
00985       }
00986     }
00987     z[j] = 0;
00988     sqlite3IoTrace("SQL %s\n", z);
00989   }
00990 }
00991 #endif /* !SQLITE_OMIT_TRACE && SQLITE_ENABLE_IOTRACE */
00992 
00993 
00994 /*
00995 ** Prepare a virtual machine for execution.  This involves things such
00996 ** as allocating stack space and initializing the program counter.
00997 ** After the VDBE has be prepped, it can be executed by one or more
00998 ** calls to sqlite3VdbeExec().  
00999 **
01000 ** This is the only way to move a VDBE from VDBE_MAGIC_INIT to
01001 ** VDBE_MAGIC_RUN.
01002 */
01003 void sqlite3VdbeMakeReady(
01004   Vdbe *p,                       /* The VDBE */
01005   int nVar,                      /* Number of '?' see in the SQL statement */
01006   int nMem,                      /* Number of memory cells to allocate */
01007   int nCursor,                   /* Number of cursors to allocate */
01008   int isExplain                  /* True if the EXPLAIN keywords is present */
01009 ){
01010   int n;
01011   sqlite3 *db = p->db;
01012 
01013   assert( p!=0 );
01014   assert( p->magic==VDBE_MAGIC_INIT );
01015 
01016   /* There should be at least one opcode.
01017   */
01018   assert( p->nOp>0 );
01019 
01020   /* Set the magic to VDBE_MAGIC_RUN sooner rather than later. This
01021    * is because the call to resizeOpArray() below may shrink the
01022    * p->aOp[] array to save memory if called when in VDBE_MAGIC_RUN 
01023    * state.
01024    */
01025   p->magic = VDBE_MAGIC_RUN;
01026 
01027   /* For each cursor required, also allocate a memory cell. Memory
01028   ** cells (nMem+1-nCursor)..nMem, inclusive, will never be used by
01029   ** the vdbe program. Instead they are used to allocate space for
01030   ** VdbeCursor/BtCursor structures. The blob of memory associated with 
01031   ** cursor 0 is stored in memory cell nMem. Memory cell (nMem-1)
01032   ** stores the blob of memory associated with cursor 1, etc.
01033   **
01034   ** See also: allocateCursor().
01035   */
01036   nMem += nCursor;
01037 
01038   /*
01039   ** Allocation space for registers.
01040   */
01041   if( p->aMem==0 ){
01042     int nArg;       /* Maximum number of args passed to a user function. */
01043     resolveP2Values(p, &nArg);
01044     /*resizeOpArray(p, p->nOp);*/
01045     assert( nVar>=0 );
01046     if( isExplain && nMem<10 ){
01047       nMem = 10;
01048     }
01049     p->aMem = sqlite3DbMallocZero(db,
01050         nMem*sizeof(Mem)               /* aMem */
01051       + nVar*sizeof(Mem)               /* aVar */
01052       + nArg*sizeof(Mem*)              /* apArg */
01053       + nVar*sizeof(char*)             /* azVar */
01054       + nCursor*sizeof(VdbeCursor*)+1  /* apCsr */
01055     );
01056     if( !db->mallocFailed ){
01057       p->aMem--;             /* aMem[] goes from 1..nMem */
01058       p->nMem = nMem;        /*       not from 0..nMem-1 */
01059       p->aVar = &p->aMem[nMem+1];
01060       p->nVar = nVar;
01061       p->okVar = 0;
01062       p->apArg = (Mem**)&p->aVar[nVar];
01063       p->azVar = (char**)&p->apArg[nArg];
01064       p->apCsr = (VdbeCursor**)&p->azVar[nVar];
01065       p->nCursor = nCursor;
01066       for(n=0; n<nVar; n++){
01067         p->aVar[n].flags = MEM_Null;
01068         p->aVar[n].db = db;
01069       }
01070       for(n=1; n<=nMem; n++){
01071         p->aMem[n].flags = MEM_Null;
01072         p->aMem[n].db = db;
01073       }
01074     }
01075   }
01076 #ifdef SQLITE_DEBUG
01077   for(n=1; n<p->nMem; n++){
01078     assert( p->aMem[n].db==db );
01079   }
01080 #endif
01081 
01082   p->pc = -1;
01083   p->rc = SQLITE_OK;
01084   p->uniqueCnt = 0;
01085   p->errorAction = OE_Abort;
01086   p->explain |= isExplain;
01087   p->magic = VDBE_MAGIC_RUN;
01088   p->nChange = 0;
01089   p->cacheCtr = 1;
01090   p->minWriteFileFormat = 255;
01091   p->openedStatement = 0;
01092 #ifdef VDBE_PROFILE
01093   {
01094     int i;
01095     for(i=0; i<p->nOp; i++){
01096       p->aOp[i].cnt = 0;
01097       p->aOp[i].cycles = 0;
01098     }
01099   }
01100 #endif
01101 }
01102 
01103 /*
01104 ** Close a VDBE cursor and release all the resources that cursor 
01105 ** happens to hold.
01106 */
01107 void sqlite3VdbeFreeCursor(Vdbe *p, VdbeCursor *pCx){
01108   if( pCx==0 ){
01109     return;
01110   }
01111   if( pCx->pBt ){
01112     sqlite3BtreeClose(pCx->pBt);
01113     /* The pCx->pCursor will be close automatically, if it exists, by
01114     ** the call above. */
01115   }else if( pCx->pCursor ){
01116     sqlite3BtreeCloseCursor(pCx->pCursor);
01117   }
01118 #ifndef SQLITE_OMIT_VIRTUALTABLE
01119   if( pCx->pVtabCursor ){
01120     sqlite3_vtab_cursor *pVtabCursor = pCx->pVtabCursor;
01121     const sqlite3_module *pModule = pCx->pModule;
01122     p->inVtabMethod = 1;
01123     (void)sqlite3SafetyOff(p->db);
01124     pModule->xClose(pVtabCursor);
01125     (void)sqlite3SafetyOn(p->db);
01126     p->inVtabMethod = 0;
01127   }
01128 #endif
01129   if( !pCx->ephemPseudoTable ){
01130     sqlite3DbFree(p->db, pCx->pData);
01131   }
01132 }
01133 
01134 /*
01135 ** Close all cursors except for VTab cursors that are currently
01136 ** in use.
01137 */
01138 static void closeAllCursorsExceptActiveVtabs(Vdbe *p){
01139   int i;
01140   if( p->apCsr==0 ) return;
01141   for(i=0; i<p->nCursor; i++){
01142     VdbeCursor *pC = p->apCsr[i];
01143     if( pC && (!p->inVtabMethod || !pC->pVtabCursor) ){
01144       sqlite3VdbeFreeCursor(p, pC);
01145       p->apCsr[i] = 0;
01146     }
01147   }
01148 }
01149 
01150 /*
01151 ** Clean up the VM after execution.
01152 **
01153 ** This routine will automatically close any cursors, lists, and/or
01154 ** sorters that were left open.  It also deletes the values of
01155 ** variables in the aVar[] array.
01156 */
01157 static void Cleanup(Vdbe *p){
01158   int i;
01159   sqlite3 *db = p->db;
01160   closeAllCursorsExceptActiveVtabs(p);
01161   for(i=1; i<=p->nMem; i++){
01162     MemSetTypeFlag(&p->aMem[i], MEM_Null);
01163   }
01164   releaseMemArray(&p->aMem[1], p->nMem);
01165   sqlite3VdbeFifoClear(&p->sFifo);
01166   if( p->contextStack ){
01167     for(i=0; i<p->contextStackTop; i++){
01168       sqlite3VdbeFifoClear(&p->contextStack[i].sFifo);
01169     }
01170     sqlite3DbFree(db, p->contextStack);
01171   }
01172   p->contextStack = 0;
01173   p->contextStackDepth = 0;
01174   p->contextStackTop = 0;
01175   sqlite3DbFree(db, p->zErrMsg);
01176   p->zErrMsg = 0;
01177   p->pResultSet = 0;
01178 }
01179 
01180 /*
01181 ** Set the number of result columns that will be returned by this SQL
01182 ** statement. This is now set at compile time, rather than during
01183 ** execution of the vdbe program so that sqlite3_column_count() can
01184 ** be called on an SQL statement before sqlite3_step().
01185 */
01186 void sqlite3VdbeSetNumCols(Vdbe *p, int nResColumn){
01187   Mem *pColName;
01188   int n;
01189   sqlite3 *db = p->db;
01190 
01191   releaseMemArray(p->aColName, p->nResColumn*COLNAME_N);
01192   sqlite3DbFree(db, p->aColName);
01193   n = nResColumn*COLNAME_N;
01194   p->nResColumn = nResColumn;
01195   p->aColName = pColName = (Mem*)sqlite3DbMallocZero(db, sizeof(Mem)*n );
01196   if( p->aColName==0 ) return;
01197   while( n-- > 0 ){
01198     pColName->flags = MEM_Null;
01199     pColName->db = p->db;
01200     pColName++;
01201   }
01202 }
01203 
01204 /*
01205 ** Set the name of the idx'th column to be returned by the SQL statement.
01206 ** zName must be a pointer to a nul terminated string.
01207 **
01208 ** This call must be made after a call to sqlite3VdbeSetNumCols().
01209 **
01210 ** The final parameter, xDel, must be one of SQLITE_DYNAMIC, SQLITE_STATIC
01211 ** or SQLITE_TRANSIENT. If it is SQLITE_DYNAMIC, then the buffer pointed
01212 ** to by zName will be freed by sqlite3DbFree() when the vdbe is destroyed.
01213 */
01214 int sqlite3VdbeSetColName(
01215   Vdbe *p,                         /* Vdbe being configured */
01216   int idx,                         /* Index of column zName applies to */
01217   int var,                         /* One of the COLNAME_* constants */
01218   const char *zName,               /* Pointer to buffer containing name */
01219   void (*xDel)(void*)              /* Memory management strategy for zName */
01220 ){
01221   int rc;
01222   Mem *pColName;
01223   assert( idx<p->nResColumn );
01224   assert( var<COLNAME_N );
01225   if( p->db->mallocFailed ){
01226     assert( !zName || xDel!=SQLITE_DYNAMIC );
01227     return SQLITE_NOMEM;
01228   }
01229   assert( p->aColName!=0 );
01230   pColName = &(p->aColName[idx+var*p->nResColumn]);
01231   rc = sqlite3VdbeMemSetStr(pColName, zName, -1, SQLITE_UTF8, xDel);
01232   assert( rc!=0 || !zName || (pColName->flags&MEM_Term)!=0 );
01233   return rc;
01234 }
01235 
01236 /*
01237 ** A read or write transaction may or may not be active on database handle
01238 ** db. If a transaction is active, commit it. If there is a
01239 ** write-transaction spanning more than one database file, this routine
01240 ** takes care of the master journal trickery.
01241 */
01242 static int vdbeCommit(sqlite3 *db, Vdbe *p){
01243   int i;
01244   int nTrans = 0;  /* Number of databases with an active write-transaction */
01245   int rc = SQLITE_OK;
01246   int needXcommit = 0;
01247 
01248   /* Before doing anything else, call the xSync() callback for any
01249   ** virtual module tables written in this transaction. This has to
01250   ** be done before determining whether a master journal file is 
01251   ** required, as an xSync() callback may add an attached database
01252   ** to the transaction.
01253   */
01254   rc = sqlite3VtabSync(db, &p->zErrMsg);
01255   if( rc!=SQLITE_OK ){
01256     return rc;
01257   }
01258 
01259   /* This loop determines (a) if the commit hook should be invoked and
01260   ** (b) how many database files have open write transactions, not 
01261   ** including the temp database. (b) is important because if more than 
01262   ** one database file has an open write transaction, a master journal
01263   ** file is required for an atomic commit.
01264   */ 
01265   for(i=0; i<db->nDb; i++){ 
01266     Btree *pBt = db->aDb[i].pBt;
01267     if( sqlite3BtreeIsInTrans(pBt) ){
01268       needXcommit = 1;
01269       if( i!=1 ) nTrans++;
01270     }
01271   }
01272 
01273   /* If there are any write-transactions at all, invoke the commit hook */
01274   if( needXcommit && db->xCommitCallback ){
01275     (void)sqlite3SafetyOff(db);
01276     rc = db->xCommitCallback(db->pCommitArg);
01277     (void)sqlite3SafetyOn(db);
01278     if( rc ){
01279       return SQLITE_CONSTRAINT;
01280     }
01281   }
01282 
01283   /* The simple case - no more than one database file (not counting the
01284   ** TEMP database) has a transaction active.   There is no need for the
01285   ** master-journal.
01286   **
01287   ** If the return value of sqlite3BtreeGetFilename() is a zero length
01288   ** string, it means the main database is :memory: or a temp file.  In 
01289   ** that case we do not support atomic multi-file commits, so use the 
01290   ** simple case then too.
01291   */
01292   if( 0==strlen(sqlite3BtreeGetFilename(db->aDb[0].pBt)) || nTrans<=1 ){
01293     for(i=0; rc==SQLITE_OK && i<db->nDb; i++){ 
01294       Btree *pBt = db->aDb[i].pBt;
01295       if( pBt ){
01296         rc = sqlite3BtreeCommitPhaseOne(pBt, 0);
01297       }
01298     }
01299 
01300     /* Do the commit only if all databases successfully complete phase 1. 
01301     ** If one of the BtreeCommitPhaseOne() calls fails, this indicates an
01302     ** IO error while deleting or truncating a journal file. It is unlikely,
01303     ** but could happen. In this case abandon processing and return the error.
01304     */
01305     for(i=0; rc==SQLITE_OK && i<db->nDb; i++){
01306       Btree *pBt = db->aDb[i].pBt;
01307       if( pBt ){
01308         rc = sqlite3BtreeCommitPhaseTwo(pBt);
01309       }
01310     }
01311     if( rc==SQLITE_OK ){
01312       sqlite3VtabCommit(db);
01313     }
01314   }
01315 
01316   /* The complex case - There is a multi-file write-transaction active.
01317   ** This requires a master journal file to ensure the transaction is
01318   ** committed atomicly.
01319   */
01320 #ifndef SQLITE_OMIT_DISKIO
01321   else{
01322     sqlite3_vfs *pVfs = db->pVfs;
01323     int needSync = 0;
01324     char *zMaster = 0;   /* File-name for the master journal */
01325     char const *zMainFile = sqlite3BtreeGetFilename(db->aDb[0].pBt);
01326     sqlite3_file *pMaster = 0;
01327     i64 offset = 0;
01328     int res;
01329 
01330     /* Select a master journal file name */
01331     do {
01332       u32 random;
01333       sqlite3DbFree(db, zMaster);
01334       sqlite3_randomness(sizeof(random), &random);
01335       zMaster = sqlite3MPrintf(db, "%s-mj%08X", zMainFile, random&0x7fffffff);
01336       if( !zMaster ){
01337         return SQLITE_NOMEM;
01338       }
01339       rc = sqlite3OsAccess(pVfs, zMaster, SQLITE_ACCESS_EXISTS, &res);
01340     }while( rc==SQLITE_OK && res );
01341     if( rc==SQLITE_OK ){
01342       /* Open the master journal. */
01343       rc = sqlite3OsOpenMalloc(pVfs, zMaster, &pMaster, 
01344           SQLITE_OPEN_READWRITE|SQLITE_OPEN_CREATE|
01345           SQLITE_OPEN_EXCLUSIVE|SQLITE_OPEN_MASTER_JOURNAL, 0
01346       );
01347     }
01348     if( rc!=SQLITE_OK ){
01349       sqlite3DbFree(db, zMaster);
01350       return rc;
01351     }
01352  
01353     /* Write the name of each database file in the transaction into the new
01354     ** master journal file. If an error occurs at this point close
01355     ** and delete the master journal file. All the individual journal files
01356     ** still have 'null' as the master journal pointer, so they will roll
01357     ** back independently if a failure occurs.
01358     */
01359     for(i=0; i<db->nDb; i++){
01360       Btree *pBt = db->aDb[i].pBt;
01361       if( i==1 ) continue;   /* Ignore the TEMP database */
01362       if( sqlite3BtreeIsInTrans(pBt) ){
01363         char const *zFile = sqlite3BtreeGetJournalname(pBt);
01364         if( zFile[0]==0 ) continue;  /* Ignore :memory: databases */
01365         if( !needSync && !sqlite3BtreeSyncDisabled(pBt) ){
01366           needSync = 1;
01367         }
01368         rc = sqlite3OsWrite(pMaster, zFile, strlen(zFile)+1, offset);
01369         offset += strlen(zFile)+1;
01370         if( rc!=SQLITE_OK ){
01371           sqlite3OsCloseFree(pMaster);
01372           sqlite3OsDelete(pVfs, zMaster, 0);
01373           sqlite3DbFree(db, zMaster);
01374           return rc;
01375         }
01376       }
01377     }
01378 
01379     /* Sync the master journal file. If the IOCAP_SEQUENTIAL device
01380     ** flag is set this is not required.
01381     */
01382     zMainFile = sqlite3BtreeGetDirname(db->aDb[0].pBt);
01383     if( (needSync 
01384      && (0==(sqlite3OsDeviceCharacteristics(pMaster)&SQLITE_IOCAP_SEQUENTIAL))
01385      && (rc=sqlite3OsSync(pMaster, SQLITE_SYNC_NORMAL))!=SQLITE_OK) ){
01386       sqlite3OsCloseFree(pMaster);
01387       sqlite3OsDelete(pVfs, zMaster, 0);
01388       sqlite3DbFree(db, zMaster);
01389       return rc;
01390     }
01391 
01392     /* Sync all the db files involved in the transaction. The same call
01393     ** sets the master journal pointer in each individual journal. If
01394     ** an error occurs here, do not delete the master journal file.
01395     **
01396     ** If the error occurs during the first call to
01397     ** sqlite3BtreeCommitPhaseOne(), then there is a chance that the
01398     ** master journal file will be orphaned. But we cannot delete it,
01399     ** in case the master journal file name was written into the journal
01400     ** file before the failure occured.
01401     */
01402     for(i=0; rc==SQLITE_OK && i<db->nDb; i++){ 
01403       Btree *pBt = db->aDb[i].pBt;
01404       if( pBt ){
01405         rc = sqlite3BtreeCommitPhaseOne(pBt, zMaster);
01406       }
01407     }
01408     sqlite3OsCloseFree(pMaster);
01409     if( rc!=SQLITE_OK ){
01410       sqlite3DbFree(db, zMaster);
01411       return rc;
01412     }
01413 
01414     /* Delete the master journal file. This commits the transaction. After
01415     ** doing this the directory is synced again before any individual
01416     ** transaction files are deleted.
01417     */
01418     rc = sqlite3OsDelete(pVfs, zMaster, 1);
01419     sqlite3DbFree(db, zMaster);
01420     zMaster = 0;
01421     if( rc ){
01422       return rc;
01423     }
01424 
01425     /* All files and directories have already been synced, so the following
01426     ** calls to sqlite3BtreeCommitPhaseTwo() are only closing files and
01427     ** deleting or truncating journals. If something goes wrong while
01428     ** this is happening we don't really care. The integrity of the
01429     ** transaction is already guaranteed, but some stray 'cold' journals
01430     ** may be lying around. Returning an error code won't help matters.
01431     */
01432     disable_simulated_io_errors();
01433     sqlite3BeginBenignMalloc();
01434     for(i=0; i<db->nDb; i++){ 
01435       Btree *pBt = db->aDb[i].pBt;
01436       if( pBt ){
01437         sqlite3BtreeCommitPhaseTwo(pBt);
01438       }
01439     }
01440     sqlite3EndBenignMalloc();
01441     enable_simulated_io_errors();
01442 
01443     sqlite3VtabCommit(db);
01444   }
01445 #endif
01446 
01447   return rc;
01448 }
01449 
01450 /* 
01451 ** This routine checks that the sqlite3.activeVdbeCnt count variable
01452 ** matches the number of vdbe's in the list sqlite3.pVdbe that are
01453 ** currently active. An assertion fails if the two counts do not match.
01454 ** This is an internal self-check only - it is not an essential processing
01455 ** step.
01456 **
01457 ** This is a no-op if NDEBUG is defined.
01458 */
01459 #ifndef NDEBUG
01460 static void checkActiveVdbeCnt(sqlite3 *db){
01461   Vdbe *p;
01462   int cnt = 0;
01463   int nWrite = 0;
01464   p = db->pVdbe;
01465   while( p ){
01466     if( p->magic==VDBE_MAGIC_RUN && p->pc>=0 ){
01467       cnt++;
01468       if( p->readOnly==0 ) nWrite++;
01469     }
01470     p = p->pNext;
01471   }
01472   assert( cnt==db->activeVdbeCnt );
01473   assert( nWrite==db->writeVdbeCnt );
01474 }
01475 #else
01476 #define checkActiveVdbeCnt(x)
01477 #endif
01478 
01479 /*
01480 ** For every Btree that in database connection db which 
01481 ** has been modified, "trip" or invalidate each cursor in
01482 ** that Btree might have been modified so that the cursor
01483 ** can never be used again.  This happens when a rollback
01484 *** occurs.  We have to trip all the other cursors, even
01485 ** cursor from other VMs in different database connections,
01486 ** so that none of them try to use the data at which they
01487 ** were pointing and which now may have been changed due
01488 ** to the rollback.
01489 **
01490 ** Remember that a rollback can delete tables complete and
01491 ** reorder rootpages.  So it is not sufficient just to save
01492 ** the state of the cursor.  We have to invalidate the cursor
01493 ** so that it is never used again.
01494 */
01495 static void invalidateCursorsOnModifiedBtrees(sqlite3 *db){
01496   int i;
01497   for(i=0; i<db->nDb; i++){
01498     Btree *p = db->aDb[i].pBt;
01499     if( p && sqlite3BtreeIsInTrans(p) ){
01500       sqlite3BtreeTripAllCursors(p, SQLITE_ABORT);
01501     }
01502   }
01503 }
01504 
01505 /*
01506 ** This routine is called the when a VDBE tries to halt.  If the VDBE
01507 ** has made changes and is in autocommit mode, then commit those
01508 ** changes.  If a rollback is needed, then do the rollback.
01509 **
01510 ** This routine is the only way to move the state of a VM from
01511 ** SQLITE_MAGIC_RUN to SQLITE_MAGIC_HALT.  It is harmless to
01512 ** call this on a VM that is in the SQLITE_MAGIC_HALT state.
01513 **
01514 ** Return an error code.  If the commit could not complete because of
01515 ** lock contention, return SQLITE_BUSY.  If SQLITE_BUSY is returned, it
01516 ** means the close did not happen and needs to be repeated.
01517 */
01518 int sqlite3VdbeHalt(Vdbe *p){
01519   sqlite3 *db = p->db;
01520   int i;
01521   int (*xFunc)(Btree *pBt) = 0;  /* Function to call on each btree backend */
01522   int isSpecialError;            /* Set to true if SQLITE_NOMEM or IOERR */
01523 
01524   /* This function contains the logic that determines if a statement or
01525   ** transaction will be committed or rolled back as a result of the
01526   ** execution of this virtual machine. 
01527   **
01528   ** If any of the following errors occur:
01529   **
01530   **     SQLITE_NOMEM
01531   **     SQLITE_IOERR
01532   **     SQLITE_FULL
01533   **     SQLITE_INTERRUPT
01534   **
01535   ** Then the internal cache might have been left in an inconsistent
01536   ** state.  We need to rollback the statement transaction, if there is
01537   ** one, or the complete transaction if there is no statement transaction.
01538   */
01539 
01540   if( p->db->mallocFailed ){
01541     p->rc = SQLITE_NOMEM;
01542   }
01543   closeAllCursorsExceptActiveVtabs(p);
01544   if( p->magic!=VDBE_MAGIC_RUN ){
01545     return SQLITE_OK;
01546   }
01547   checkActiveVdbeCnt(db);
01548 
01549   /* No commit or rollback needed if the program never started */
01550   if( p->pc>=0 ){
01551     int mrc;   /* Primary error code from p->rc */
01552 
01553     /* Lock all btrees used by the statement */
01554     sqlite3BtreeMutexArrayEnter(&p->aMutex);
01555 
01556     /* Check for one of the special errors */
01557     mrc = p->rc & 0xff;
01558     isSpecialError = mrc==SQLITE_NOMEM || mrc==SQLITE_IOERR
01559                      || mrc==SQLITE_INTERRUPT || mrc==SQLITE_FULL;
01560     if( isSpecialError ){
01561       /* If the query was read-only, we need do no rollback at all. Otherwise,
01562       ** proceed with the special handling.
01563       */
01564       if( !p->readOnly || mrc!=SQLITE_INTERRUPT ){
01565         if( p->rc==SQLITE_IOERR_BLOCKED && p->usesStmtJournal ){
01566           xFunc = sqlite3BtreeRollbackStmt;
01567           p->rc = SQLITE_BUSY;
01568         }else if( (mrc==SQLITE_NOMEM || mrc==SQLITE_FULL)
01569                    && p->usesStmtJournal ){
01570           xFunc = sqlite3BtreeRollbackStmt;
01571         }else{
01572           /* We are forced to roll back the active transaction. Before doing
01573           ** so, abort any other statements this handle currently has active.
01574           */
01575           invalidateCursorsOnModifiedBtrees(db);
01576           sqlite3RollbackAll(db);
01577           db->autoCommit = 1;
01578         }
01579       }
01580     }
01581   
01582     /* If the auto-commit flag is set and this is the only active vdbe, then
01583     ** we do either a commit or rollback of the current transaction. 
01584     **
01585     ** Note: This block also runs if one of the special errors handled 
01586     ** above has occurred. 
01587     */
01588     if( db->autoCommit && db->writeVdbeCnt==(p->readOnly==0) ){
01589       if( p->rc==SQLITE_OK || (p->errorAction==OE_Fail && !isSpecialError) ){
01590         /* The auto-commit flag is true, and the vdbe program was 
01591         ** successful or hit an 'OR FAIL' constraint. This means a commit 
01592         ** is required.
01593         */
01594         int rc = vdbeCommit(db, p);
01595         if( rc==SQLITE_BUSY ){
01596           sqlite3BtreeMutexArrayLeave(&p->aMutex);
01597           return SQLITE_BUSY;
01598         }else if( rc!=SQLITE_OK ){
01599           p->rc = rc;
01600           sqlite3RollbackAll(db);
01601         }else{
01602           sqlite3CommitInternalChanges(db);
01603         }
01604       }else{
01605         sqlite3RollbackAll(db);
01606       }
01607     }else if( !xFunc ){
01608       if( p->rc==SQLITE_OK || p->errorAction==OE_Fail ){
01609         if( p->openedStatement ){
01610           xFunc = sqlite3BtreeCommitStmt;
01611         } 
01612       }else if( p->errorAction==OE_Abort ){
01613         xFunc = sqlite3BtreeRollbackStmt;
01614       }else{
01615         invalidateCursorsOnModifiedBtrees(db);
01616         sqlite3RollbackAll(db);
01617         db->autoCommit = 1;
01618       }
01619     }
01620   
01621     /* If xFunc is not NULL, then it is one of sqlite3BtreeRollbackStmt or
01622     ** sqlite3BtreeCommitStmt. Call it once on each backend. If an error occurs
01623     ** and the return code is still SQLITE_OK, set the return code to the new
01624     ** error value.
01625     */
01626     assert(!xFunc ||
01627       xFunc==sqlite3BtreeCommitStmt ||
01628       xFunc==sqlite3BtreeRollbackStmt
01629     );
01630     for(i=0; xFunc && i<db->nDb; i++){ 
01631       int rc;
01632       Btree *pBt = db->aDb[i].pBt;
01633       if( pBt ){
01634         rc = xFunc(pBt);
01635         if( rc && (p->rc==SQLITE_OK || p->rc==SQLITE_CONSTRAINT) ){
01636           p->rc = rc;
01637           sqlite3DbFree(db, p->zErrMsg);
01638           p->zErrMsg = 0;
01639         }
01640       }
01641     }
01642   
01643     /* If this was an INSERT, UPDATE or DELETE and the statement was committed, 
01644     ** set the change counter. 
01645     */
01646     if( p->changeCntOn && p->pc>=0 ){
01647       if( !xFunc || xFunc==sqlite3BtreeCommitStmt ){
01648         sqlite3VdbeSetChanges(db, p->nChange);
01649       }else{
01650         sqlite3VdbeSetChanges(db, 0);
01651       }
01652       p->nChange = 0;
01653     }
01654   
01655     /* Rollback or commit any schema changes that occurred. */
01656     if( p->rc!=SQLITE_OK && db->flags&SQLITE_InternChanges ){
01657       sqlite3ResetInternalSchema(db, 0);
01658       db->flags = (db->flags | SQLITE_InternChanges);
01659     }
01660 
01661     /* Release the locks */
01662     sqlite3BtreeMutexArrayLeave(&p->aMutex);
01663   }
01664 
01665   /* We have successfully halted and closed the VM.  Record this fact. */
01666   if( p->pc>=0 ){
01667     db->activeVdbeCnt--;
01668     if( !p->readOnly ){
01669       db->writeVdbeCnt--;
01670     }
01671     assert( db->activeVdbeCnt>=db->writeVdbeCnt );
01672   }
01673   p->magic = VDBE_MAGIC_HALT;
01674   checkActiveVdbeCnt(db);
01675   if( p->db->mallocFailed ){
01676     p->rc = SQLITE_NOMEM;
01677   }
01678 
01679   return SQLITE_OK;
01680 }
01681 
01682 
01683 /*
01684 ** Each VDBE holds the result of the most recent sqlite3_step() call
01685 ** in p->rc.  This routine sets that result back to SQLITE_OK.
01686 */
01687 void sqlite3VdbeResetStepResult(Vdbe *p){
01688   p->rc = SQLITE_OK;
01689 }
01690 
01691 /*
01692 ** Clean up a VDBE after execution but do not delete the VDBE just yet.
01693 ** Write any error messages into *pzErrMsg.  Return the result code.
01694 **
01695 ** After this routine is run, the VDBE should be ready to be executed
01696 ** again.
01697 **
01698 ** To look at it another way, this routine resets the state of the
01699 ** virtual machine from VDBE_MAGIC_RUN or VDBE_MAGIC_HALT back to
01700 ** VDBE_MAGIC_INIT.
01701 */
01702 int sqlite3VdbeReset(Vdbe *p){
01703   sqlite3 *db;
01704   db = p->db;
01705 
01706   /* If the VM did not run to completion or if it encountered an
01707   ** error, then it might not have been halted properly.  So halt
01708   ** it now.
01709   */
01710   (void)sqlite3SafetyOn(db);
01711   sqlite3VdbeHalt(p);
01712   (void)sqlite3SafetyOff(db);
01713 
01714   /* If the VDBE has be run even partially, then transfer the error code
01715   ** and error message from the VDBE into the main database structure.  But
01716   ** if the VDBE has just been set to run but has not actually executed any
01717   ** instructions yet, leave the main database error information unchanged.
01718   */
01719   if( p->pc>=0 ){
01720     if( p->zErrMsg ){
01721       sqlite3BeginBenignMalloc();
01722       sqlite3ValueSetStr(db->pErr,-1,p->zErrMsg,SQLITE_UTF8,SQLITE_TRANSIENT);
01723       sqlite3EndBenignMalloc();
01724       db->errCode = p->rc;
01725       sqlite3DbFree(db, p->zErrMsg);
01726       p->zErrMsg = 0;
01727     }else if( p->rc ){
01728       sqlite3Error(db, p->rc, 0);
01729     }else{
01730       sqlite3Error(db, SQLITE_OK, 0);
01731     }
01732   }else if( p->rc && p->expired ){
01733     /* The expired flag was set on the VDBE before the first call
01734     ** to sqlite3_step(). For consistency (since sqlite3_step() was
01735     ** called), set the database error in this case as well.
01736     */
01737     sqlite3Error(db, p->rc, 0);
01738     sqlite3ValueSetStr(db->pErr, -1, p->zErrMsg, SQLITE_UTF8, SQLITE_TRANSIENT);
01739     sqlite3DbFree(db, p->zErrMsg);
01740     p->zErrMsg = 0;
01741   }
01742 
01743   /* Reclaim all memory used by the VDBE
01744   */
01745   Cleanup(p);
01746 
01747   /* Save profiling information from this VDBE run.
01748   */
01749 #ifdef VDBE_PROFILE
01750   {
01751     FILE *out = fopen("vdbe_profile.out", "a");
01752     if( out ){
01753       int i;
01754       fprintf(out, "---- ");
01755       for(i=0; i<p->nOp; i++){
01756         fprintf(out, "%02x", p->aOp[i].opcode);
01757       }
01758       fprintf(out, "\n");
01759       for(i=0; i<p->nOp; i++){
01760         fprintf(out, "%6d %10lld %8lld ",
01761            p->aOp[i].cnt,
01762            p->aOp[i].cycles,
01763            p->aOp[i].cnt>0 ? p->aOp[i].cycles/p->aOp[i].cnt : 0
01764         );
01765         sqlite3VdbePrintOp(out, i, &p->aOp[i]);
01766       }
01767       fclose(out);
01768     }
01769   }
01770 #endif
01771   p->magic = VDBE_MAGIC_INIT;
01772   return p->rc & db->errMask;
01773 }
01774  
01775 /*
01776 ** Clean up and delete a VDBE after execution.  Return an integer which is
01777 ** the result code.  Write any error message text into *pzErrMsg.
01778 */
01779 int sqlite3VdbeFinalize(Vdbe *p){
01780   int rc = SQLITE_OK;
01781   if( p->magic==VDBE_MAGIC_RUN || p->magic==VDBE_MAGIC_HALT ){
01782     rc = sqlite3VdbeReset(p);
01783     assert( (rc & p->db->errMask)==rc );
01784   }else if( p->magic!=VDBE_MAGIC_INIT ){
01785     return SQLITE_MISUSE;
01786   }
01787   sqlite3VdbeDelete(p);
01788   return rc;
01789 }
01790 
01791 /*
01792 ** Call the destructor for each auxdata entry in pVdbeFunc for which
01793 ** the corresponding bit in mask is clear.  Auxdata entries beyond 31
01794 ** are always destroyed.  To destroy all auxdata entries, call this
01795 ** routine with mask==0.
01796 */
01797 void sqlite3VdbeDeleteAuxData(VdbeFunc *pVdbeFunc, int mask){
01798   int i;
01799   for(i=0; i<pVdbeFunc->nAux; i++){
01800     struct AuxData *pAux = &pVdbeFunc->apAux[i];
01801     if( (i>31 || !(mask&(1<<i))) && pAux->pAux ){
01802       if( pAux->xDelete ){
01803         pAux->xDelete(pAux->pAux);
01804       }
01805       pAux->pAux = 0;
01806     }
01807   }
01808 }
01809 
01810 /*
01811 ** Delete an entire VDBE.
01812 */
01813 void sqlite3VdbeDelete(Vdbe *p){
01814   int i;
01815   sqlite3 *db;
01816 
01817   if( p==0 ) return;
01818   db = p->db;
01819   if( p->pPrev ){
01820     p->pPrev->pNext = p->pNext;
01821   }else{
01822     assert( db->pVdbe==p );
01823     db->pVdbe = p->pNext;
01824   }
01825   if( p->pNext ){
01826     p->pNext->pPrev = p->pPrev;
01827   }
01828   if( p->aOp ){
01829     Op *pOp = p->aOp;
01830     for(i=0; i<p->nOp; i++, pOp++){
01831       freeP4(db, pOp->p4type, pOp->p4.p);
01832 #ifdef SQLITE_DEBUG
01833       sqlite3DbFree(db, pOp->zComment);
01834 #endif     
01835     }
01836     sqlite3DbFree(db, p->aOp);
01837   }
01838   releaseMemArray(p->aVar, p->nVar);
01839   sqlite3DbFree(db, p->aLabel);
01840   if( p->aMem ){
01841     sqlite3DbFree(db, &p->aMem[1]);
01842   }
01843   releaseMemArray(p->aColName, p->nResColumn*COLNAME_N);
01844   sqlite3DbFree(db, p->aColName);
01845   sqlite3DbFree(db, p->zSql);
01846   p->magic = VDBE_MAGIC_DEAD;
01847   sqlite3DbFree(db, p);
01848 }
01849 
01850 /*
01851 ** If a MoveTo operation is pending on the given cursor, then do that
01852 ** MoveTo now.  Return an error code.  If no MoveTo is pending, this
01853 ** routine does nothing and returns SQLITE_OK.
01854 */
01855 int sqlite3VdbeCursorMoveto(VdbeCursor *p){
01856   if( p->deferredMoveto ){
01857     int res, rc;
01858 #ifdef SQLITE_TEST
01859     extern int sqlite3_search_count;
01860 #endif
01861     assert( p->isTable );
01862     rc = sqlite3BtreeMovetoUnpacked(p->pCursor, 0, p->movetoTarget, 0, &res);
01863     if( rc ) return rc;
01864     p->lastRowid = keyToInt(p->movetoTarget);
01865     p->rowidIsValid = res==0;
01866     if( res<0 ){
01867       rc = sqlite3BtreeNext(p->pCursor, &res);
01868       if( rc ) return rc;
01869     }
01870 #ifdef SQLITE_TEST
01871     sqlite3_search_count++;
01872 #endif
01873     p->deferredMoveto = 0;
01874     p->cacheStatus = CACHE_STALE;
01875   }else if( p->pCursor ){
01876     int hasMoved;
01877     int rc = sqlite3BtreeCursorHasMoved(p->pCursor, &hasMoved);
01878     if( rc ) return rc;
01879     if( hasMoved ){
01880       p->cacheStatus = CACHE_STALE;
01881       p->nullRow = 1;
01882     }
01883   }
01884   return SQLITE_OK;
01885 }
01886 
01887 /*
01888 ** The following functions:
01889 **
01890 ** sqlite3VdbeSerialType()
01891 ** sqlite3VdbeSerialTypeLen()
01892 ** sqlite3VdbeSerialLen()
01893 ** sqlite3VdbeSerialPut()
01894 ** sqlite3VdbeSerialGet()
01895 **
01896 ** encapsulate the code that serializes values for storage in SQLite
01897 ** data and index records. Each serialized value consists of a
01898 ** 'serial-type' and a blob of data. The serial type is an 8-byte unsigned
01899 ** integer, stored as a varint.
01900 **
01901 ** In an SQLite index record, the serial type is stored directly before
01902 ** the blob of data that it corresponds to. In a table record, all serial
01903 ** types are stored at the start of the record, and the blobs of data at
01904 ** the end. Hence these functions allow the caller to handle the
01905 ** serial-type and data blob seperately.
01906 **
01907 ** The following table describes the various storage classes for data:
01908 **
01909 **   serial type        bytes of data      type
01910 **   --------------     ---------------    ---------------
01911 **      0                     0            NULL
01912 **      1                     1            signed integer
01913 **      2                     2            signed integer
01914 **      3                     3            signed integer
01915 **      4                     4            signed integer
01916 **      5                     6            signed integer
01917 **      6                     8            signed integer
01918 **      7                     8            IEEE float
01919 **      8                     0            Integer constant 0
01920 **      9                     0            Integer constant 1
01921 **     10,11                               reserved for expansion
01922 **    N>=12 and even       (N-12)/2        BLOB
01923 **    N>=13 and odd        (N-13)/2        text
01924 **
01925 ** The 8 and 9 types were added in 3.3.0, file format 4.  Prior versions
01926 ** of SQLite will not understand those serial types.
01927 */
01928 
01929 /*
01930 ** Return the serial-type for the value stored in pMem.
01931 */
01932 u32 sqlite3VdbeSerialType(Mem *pMem, int file_format){
01933   int flags = pMem->flags;
01934   int n;
01935 
01936   if( flags&MEM_Null ){
01937     return 0;
01938   }
01939   if( flags&MEM_Int ){
01940     /* Figure out whether to use 1, 2, 4, 6 or 8 bytes. */
01941 #   define MAX_6BYTE ((((i64)0x00008000)<<32)-1)
01942     i64 i = pMem->u.i;
01943     u64 u;
01944     if( file_format>=4 && (i&1)==i ){
01945       return 8+i;
01946     }
01947     u = i<0 ? -i : i;
01948     if( u<=127 ) return 1;
01949     if( u<=32767 ) return 2;
01950     if( u<=8388607 ) return 3;
01951     if( u<=2147483647 ) return 4;
01952     if( u<=MAX_6BYTE ) return 5;
01953     return 6;
01954   }
01955   if( flags&MEM_Real ){
01956     return 7;
01957   }
01958   assert( pMem->db->mallocFailed || flags&(MEM_Str|MEM_Blob) );
01959   n = pMem->n;
01960   if( flags & MEM_Zero ){
01961     n += pMem->u.i;
01962   }
01963   assert( n>=0 );
01964   return ((n*2) + 12 + ((flags&MEM_Str)!=0));
01965 }
01966 
01967 /*
01968 ** Return the length of the data corresponding to the supplied serial-type.
01969 */
01970 int sqlite3VdbeSerialTypeLen(u32 serial_type){
01971   if( serial_type>=12 ){
01972     return (serial_type-12)/2;
01973   }else{
01974     static const u8 aSize[] = { 0, 1, 2, 3, 4, 6, 8, 8, 0, 0, 0, 0 };
01975     return aSize[serial_type];
01976   }
01977 }
01978 
01979 /*
01980 ** If we are on an architecture with mixed-endian floating 
01981 ** points (ex: ARM7) then swap the lower 4 bytes with the 
01982 ** upper 4 bytes.  Return the result.
01983 **
01984 ** For most architectures, this is a no-op.
01985 **
01986 ** (later):  It is reported to me that the mixed-endian problem
01987 ** on ARM7 is an issue with GCC, not with the ARM7 chip.  It seems
01988 ** that early versions of GCC stored the two words of a 64-bit
01989 ** float in the wrong order.  And that error has been propagated
01990 ** ever since.  The blame is not necessarily with GCC, though.
01991 ** GCC might have just copying the problem from a prior compiler.
01992 ** I am also told that newer versions of GCC that follow a different
01993 ** ABI get the byte order right.
01994 **
01995 ** Developers using SQLite on an ARM7 should compile and run their
01996 ** application using -DSQLITE_DEBUG=1 at least once.  With DEBUG
01997 ** enabled, some asserts below will ensure that the byte order of
01998 ** floating point values is correct.
01999 **
02000 ** (2007-08-30)  Frank van Vugt has studied this problem closely
02001 ** and has send his findings to the SQLite developers.  Frank
02002 ** writes that some Linux kernels offer floating point hardware
02003 ** emulation that uses only 32-bit mantissas instead of a full 
02004 ** 48-bits as required by the IEEE standard.  (This is the
02005 ** CONFIG_FPE_FASTFPE option.)  On such systems, floating point
02006 ** byte swapping becomes very complicated.  To avoid problems,
02007 ** the necessary byte swapping is carried out using a 64-bit integer
02008 ** rather than a 64-bit float.  Frank assures us that the code here
02009 ** works for him.  We, the developers, have no way to independently
02010 ** verify this, but Frank seems to know what he is talking about
02011 ** so we trust him.
02012 */
02013 #ifdef SQLITE_MIXED_ENDIAN_64BIT_FLOAT
02014 static u64 floatSwap(u64 in){
02015   union {
02016     u64 r;
02017     u32 i[2];
02018   } u;
02019   u32 t;
02020 
02021   u.r = in;
02022   t = u.i[0];
02023   u.i[0] = u.i[1];
02024   u.i[1] = t;
02025   return u.r;
02026 }
02027 # define swapMixedEndianFloat(X)  X = floatSwap(X)
02028 #else
02029 # define swapMixedEndianFloat(X)
02030 #endif
02031 
02032 /*
02033 ** Write the serialized data blob for the value stored in pMem into 
02034 ** buf. It is assumed that the caller has allocated sufficient space.
02035 ** Return the number of bytes written.
02036 **
02037 ** nBuf is the amount of space left in buf[].  nBuf must always be
02038 ** large enough to hold the entire field.  Except, if the field is
02039 ** a blob with a zero-filled tail, then buf[] might be just the right
02040 ** size to hold everything except for the zero-filled tail.  If buf[]
02041 ** is only big enough to hold the non-zero prefix, then only write that
02042 ** prefix into buf[].  But if buf[] is large enough to hold both the
02043 ** prefix and the tail then write the prefix and set the tail to all
02044 ** zeros.
02045 **
02046 ** Return the number of bytes actually written into buf[].  The number
02047 ** of bytes in the zero-filled tail is included in the return value only
02048 ** if those bytes were zeroed in buf[].
02049 */ 
02050 int sqlite3VdbeSerialPut(u8 *buf, int nBuf, Mem *pMem, int file_format){
02051   u32 serial_type = sqlite3VdbeSerialType(pMem, file_format);
02052   int len;
02053 
02054   /* Integer and Real */
02055   if( serial_type<=7 && serial_type>0 ){
02056     u64 v;
02057     int i;
02058     if( serial_type==7 ){
02059       assert( sizeof(v)==sizeof(pMem->r) );
02060       memcpy(&v, &pMem->r, sizeof(v));
02061       swapMixedEndianFloat(v);
02062     }else{
02063       v = pMem->u.i;
02064     }
02065     len = i = sqlite3VdbeSerialTypeLen(serial_type);
02066     assert( len<=nBuf );
02067     while( i-- ){
02068       buf[i] = (v&0xFF);
02069       v >>= 8;
02070     }
02071     return len;
02072   }
02073 
02074   /* String or blob */
02075   if( serial_type>=12 ){
02076     assert( pMem->n + ((pMem->flags & MEM_Zero)?pMem->u.i:0)
02077              == sqlite3VdbeSerialTypeLen(serial_type) );
02078     assert( pMem->n<=nBuf );
02079     len = pMem->n;
02080     memcpy(buf, pMem->z, len);
02081     if( pMem->flags & MEM_Zero ){
02082       len += pMem->u.i;
02083       if( len>nBuf ){
02084         len = nBuf;
02085       }
02086       memset(&buf[pMem->n], 0, len-pMem->n);
02087     }
02088     return len;
02089   }
02090 
02091   /* NULL or constants 0 or 1 */
02092   return 0;
02093 }
02094 
02095 /*
02096 ** Deserialize the data blob pointed to by buf as serial type serial_type
02097 ** and store the result in pMem.  Return the number of bytes read.
02098 */ 
02099 int sqlite3VdbeSerialGet(
02100   const unsigned char *buf,     /* Buffer to deserialize from */
02101   u32 serial_type,              /* Serial type to deserialize */
02102   Mem *pMem                     /* Memory cell to write value into */
02103 ){
02104   switch( serial_type ){
02105     case 10:   /* Reserved for future use */
02106     case 11:   /* Reserved for future use */
02107     case 0: {  /* NULL */
02108       pMem->flags = MEM_Null;
02109       break;
02110     }
02111     case 1: { /* 1-byte signed integer */
02112       pMem->u.i = (signed char)buf[0];
02113       pMem->flags = MEM_Int;
02114       return 1;
02115     }
02116     case 2: { /* 2-byte signed integer */
02117       pMem->u.i = (((signed char)buf[0])<<8) | buf[1];
02118       pMem->flags = MEM_Int;
02119       return 2;
02120     }
02121     case 3: { /* 3-byte signed integer */
02122       pMem->u.i = (((signed char)buf[0])<<16) | (buf[1]<<8) | buf[2];
02123       pMem->flags = MEM_Int;
02124       return 3;
02125     }
02126     case 4: { /* 4-byte signed integer */
02127       pMem->u.i = (buf[0]<<24) | (buf[1]<<16) | (buf[2]<<8) | buf[3];
02128       pMem->flags = MEM_Int;
02129       return 4;
02130     }
02131     case 5: { /* 6-byte signed integer */
02132       u64 x = (((signed char)buf[0])<<8) | buf[1];
02133       u32 y = (buf[2]<<24) | (buf[3]<<16) | (buf[4]<<8) | buf[5];
02134       x = (x<<32) | y;
02135       pMem->u.i = *(i64*)&x;
02136       pMem->flags = MEM_Int;
02137       return 6;
02138     }
02139     case 6:   /* 8-byte signed integer */
02140     case 7: { /* IEEE floating point */
02141       u64 x;
02142       u32 y;
02143 #if !defined(NDEBUG) && !defined(SQLITE_OMIT_FLOATING_POINT)
02144       /* Verify that integers and floating point values use the same
02145       ** byte order.  Or, that if SQLITE_MIXED_ENDIAN_64BIT_FLOAT is
02146       ** defined that 64-bit floating point values really are mixed
02147       ** endian.
02148       */
02149       static const u64 t1 = ((u64)0x3ff00000)<<32;
02150       static const double r1 = 1.0;
02151       u64 t2 = t1;
02152       swapMixedEndianFloat(t2);
02153       assert( sizeof(r1)==sizeof(t2) && memcmp(&r1, &t2, sizeof(r1))==0 );
02154 #endif
02155 
02156       x = (buf[0]<<24) | (buf[1]<<16) | (buf[2]<<8) | buf[3];
02157       y = (buf[4]<<24) | (buf[5]<<16) | (buf[6]<<8) | buf[7];
02158       x = (x<<32) | y;
02159       if( serial_type==6 ){
02160         pMem->u.i = *(i64*)&x;
02161         pMem->flags = MEM_Int;
02162       }else{
02163         assert( sizeof(x)==8 && sizeof(pMem->r)==8 );
02164         swapMixedEndianFloat(x);
02165         memcpy(&pMem->r, &x, sizeof(x));
02166         pMem->flags = sqlite3IsNaN(pMem->r) ? MEM_Null : MEM_Real;
02167       }
02168       return 8;
02169     }
02170     case 8:    /* Integer 0 */
02171     case 9: {  /* Integer 1 */
02172       pMem->u.i = serial_type-8;
02173       pMem->flags = MEM_Int;
02174       return 0;
02175     }
02176     default: {
02177       int len = (serial_type-12)/2;
02178       pMem->z = (char *)buf;
02179       pMem->n = len;
02180       pMem->xDel = 0;
02181       if( serial_type&0x01 ){
02182         pMem->flags = MEM_Str | MEM_Ephem;
02183       }else{
02184         pMem->flags = MEM_Blob | MEM_Ephem;
02185       }
02186       return len;
02187     }
02188   }
02189   return 0;
02190 }
02191 
02192 
02193 /*
02194 ** Given the nKey-byte encoding of a record in pKey[], parse the
02195 ** record into a UnpackedRecord structure.  Return a pointer to
02196 ** that structure.
02197 **
02198 ** The calling function might provide szSpace bytes of memory
02199 ** space at pSpace.  This space can be used to hold the returned
02200 ** VDbeParsedRecord structure if it is large enough.  If it is
02201 ** not big enough, space is obtained from sqlite3_malloc().
02202 **
02203 ** The returned structure should be closed by a call to
02204 ** sqlite3VdbeDeleteUnpackedRecord().
02205 */ 
02206 UnpackedRecord *sqlite3VdbeRecordUnpack(
02207   KeyInfo *pKeyInfo,     /* Information about the record format */
02208   int nKey,              /* Size of the binary record */
02209   const void *pKey,      /* The binary record */
02210   UnpackedRecord *pSpace,/* Space available to hold resulting object */
02211   int szSpace            /* Size of pSpace[] in bytes */
02212 ){
02213   const unsigned char *aKey = (const unsigned char *)pKey;
02214   UnpackedRecord *p;
02215   int nByte;
02216   int idx, d;
02217   u16 u;                 /* Unsigned loop counter */
02218   u32 szHdr;
02219   Mem *pMem;
02220   
02221   assert( sizeof(Mem)>sizeof(*p) );
02222   nByte = sizeof(Mem)*(pKeyInfo->nField+2);
02223   if( nByte>szSpace ){
02224     p = sqlite3DbMallocRaw(pKeyInfo->db, nByte);
02225     if( p==0 ) return 0;
02226     p->flags = UNPACKED_NEED_FREE | UNPACKED_NEED_DESTROY;
02227   }else{
02228     p = pSpace;
02229     p->flags = UNPACKED_NEED_DESTROY;
02230   }
02231   p->pKeyInfo = pKeyInfo;
02232   p->nField = pKeyInfo->nField + 1;
02233   p->aMem = pMem = &((Mem*)p)[1];
02234   idx = getVarint32(aKey, szHdr);
02235   d = szHdr;
02236   u = 0;
02237   while( idx<szHdr && u<p->nField ){
02238     u32 serial_type;
02239 
02240     idx += getVarint32( aKey+idx, serial_type);
02241     if( d>=nKey && sqlite3VdbeSerialTypeLen(serial_type)>0 ) break;
02242     pMem->enc = pKeyInfo->enc;
02243     pMem->db = pKeyInfo->db;
02244     pMem->flags = 0;
02245     pMem->zMalloc = 0;
02246     d += sqlite3VdbeSerialGet(&aKey[d], serial_type, pMem);
02247     pMem++;
02248     u++;
02249   }
02250   assert( u<=pKeyInfo->nField + 1 );
02251   p->nField = u;
02252   return (void*)p;
02253 }
02254 
02255 /*
02256 ** This routine destroys a UnpackedRecord object
02257 */
02258 void sqlite3VdbeDeleteUnpackedRecord(UnpackedRecord *p){
02259   if( p ){
02260     if( p->flags & UNPACKED_NEED_DESTROY ){
02261       int i;
02262       Mem *pMem;
02263       for(i=0, pMem=p->aMem; i<p->nField; i++, pMem++){
02264         if( pMem->zMalloc ){
02265           sqlite3VdbeMemRelease(pMem);
02266         }
02267       }
02268     }
02269     if( p->flags & UNPACKED_NEED_FREE ){
02270       sqlite3DbFree(p->pKeyInfo->db, p);
02271     }
02272   }
02273 }
02274 
02275 /*
02276 ** This function compares the two table rows or index records
02277 ** specified by {nKey1, pKey1} and pPKey2.  It returns a negative, zero
02278 ** or positive integer if key1 is less than, equal to or 
02279 ** greater than key2.  The {nKey1, pKey1} key must be a blob
02280 ** created by th OP_MakeRecord opcode of the VDBE.  The pPKey2
02281 ** key must be a parsed key such as obtained from
02282 ** sqlite3VdbeParseRecord.
02283 **
02284 ** Key1 and Key2 do not have to contain the same number of fields.
02285 ** The key with fewer fields is usually compares less than the 
02286 ** longer key.  However if the UNPACKED_INCRKEY flags in pPKey2 is set
02287 ** and the common prefixes are equal, then key1 is less than key2.
02288 ** Or if the UNPACKED_MATCH_PREFIX flag is set and the prefixes are
02289 ** equal, then the keys are considered to be equal and
02290 ** the parts beyond the common prefix are ignored.
02291 **
02292 ** If the UNPACKED_IGNORE_ROWID flag is set, then the last byte of
02293 ** the header of pKey1 is ignored.  It is assumed that pKey1 is
02294 ** an index key, and thus ends with a rowid value.  The last byte
02295 ** of the header will therefore be the serial type of the rowid:
02296 ** one of 1, 2, 3, 4, 5, 6, 8, or 9 - the integer serial types.
02297 ** The serial type of the final rowid will always be a single byte.
02298 ** By ignoring this last byte of the header, we force the comparison
02299 ** to ignore the rowid at the end of key1.
02300 */
02301 int sqlite3VdbeRecordCompare(
02302   int nKey1, const void *pKey1, /* Left key */
02303   UnpackedRecord *pPKey2        /* Right key */
02304 ){
02305   u32 d1;            /* Offset into aKey[] of next data element */
02306   u32 idx1;          /* Offset into aKey[] of next header element */
02307   u32 szHdr1;        /* Number of bytes in header */
02308   int i = 0;
02309   int nField;
02310   int rc = 0;
02311   const unsigned char *aKey1 = (const unsigned char *)pKey1;
02312   KeyInfo *pKeyInfo;
02313   Mem mem1;
02314 
02315   pKeyInfo = pPKey2->pKeyInfo;
02316   mem1.enc = pKeyInfo->enc;
02317   mem1.db = pKeyInfo->db;
02318   mem1.flags = 0;
02319   mem1.zMalloc = 0;
02320   
02321   idx1 = getVarint32(aKey1, szHdr1);
02322   d1 = szHdr1;
02323   if( pPKey2->flags & UNPACKED_IGNORE_ROWID ){
02324     szHdr1--;
02325   }
02326   nField = pKeyInfo->nField;
02327   while( idx1<szHdr1 && i<pPKey2->nField ){
02328     u32 serial_type1;
02329 
02330     /* Read the serial types for the next element in each key. */
02331     idx1 += getVarint32( aKey1+idx1, serial_type1 );
02332     if( d1>=nKey1 && sqlite3VdbeSerialTypeLen(serial_type1)>0 ) break;
02333 
02334     /* Extract the values to be compared.
02335     */
02336     d1 += sqlite3VdbeSerialGet(&aKey1[d1], serial_type1, &mem1);
02337 
02338     /* Do the comparison
02339     */
02340     rc = sqlite3MemCompare(&mem1, &pPKey2->aMem[i],
02341                            i<nField ? pKeyInfo->aColl[i] : 0);
02342     if( rc!=0 ){
02343       break;
02344     }
02345     i++;
02346   }
02347   if( mem1.zMalloc ) sqlite3VdbeMemRelease(&mem1);
02348 
02349   if( rc==0 ){
02350     /* rc==0 here means that one of the keys ran out of fields and
02351     ** all the fields up to that point were equal. If the UNPACKED_INCRKEY
02352     ** flag is set, then break the tie by treating key2 as larger.
02353     ** If the UPACKED_PREFIX_MATCH flag is set, then keys with common prefixes
02354     ** are considered to be equal.  Otherwise, the longer key is the 
02355     ** larger.  As it happens, the pPKey2 will always be the longer
02356     ** if there is a difference.
02357     */
02358     if( pPKey2->flags & UNPACKED_INCRKEY ){
02359       rc = -1;
02360     }else if( pPKey2->flags & UNPACKED_PREFIX_MATCH ){
02361       /* Leave rc==0 */
02362     }else if( idx1<szHdr1 ){
02363       rc = 1;
02364     }
02365   }else if( pKeyInfo->aSortOrder && i<pKeyInfo->nField
02366                && pKeyInfo->aSortOrder[i] ){
02367     rc = -rc;
02368   }
02369 
02370   return rc;
02371 }
02372  
02373 
02374 /*
02375 ** pCur points at an index entry created using the OP_MakeRecord opcode.
02376 ** Read the rowid (the last field in the record) and store it in *rowid.
02377 ** Return SQLITE_OK if everything works, or an error code otherwise.
02378 */
02379 int sqlite3VdbeIdxRowid(BtCursor *pCur, i64 *rowid){
02380   i64 nCellKey = 0;
02381   int rc;
02382   u32 szHdr;        /* Size of the header */
02383   u32 typeRowid;    /* Serial type of the rowid */
02384   u32 lenRowid;     /* Size of the rowid */
02385   Mem m, v;
02386 
02387   sqlite3BtreeKeySize(pCur, &nCellKey);
02388   if( nCellKey<=0 ){
02389     return SQLITE_CORRUPT_BKPT;
02390   }
02391   m.flags = 0;
02392   m.db = 0;
02393   m.zMalloc = 0;
02394   rc = sqlite3VdbeMemFromBtree(pCur, 0, nCellKey, 1, &m);
02395   if( rc ){
02396     return rc;
02397   }
02398   (void)getVarint32((u8*)m.z, szHdr);
02399   (void)getVarint32((u8*)&m.z[szHdr-1], typeRowid);
02400   lenRowid = sqlite3VdbeSerialTypeLen(typeRowid);
02401   sqlite3VdbeSerialGet((u8*)&m.z[m.n-lenRowid], typeRowid, &v);
02402   *rowid = v.u.i;
02403   sqlite3VdbeMemRelease(&m);
02404   return SQLITE_OK;
02405 }
02406 
02407 /*
02408 ** Compare the key of the index entry that cursor pC is point to against
02409 ** the key string in pKey (of length nKey).  Write into *pRes a number
02410 ** that is negative, zero, or positive if pC is less than, equal to,
02411 ** or greater than pKey.  Return SQLITE_OK on success.
02412 **
02413 ** pKey is either created without a rowid or is truncated so that it
02414 ** omits the rowid at the end.  The rowid at the end of the index entry
02415 ** is ignored as well.  Hence, this routine only compares the prefixes 
02416 ** of the keys prior to the final rowid, not the entire key.
02417 **
02418 ** pUnpacked may be an unpacked version of pKey,nKey.  If pUnpacked is
02419 ** supplied it is used in place of pKey,nKey.
02420 */
02421 int sqlite3VdbeIdxKeyCompare(
02422   VdbeCursor *pC,             /* The cursor to compare against */
02423   UnpackedRecord *pUnpacked,  /* Unpacked version of pKey and nKey */
02424   int *res                    /* Write the comparison result here */
02425 ){
02426   i64 nCellKey = 0;
02427   int rc;
02428   BtCursor *pCur = pC->pCursor;
02429   Mem m;
02430 
02431   sqlite3BtreeKeySize(pCur, &nCellKey);
02432   if( nCellKey<=0 ){
02433     *res = 0;
02434     return SQLITE_OK;
02435   }
02436   m.db = 0;
02437   m.flags = 0;
02438   m.zMalloc = 0;
02439   rc = sqlite3VdbeMemFromBtree(pC->pCursor, 0, nCellKey, 1, &m);
02440   if( rc ){
02441     return rc;
02442   }
02443   assert( pUnpacked->flags & UNPACKED_IGNORE_ROWID );
02444   *res = sqlite3VdbeRecordCompare(m.n, m.z, pUnpacked);
02445   sqlite3VdbeMemRelease(&m);
02446   return SQLITE_OK;
02447 }
02448 
02449 /*
02450 ** This routine sets the value to be returned by subsequent calls to
02451 ** sqlite3_changes() on the database handle 'db'. 
02452 */
02453 void sqlite3VdbeSetChanges(sqlite3 *db, int nChange){
02454   assert( sqlite3_mutex_held(db->mutex) );
02455   db->nChange = nChange;
02456   db->nTotalChange += nChange;
02457 }
02458 
02459 /*
02460 ** Set a flag in the vdbe to update the change counter when it is finalised
02461 ** or reset.
02462 */
02463 void sqlite3VdbeCountChanges(Vdbe *v){
02464   v->changeCntOn = 1;
02465 }
02466 
02467 /*
02468 ** Mark every prepared statement associated with a database connection
02469 ** as expired.
02470 **
02471 ** An expired statement means that recompilation of the statement is
02472 ** recommend.  Statements expire when things happen that make their
02473 ** programs obsolete.  Removing user-defined functions or collating
02474 ** sequences, or changing an authorization function are the types of
02475 ** things that make prepared statements obsolete.
02476 */
02477 void sqlite3ExpirePreparedStatements(sqlite3 *db){
02478   Vdbe *p;
02479   for(p = db->pVdbe; p; p=p->pNext){
02480     p->expired = 1;
02481   }
02482 }
02483 
02484 /*
02485 ** Return the database associated with the Vdbe.
02486 */
02487 sqlite3 *sqlite3VdbeDb(Vdbe *v){
02488   return v->db;
02489 }

ContextLogger2—ContextLogger2 Logger Daemon Internals—Generated on Mon May 2 13:49:57 2011 by Doxygen 1.6.1