00001 /* 00002 ** 2006 Oct 10 00003 ** 00004 ** The author disclaims copyright to this source code. In place of 00005 ** a legal notice, here is a blessing: 00006 ** 00007 ** May you do good and not evil. 00008 ** May you find forgiveness for yourself and forgive others. 00009 ** May you share freely, never taking more than you give. 00010 ** 00011 ****************************************************************************** 00012 ** 00013 ** This is an SQLite module implementing full-text search. 00014 */ 00015 00016 /* 00017 ** The code in this file is only compiled if: 00018 ** 00019 ** * The FTS3 module is being built as an extension 00020 ** (in which case SQLITE_CORE is not defined), or 00021 ** 00022 ** * The FTS3 module is being built into the core of 00023 ** SQLite (in which case SQLITE_ENABLE_FTS3 is defined). 00024 */ 00025 00026 /* TODO(shess) Consider exporting this comment to an HTML file or the 00027 ** wiki. 00028 */ 00029 /* The full-text index is stored in a series of b+tree (-like) 00030 ** structures called segments which map terms to doclists. The 00031 ** structures are like b+trees in layout, but are constructed from the 00032 ** bottom up in optimal fashion and are not updatable. Since trees 00033 ** are built from the bottom up, things will be described from the 00034 ** bottom up. 00035 ** 00036 ** 00037 **** Varints **** 00038 ** The basic unit of encoding is a variable-length integer called a 00039 ** varint. We encode variable-length integers in little-endian order 00040 ** using seven bits * per byte as follows: 00041 ** 00042 ** KEY: 00043 ** A = 0xxxxxxx 7 bits of data and one flag bit 00044 ** B = 1xxxxxxx 7 bits of data and one flag bit 00045 ** 00046 ** 7 bits - A 00047 ** 14 bits - BA 00048 ** 21 bits - BBA 00049 ** and so on. 00050 ** 00051 ** This is identical to how sqlite encodes varints (see util.c). 00052 ** 00053 ** 00054 **** Document lists **** 00055 ** A doclist (document list) holds a docid-sorted list of hits for a 00056 ** given term. Doclists hold docids, and can optionally associate 00057 ** token positions and offsets with docids. 00058 ** 00059 ** A DL_POSITIONS_OFFSETS doclist is stored like this: 00060 ** 00061 ** array { 00062 ** varint docid; 00063 ** array { (position list for column 0) 00064 ** varint position; (delta from previous position plus POS_BASE) 00065 ** varint startOffset; (delta from previous startOffset) 00066 ** varint endOffset; (delta from startOffset) 00067 ** } 00068 ** array { 00069 ** varint POS_COLUMN; (marks start of position list for new column) 00070 ** varint column; (index of new column) 00071 ** array { 00072 ** varint position; (delta from previous position plus POS_BASE) 00073 ** varint startOffset;(delta from previous startOffset) 00074 ** varint endOffset; (delta from startOffset) 00075 ** } 00076 ** } 00077 ** varint POS_END; (marks end of positions for this document. 00078 ** } 00079 ** 00080 ** Here, array { X } means zero or more occurrences of X, adjacent in 00081 ** memory. A "position" is an index of a token in the token stream 00082 ** generated by the tokenizer, while an "offset" is a byte offset, 00083 ** both based at 0. Note that POS_END and POS_COLUMN occur in the 00084 ** same logical place as the position element, and act as sentinals 00085 ** ending a position list array. 00086 ** 00087 ** A DL_POSITIONS doclist omits the startOffset and endOffset 00088 ** information. A DL_DOCIDS doclist omits both the position and 00089 ** offset information, becoming an array of varint-encoded docids. 00090 ** 00091 ** On-disk data is stored as type DL_DEFAULT, so we don't serialize 00092 ** the type. Due to how deletion is implemented in the segmentation 00093 ** system, on-disk doclists MUST store at least positions. 00094 ** 00095 ** 00096 **** Segment leaf nodes **** 00097 ** Segment leaf nodes store terms and doclists, ordered by term. Leaf 00098 ** nodes are written using LeafWriter, and read using LeafReader (to 00099 ** iterate through a single leaf node's data) and LeavesReader (to 00100 ** iterate through a segment's entire leaf layer). Leaf nodes have 00101 ** the format: 00102 ** 00103 ** varint iHeight; (height from leaf level, always 0) 00104 ** varint nTerm; (length of first term) 00105 ** char pTerm[nTerm]; (content of first term) 00106 ** varint nDoclist; (length of term's associated doclist) 00107 ** char pDoclist[nDoclist]; (content of doclist) 00108 ** array { 00109 ** (further terms are delta-encoded) 00110 ** varint nPrefix; (length of prefix shared with previous term) 00111 ** varint nSuffix; (length of unshared suffix) 00112 ** char pTermSuffix[nSuffix];(unshared suffix of next term) 00113 ** varint nDoclist; (length of term's associated doclist) 00114 ** char pDoclist[nDoclist]; (content of doclist) 00115 ** } 00116 ** 00117 ** Here, array { X } means zero or more occurrences of X, adjacent in 00118 ** memory. 00119 ** 00120 ** Leaf nodes are broken into blocks which are stored contiguously in 00121 ** the %_segments table in sorted order. This means that when the end 00122 ** of a node is reached, the next term is in the node with the next 00123 ** greater node id. 00124 ** 00125 ** New data is spilled to a new leaf node when the current node 00126 ** exceeds LEAF_MAX bytes (default 2048). New data which itself is 00127 ** larger than STANDALONE_MIN (default 1024) is placed in a standalone 00128 ** node (a leaf node with a single term and doclist). The goal of 00129 ** these settings is to pack together groups of small doclists while 00130 ** making it efficient to directly access large doclists. The 00131 ** assumption is that large doclists represent terms which are more 00132 ** likely to be query targets. 00133 ** 00134 ** TODO(shess) It may be useful for blocking decisions to be more 00135 ** dynamic. For instance, it may make more sense to have a 2.5k leaf 00136 ** node rather than splitting into 2k and .5k nodes. My intuition is 00137 ** that this might extend through 2x or 4x the pagesize. 00138 ** 00139 ** 00140 **** Segment interior nodes **** 00141 ** Segment interior nodes store blockids for subtree nodes and terms 00142 ** to describe what data is stored by the each subtree. Interior 00143 ** nodes are written using InteriorWriter, and read using 00144 ** InteriorReader. InteriorWriters are created as needed when 00145 ** SegmentWriter creates new leaf nodes, or when an interior node 00146 ** itself grows too big and must be split. The format of interior 00147 ** nodes: 00148 ** 00149 ** varint iHeight; (height from leaf level, always >0) 00150 ** varint iBlockid; (block id of node's leftmost subtree) 00151 ** optional { 00152 ** varint nTerm; (length of first term) 00153 ** char pTerm[nTerm]; (content of first term) 00154 ** array { 00155 ** (further terms are delta-encoded) 00156 ** varint nPrefix; (length of shared prefix with previous term) 00157 ** varint nSuffix; (length of unshared suffix) 00158 ** char pTermSuffix[nSuffix]; (unshared suffix of next term) 00159 ** } 00160 ** } 00161 ** 00162 ** Here, optional { X } means an optional element, while array { X } 00163 ** means zero or more occurrences of X, adjacent in memory. 00164 ** 00165 ** An interior node encodes n terms separating n+1 subtrees. The 00166 ** subtree blocks are contiguous, so only the first subtree's blockid 00167 ** is encoded. The subtree at iBlockid will contain all terms less 00168 ** than the first term encoded (or all terms if no term is encoded). 00169 ** Otherwise, for terms greater than or equal to pTerm[i] but less 00170 ** than pTerm[i+1], the subtree for that term will be rooted at 00171 ** iBlockid+i. Interior nodes only store enough term data to 00172 ** distinguish adjacent children (if the rightmost term of the left 00173 ** child is "something", and the leftmost term of the right child is 00174 ** "wicked", only "w" is stored). 00175 ** 00176 ** New data is spilled to a new interior node at the same height when 00177 ** the current node exceeds INTERIOR_MAX bytes (default 2048). 00178 ** INTERIOR_MIN_TERMS (default 7) keeps large terms from monopolizing 00179 ** interior nodes and making the tree too skinny. The interior nodes 00180 ** at a given height are naturally tracked by interior nodes at 00181 ** height+1, and so on. 00182 ** 00183 ** 00184 **** Segment directory **** 00185 ** The segment directory in table %_segdir stores meta-information for 00186 ** merging and deleting segments, and also the root node of the 00187 ** segment's tree. 00188 ** 00189 ** The root node is the top node of the segment's tree after encoding 00190 ** the entire segment, restricted to ROOT_MAX bytes (default 1024). 00191 ** This could be either a leaf node or an interior node. If the top 00192 ** node requires more than ROOT_MAX bytes, it is flushed to %_segments 00193 ** and a new root interior node is generated (which should always fit 00194 ** within ROOT_MAX because it only needs space for 2 varints, the 00195 ** height and the blockid of the previous root). 00196 ** 00197 ** The meta-information in the segment directory is: 00198 ** level - segment level (see below) 00199 ** idx - index within level 00200 ** - (level,idx uniquely identify a segment) 00201 ** start_block - first leaf node 00202 ** leaves_end_block - last leaf node 00203 ** end_block - last block (including interior nodes) 00204 ** root - contents of root node 00205 ** 00206 ** If the root node is a leaf node, then start_block, 00207 ** leaves_end_block, and end_block are all 0. 00208 ** 00209 ** 00210 **** Segment merging **** 00211 ** To amortize update costs, segments are groups into levels and 00212 ** merged in matches. Each increase in level represents exponentially 00213 ** more documents. 00214 ** 00215 ** New documents (actually, document updates) are tokenized and 00216 ** written individually (using LeafWriter) to a level 0 segment, with 00217 ** incrementing idx. When idx reaches MERGE_COUNT (default 16), all 00218 ** level 0 segments are merged into a single level 1 segment. Level 1 00219 ** is populated like level 0, and eventually MERGE_COUNT level 1 00220 ** segments are merged to a single level 2 segment (representing 00221 ** MERGE_COUNT^2 updates), and so on. 00222 ** 00223 ** A segment merge traverses all segments at a given level in 00224 ** parallel, performing a straightforward sorted merge. Since segment 00225 ** leaf nodes are written in to the %_segments table in order, this 00226 ** merge traverses the underlying sqlite disk structures efficiently. 00227 ** After the merge, all segment blocks from the merged level are 00228 ** deleted. 00229 ** 00230 ** MERGE_COUNT controls how often we merge segments. 16 seems to be 00231 ** somewhat of a sweet spot for insertion performance. 32 and 64 show 00232 ** very similar performance numbers to 16 on insertion, though they're 00233 ** a tiny bit slower (perhaps due to more overhead in merge-time 00234 ** sorting). 8 is about 20% slower than 16, 4 about 50% slower than 00235 ** 16, 2 about 66% slower than 16. 00236 ** 00237 ** At query time, high MERGE_COUNT increases the number of segments 00238 ** which need to be scanned and merged. For instance, with 100k docs 00239 ** inserted: 00240 ** 00241 ** MERGE_COUNT segments 00242 ** 16 25 00243 ** 8 12 00244 ** 4 10 00245 ** 2 6 00246 ** 00247 ** This appears to have only a moderate impact on queries for very 00248 ** frequent terms (which are somewhat dominated by segment merge 00249 ** costs), and infrequent and non-existent terms still seem to be fast 00250 ** even with many segments. 00251 ** 00252 ** TODO(shess) That said, it would be nice to have a better query-side 00253 ** argument for MERGE_COUNT of 16. Also, it is possible/likely that 00254 ** optimizations to things like doclist merging will swing the sweet 00255 ** spot around. 00256 ** 00257 ** 00258 ** 00259 **** Handling of deletions and updates **** 00260 ** Since we're using a segmented structure, with no docid-oriented 00261 ** index into the term index, we clearly cannot simply update the term 00262 ** index when a document is deleted or updated. For deletions, we 00263 ** write an empty doclist (varint(docid) varint(POS_END)), for updates 00264 ** we simply write the new doclist. Segment merges overwrite older 00265 ** data for a particular docid with newer data, so deletes or updates 00266 ** will eventually overtake the earlier data and knock it out. The 00267 ** query logic likewise merges doclists so that newer data knocks out 00268 ** older data. 00269 ** 00270 ** TODO(shess) Provide a VACUUM type operation to clear out all 00271 ** deletions and duplications. This would basically be a forced merge 00272 ** into a single segment. 00273 */ 00274 00275 #if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3) 00276 00277 #if defined(SQLITE_ENABLE_FTS3) && !defined(SQLITE_CORE) 00278 # define SQLITE_CORE 1 00279 #endif 00280 00281 #include <assert.h> 00282 #include <stdlib.h> 00283 #include <stdio.h> 00284 #include <string.h> 00285 #include <ctype.h> 00286 00287 #include "fts3.h" 00288 #include "fts3_hash.h" 00289 #include "fts3_tokenizer.h" 00290 #ifndef SQLITE_CORE 00291 # include "sqlite3ext.h" 00292 SQLITE_EXTENSION_INIT1 00293 #endif 00294 00295 00296 /* TODO(shess) MAN, this thing needs some refactoring. At minimum, it 00297 ** would be nice to order the file better, perhaps something along the 00298 ** lines of: 00299 ** 00300 ** - utility functions 00301 ** - table setup functions 00302 ** - table update functions 00303 ** - table query functions 00304 ** 00305 ** Put the query functions last because they're likely to reference 00306 ** typedefs or functions from the table update section. 00307 */ 00308 00309 #if 0 00310 # define FTSTRACE(A) printf A; fflush(stdout) 00311 #else 00312 # define FTSTRACE(A) 00313 #endif 00314 00315 /* 00316 ** Default span for NEAR operators. 00317 */ 00318 #define SQLITE_FTS3_DEFAULT_NEAR_PARAM 10 00319 00320 /* It is not safe to call isspace(), tolower(), or isalnum() on 00321 ** hi-bit-set characters. This is the same solution used in the 00322 ** tokenizer. 00323 */ 00324 /* TODO(shess) The snippet-generation code should be using the 00325 ** tokenizer-generated tokens rather than doing its own local 00326 ** tokenization. 00327 */ 00328 /* TODO(shess) Is __isascii() a portable version of (c&0x80)==0? */ 00329 static int safe_isspace(char c){ 00330 return (c&0x80)==0 ? isspace(c) : 0; 00331 } 00332 static int safe_tolower(char c){ 00333 return (c&0x80)==0 ? tolower(c) : c; 00334 } 00335 static int safe_isalnum(char c){ 00336 return (c&0x80)==0 ? isalnum(c) : 0; 00337 } 00338 00339 typedef enum DocListType { 00340 DL_DOCIDS, /* docids only */ 00341 DL_POSITIONS, /* docids + positions */ 00342 DL_POSITIONS_OFFSETS /* docids + positions + offsets */ 00343 } DocListType; 00344 00345 /* 00346 ** By default, only positions and not offsets are stored in the doclists. 00347 ** To change this so that offsets are stored too, compile with 00348 ** 00349 ** -DDL_DEFAULT=DL_POSITIONS_OFFSETS 00350 ** 00351 ** If DL_DEFAULT is set to DL_DOCIDS, your table can only be inserted 00352 ** into (no deletes or updates). 00353 */ 00354 #ifndef DL_DEFAULT 00355 # define DL_DEFAULT DL_POSITIONS 00356 #endif 00357 00358 enum { 00359 POS_END = 0, /* end of this position list */ 00360 POS_COLUMN, /* followed by new column number */ 00361 POS_BASE 00362 }; 00363 00364 /* MERGE_COUNT controls how often we merge segments (see comment at 00365 ** top of file). 00366 */ 00367 #define MERGE_COUNT 16 00368 00369 /* utility functions */ 00370 00371 /* CLEAR() and SCRAMBLE() abstract memset() on a pointer to a single 00372 ** record to prevent errors of the form: 00373 ** 00374 ** my_function(SomeType *b){ 00375 ** memset(b, '\0', sizeof(b)); // sizeof(b)!=sizeof(*b) 00376 ** } 00377 */ 00378 /* TODO(shess) Obvious candidates for a header file. */ 00379 #define CLEAR(b) memset(b, '\0', sizeof(*(b))) 00380 00381 #ifndef NDEBUG 00382 # define SCRAMBLE(b) memset(b, 0x55, sizeof(*(b))) 00383 #else 00384 # define SCRAMBLE(b) 00385 #endif 00386 00387 /* We may need up to VARINT_MAX bytes to store an encoded 64-bit integer. */ 00388 #define VARINT_MAX 10 00389 00390 /* Write a 64-bit variable-length integer to memory starting at p[0]. 00391 * The length of data written will be between 1 and VARINT_MAX bytes. 00392 * The number of bytes written is returned. */ 00393 static int fts3PutVarint(char *p, sqlite_int64 v){ 00394 unsigned char *q = (unsigned char *) p; 00395 sqlite_uint64 vu = v; 00396 do{ 00397 *q++ = (unsigned char) ((vu & 0x7f) | 0x80); 00398 vu >>= 7; 00399 }while( vu!=0 ); 00400 q[-1] &= 0x7f; /* turn off high bit in final byte */ 00401 assert( q - (unsigned char *)p <= VARINT_MAX ); 00402 return (int) (q - (unsigned char *)p); 00403 } 00404 00405 /* Read a 64-bit variable-length integer from memory starting at p[0]. 00406 * Return the number of bytes read, or 0 on error. 00407 * The value is stored in *v. */ 00408 static int fts3GetVarint(const char *p, sqlite_int64 *v){ 00409 const unsigned char *q = (const unsigned char *) p; 00410 sqlite_uint64 x = 0, y = 1; 00411 while( (*q & 0x80) == 0x80 ){ 00412 x += y * (*q++ & 0x7f); 00413 y <<= 7; 00414 if( q - (unsigned char *)p >= VARINT_MAX ){ /* bad data */ 00415 assert( 0 ); 00416 return 0; 00417 } 00418 } 00419 x += y * (*q++); 00420 *v = (sqlite_int64) x; 00421 return (int) (q - (unsigned char *)p); 00422 } 00423 00424 static int fts3GetVarint32(const char *p, int *pi){ 00425 sqlite_int64 i; 00426 int ret = fts3GetVarint(p, &i); 00427 *pi = (int) i; 00428 assert( *pi==i ); 00429 return ret; 00430 } 00431 00432 /*******************************************************************/ 00433 /* DataBuffer is used to collect data into a buffer in piecemeal 00434 ** fashion. It implements the usual distinction between amount of 00435 ** data currently stored (nData) and buffer capacity (nCapacity). 00436 ** 00437 ** dataBufferInit - create a buffer with given initial capacity. 00438 ** dataBufferReset - forget buffer's data, retaining capacity. 00439 ** dataBufferDestroy - free buffer's data. 00440 ** dataBufferSwap - swap contents of two buffers. 00441 ** dataBufferExpand - expand capacity without adding data. 00442 ** dataBufferAppend - append data. 00443 ** dataBufferAppend2 - append two pieces of data at once. 00444 ** dataBufferReplace - replace buffer's data. 00445 */ 00446 typedef struct DataBuffer { 00447 char *pData; /* Pointer to malloc'ed buffer. */ 00448 int nCapacity; /* Size of pData buffer. */ 00449 int nData; /* End of data loaded into pData. */ 00450 } DataBuffer; 00451 00452 static void dataBufferInit(DataBuffer *pBuffer, int nCapacity){ 00453 assert( nCapacity>=0 ); 00454 pBuffer->nData = 0; 00455 pBuffer->nCapacity = nCapacity; 00456 pBuffer->pData = nCapacity==0 ? NULL : sqlite3_malloc(nCapacity); 00457 } 00458 static void dataBufferReset(DataBuffer *pBuffer){ 00459 pBuffer->nData = 0; 00460 } 00461 static void dataBufferDestroy(DataBuffer *pBuffer){ 00462 if( pBuffer->pData!=NULL ) sqlite3_free(pBuffer->pData); 00463 SCRAMBLE(pBuffer); 00464 } 00465 static void dataBufferSwap(DataBuffer *pBuffer1, DataBuffer *pBuffer2){ 00466 DataBuffer tmp = *pBuffer1; 00467 *pBuffer1 = *pBuffer2; 00468 *pBuffer2 = tmp; 00469 } 00470 static void dataBufferExpand(DataBuffer *pBuffer, int nAddCapacity){ 00471 assert( nAddCapacity>0 ); 00472 /* TODO(shess) Consider expanding more aggressively. Note that the 00473 ** underlying malloc implementation may take care of such things for 00474 ** us already. 00475 */ 00476 if( pBuffer->nData+nAddCapacity>pBuffer->nCapacity ){ 00477 pBuffer->nCapacity = pBuffer->nData+nAddCapacity; 00478 pBuffer->pData = sqlite3_realloc(pBuffer->pData, pBuffer->nCapacity); 00479 } 00480 } 00481 static void dataBufferAppend(DataBuffer *pBuffer, 00482 const char *pSource, int nSource){ 00483 assert( nSource>0 && pSource!=NULL ); 00484 dataBufferExpand(pBuffer, nSource); 00485 memcpy(pBuffer->pData+pBuffer->nData, pSource, nSource); 00486 pBuffer->nData += nSource; 00487 } 00488 static void dataBufferAppend2(DataBuffer *pBuffer, 00489 const char *pSource1, int nSource1, 00490 const char *pSource2, int nSource2){ 00491 assert( nSource1>0 && pSource1!=NULL ); 00492 assert( nSource2>0 && pSource2!=NULL ); 00493 dataBufferExpand(pBuffer, nSource1+nSource2); 00494 memcpy(pBuffer->pData+pBuffer->nData, pSource1, nSource1); 00495 memcpy(pBuffer->pData+pBuffer->nData+nSource1, pSource2, nSource2); 00496 pBuffer->nData += nSource1+nSource2; 00497 } 00498 static void dataBufferReplace(DataBuffer *pBuffer, 00499 const char *pSource, int nSource){ 00500 dataBufferReset(pBuffer); 00501 dataBufferAppend(pBuffer, pSource, nSource); 00502 } 00503 00504 /* StringBuffer is a null-terminated version of DataBuffer. */ 00505 typedef struct StringBuffer { 00506 DataBuffer b; /* Includes null terminator. */ 00507 } StringBuffer; 00508 00509 static void initStringBuffer(StringBuffer *sb){ 00510 dataBufferInit(&sb->b, 100); 00511 dataBufferReplace(&sb->b, "", 1); 00512 } 00513 static int stringBufferLength(StringBuffer *sb){ 00514 return sb->b.nData-1; 00515 } 00516 static char *stringBufferData(StringBuffer *sb){ 00517 return sb->b.pData; 00518 } 00519 static void stringBufferDestroy(StringBuffer *sb){ 00520 dataBufferDestroy(&sb->b); 00521 } 00522 00523 static void nappend(StringBuffer *sb, const char *zFrom, int nFrom){ 00524 assert( sb->b.nData>0 ); 00525 if( nFrom>0 ){ 00526 sb->b.nData--; 00527 dataBufferAppend2(&sb->b, zFrom, nFrom, "", 1); 00528 } 00529 } 00530 static void append(StringBuffer *sb, const char *zFrom){ 00531 nappend(sb, zFrom, strlen(zFrom)); 00532 } 00533 00534 /* Append a list of strings separated by commas. */ 00535 static void appendList(StringBuffer *sb, int nString, char **azString){ 00536 int i; 00537 for(i=0; i<nString; ++i){ 00538 if( i>0 ) append(sb, ", "); 00539 append(sb, azString[i]); 00540 } 00541 } 00542 00543 static int endsInWhiteSpace(StringBuffer *p){ 00544 return stringBufferLength(p)>0 && 00545 safe_isspace(stringBufferData(p)[stringBufferLength(p)-1]); 00546 } 00547 00548 /* If the StringBuffer ends in something other than white space, add a 00549 ** single space character to the end. 00550 */ 00551 static void appendWhiteSpace(StringBuffer *p){ 00552 if( stringBufferLength(p)==0 ) return; 00553 if( !endsInWhiteSpace(p) ) append(p, " "); 00554 } 00555 00556 /* Remove white space from the end of the StringBuffer */ 00557 static void trimWhiteSpace(StringBuffer *p){ 00558 while( endsInWhiteSpace(p) ){ 00559 p->b.pData[--p->b.nData-1] = '\0'; 00560 } 00561 } 00562 00563 /*******************************************************************/ 00564 /* DLReader is used to read document elements from a doclist. The 00565 ** current docid is cached, so dlrDocid() is fast. DLReader does not 00566 ** own the doclist buffer. 00567 ** 00568 ** dlrAtEnd - true if there's no more data to read. 00569 ** dlrDocid - docid of current document. 00570 ** dlrDocData - doclist data for current document (including docid). 00571 ** dlrDocDataBytes - length of same. 00572 ** dlrAllDataBytes - length of all remaining data. 00573 ** dlrPosData - position data for current document. 00574 ** dlrPosDataLen - length of pos data for current document (incl POS_END). 00575 ** dlrStep - step to current document. 00576 ** dlrInit - initial for doclist of given type against given data. 00577 ** dlrDestroy - clean up. 00578 ** 00579 ** Expected usage is something like: 00580 ** 00581 ** DLReader reader; 00582 ** dlrInit(&reader, pData, nData); 00583 ** while( !dlrAtEnd(&reader) ){ 00584 ** // calls to dlrDocid() and kin. 00585 ** dlrStep(&reader); 00586 ** } 00587 ** dlrDestroy(&reader); 00588 */ 00589 typedef struct DLReader { 00590 DocListType iType; 00591 const char *pData; 00592 int nData; 00593 00594 sqlite_int64 iDocid; 00595 int nElement; 00596 } DLReader; 00597 00598 static int dlrAtEnd(DLReader *pReader){ 00599 assert( pReader->nData>=0 ); 00600 return pReader->nData==0; 00601 } 00602 static sqlite_int64 dlrDocid(DLReader *pReader){ 00603 assert( !dlrAtEnd(pReader) ); 00604 return pReader->iDocid; 00605 } 00606 static const char *dlrDocData(DLReader *pReader){ 00607 assert( !dlrAtEnd(pReader) ); 00608 return pReader->pData; 00609 } 00610 static int dlrDocDataBytes(DLReader *pReader){ 00611 assert( !dlrAtEnd(pReader) ); 00612 return pReader->nElement; 00613 } 00614 static int dlrAllDataBytes(DLReader *pReader){ 00615 assert( !dlrAtEnd(pReader) ); 00616 return pReader->nData; 00617 } 00618 /* TODO(shess) Consider adding a field to track iDocid varint length 00619 ** to make these two functions faster. This might matter (a tiny bit) 00620 ** for queries. 00621 */ 00622 static const char *dlrPosData(DLReader *pReader){ 00623 sqlite_int64 iDummy; 00624 int n = fts3GetVarint(pReader->pData, &iDummy); 00625 assert( !dlrAtEnd(pReader) ); 00626 return pReader->pData+n; 00627 } 00628 static int dlrPosDataLen(DLReader *pReader){ 00629 sqlite_int64 iDummy; 00630 int n = fts3GetVarint(pReader->pData, &iDummy); 00631 assert( !dlrAtEnd(pReader) ); 00632 return pReader->nElement-n; 00633 } 00634 static void dlrStep(DLReader *pReader){ 00635 assert( !dlrAtEnd(pReader) ); 00636 00637 /* Skip past current doclist element. */ 00638 assert( pReader->nElement<=pReader->nData ); 00639 pReader->pData += pReader->nElement; 00640 pReader->nData -= pReader->nElement; 00641 00642 /* If there is more data, read the next doclist element. */ 00643 if( pReader->nData!=0 ){ 00644 sqlite_int64 iDocidDelta; 00645 int iDummy, n = fts3GetVarint(pReader->pData, &iDocidDelta); 00646 pReader->iDocid += iDocidDelta; 00647 if( pReader->iType>=DL_POSITIONS ){ 00648 assert( n<pReader->nData ); 00649 while( 1 ){ 00650 n += fts3GetVarint32(pReader->pData+n, &iDummy); 00651 assert( n<=pReader->nData ); 00652 if( iDummy==POS_END ) break; 00653 if( iDummy==POS_COLUMN ){ 00654 n += fts3GetVarint32(pReader->pData+n, &iDummy); 00655 assert( n<pReader->nData ); 00656 }else if( pReader->iType==DL_POSITIONS_OFFSETS ){ 00657 n += fts3GetVarint32(pReader->pData+n, &iDummy); 00658 n += fts3GetVarint32(pReader->pData+n, &iDummy); 00659 assert( n<pReader->nData ); 00660 } 00661 } 00662 } 00663 pReader->nElement = n; 00664 assert( pReader->nElement<=pReader->nData ); 00665 } 00666 } 00667 static void dlrInit(DLReader *pReader, DocListType iType, 00668 const char *pData, int nData){ 00669 assert( pData!=NULL && nData!=0 ); 00670 pReader->iType = iType; 00671 pReader->pData = pData; 00672 pReader->nData = nData; 00673 pReader->nElement = 0; 00674 pReader->iDocid = 0; 00675 00676 /* Load the first element's data. There must be a first element. */ 00677 dlrStep(pReader); 00678 } 00679 static void dlrDestroy(DLReader *pReader){ 00680 SCRAMBLE(pReader); 00681 } 00682 00683 #ifndef NDEBUG 00684 /* Verify that the doclist can be validly decoded. Also returns the 00685 ** last docid found because it is convenient in other assertions for 00686 ** DLWriter. 00687 */ 00688 static void docListValidate(DocListType iType, const char *pData, int nData, 00689 sqlite_int64 *pLastDocid){ 00690 sqlite_int64 iPrevDocid = 0; 00691 assert( nData>0 ); 00692 assert( pData!=0 ); 00693 assert( pData+nData>pData ); 00694 while( nData!=0 ){ 00695 sqlite_int64 iDocidDelta; 00696 int n = fts3GetVarint(pData, &iDocidDelta); 00697 iPrevDocid += iDocidDelta; 00698 if( iType>DL_DOCIDS ){ 00699 int iDummy; 00700 while( 1 ){ 00701 n += fts3GetVarint32(pData+n, &iDummy); 00702 if( iDummy==POS_END ) break; 00703 if( iDummy==POS_COLUMN ){ 00704 n += fts3GetVarint32(pData+n, &iDummy); 00705 }else if( iType>DL_POSITIONS ){ 00706 n += fts3GetVarint32(pData+n, &iDummy); 00707 n += fts3GetVarint32(pData+n, &iDummy); 00708 } 00709 assert( n<=nData ); 00710 } 00711 } 00712 assert( n<=nData ); 00713 pData += n; 00714 nData -= n; 00715 } 00716 if( pLastDocid ) *pLastDocid = iPrevDocid; 00717 } 00718 #define ASSERT_VALID_DOCLIST(i, p, n, o) docListValidate(i, p, n, o) 00719 #else 00720 #define ASSERT_VALID_DOCLIST(i, p, n, o) assert( 1 ) 00721 #endif 00722 00723 /*******************************************************************/ 00724 /* DLWriter is used to write doclist data to a DataBuffer. DLWriter 00725 ** always appends to the buffer and does not own it. 00726 ** 00727 ** dlwInit - initialize to write a given type doclistto a buffer. 00728 ** dlwDestroy - clear the writer's memory. Does not free buffer. 00729 ** dlwAppend - append raw doclist data to buffer. 00730 ** dlwCopy - copy next doclist from reader to writer. 00731 ** dlwAdd - construct doclist element and append to buffer. 00732 ** Only apply dlwAdd() to DL_DOCIDS doclists (else use PLWriter). 00733 */ 00734 typedef struct DLWriter { 00735 DocListType iType; 00736 DataBuffer *b; 00737 sqlite_int64 iPrevDocid; 00738 #ifndef NDEBUG 00739 int has_iPrevDocid; 00740 #endif 00741 } DLWriter; 00742 00743 static void dlwInit(DLWriter *pWriter, DocListType iType, DataBuffer *b){ 00744 pWriter->b = b; 00745 pWriter->iType = iType; 00746 pWriter->iPrevDocid = 0; 00747 #ifndef NDEBUG 00748 pWriter->has_iPrevDocid = 0; 00749 #endif 00750 } 00751 static void dlwDestroy(DLWriter *pWriter){ 00752 SCRAMBLE(pWriter); 00753 } 00754 /* iFirstDocid is the first docid in the doclist in pData. It is 00755 ** needed because pData may point within a larger doclist, in which 00756 ** case the first item would be delta-encoded. 00757 ** 00758 ** iLastDocid is the final docid in the doclist in pData. It is 00759 ** needed to create the new iPrevDocid for future delta-encoding. The 00760 ** code could decode the passed doclist to recreate iLastDocid, but 00761 ** the only current user (docListMerge) already has decoded this 00762 ** information. 00763 */ 00764 /* TODO(shess) This has become just a helper for docListMerge. 00765 ** Consider a refactor to make this cleaner. 00766 */ 00767 static void dlwAppend(DLWriter *pWriter, 00768 const char *pData, int nData, 00769 sqlite_int64 iFirstDocid, sqlite_int64 iLastDocid){ 00770 sqlite_int64 iDocid = 0; 00771 char c[VARINT_MAX]; 00772 int nFirstOld, nFirstNew; /* Old and new varint len of first docid. */ 00773 #ifndef NDEBUG 00774 sqlite_int64 iLastDocidDelta; 00775 #endif 00776 00777 /* Recode the initial docid as delta from iPrevDocid. */ 00778 nFirstOld = fts3GetVarint(pData, &iDocid); 00779 assert( nFirstOld<nData || (nFirstOld==nData && pWriter->iType==DL_DOCIDS) ); 00780 nFirstNew = fts3PutVarint(c, iFirstDocid-pWriter->iPrevDocid); 00781 00782 /* Verify that the incoming doclist is valid AND that it ends with 00783 ** the expected docid. This is essential because we'll trust this 00784 ** docid in future delta-encoding. 00785 */ 00786 ASSERT_VALID_DOCLIST(pWriter->iType, pData, nData, &iLastDocidDelta); 00787 assert( iLastDocid==iFirstDocid-iDocid+iLastDocidDelta ); 00788 00789 /* Append recoded initial docid and everything else. Rest of docids 00790 ** should have been delta-encoded from previous initial docid. 00791 */ 00792 if( nFirstOld<nData ){ 00793 dataBufferAppend2(pWriter->b, c, nFirstNew, 00794 pData+nFirstOld, nData-nFirstOld); 00795 }else{ 00796 dataBufferAppend(pWriter->b, c, nFirstNew); 00797 } 00798 pWriter->iPrevDocid = iLastDocid; 00799 } 00800 static void dlwCopy(DLWriter *pWriter, DLReader *pReader){ 00801 dlwAppend(pWriter, dlrDocData(pReader), dlrDocDataBytes(pReader), 00802 dlrDocid(pReader), dlrDocid(pReader)); 00803 } 00804 static void dlwAdd(DLWriter *pWriter, sqlite_int64 iDocid){ 00805 char c[VARINT_MAX]; 00806 int n = fts3PutVarint(c, iDocid-pWriter->iPrevDocid); 00807 00808 /* Docids must ascend. */ 00809 assert( !pWriter->has_iPrevDocid || iDocid>pWriter->iPrevDocid ); 00810 assert( pWriter->iType==DL_DOCIDS ); 00811 00812 dataBufferAppend(pWriter->b, c, n); 00813 pWriter->iPrevDocid = iDocid; 00814 #ifndef NDEBUG 00815 pWriter->has_iPrevDocid = 1; 00816 #endif 00817 } 00818 00819 /*******************************************************************/ 00820 /* PLReader is used to read data from a document's position list. As 00821 ** the caller steps through the list, data is cached so that varints 00822 ** only need to be decoded once. 00823 ** 00824 ** plrInit, plrDestroy - create/destroy a reader. 00825 ** plrColumn, plrPosition, plrStartOffset, plrEndOffset - accessors 00826 ** plrAtEnd - at end of stream, only call plrDestroy once true. 00827 ** plrStep - step to the next element. 00828 */ 00829 typedef struct PLReader { 00830 /* These refer to the next position's data. nData will reach 0 when 00831 ** reading the last position, so plrStep() signals EOF by setting 00832 ** pData to NULL. 00833 */ 00834 const char *pData; 00835 int nData; 00836 00837 DocListType iType; 00838 int iColumn; /* the last column read */ 00839 int iPosition; /* the last position read */ 00840 int iStartOffset; /* the last start offset read */ 00841 int iEndOffset; /* the last end offset read */ 00842 } PLReader; 00843 00844 static int plrAtEnd(PLReader *pReader){ 00845 return pReader->pData==NULL; 00846 } 00847 static int plrColumn(PLReader *pReader){ 00848 assert( !plrAtEnd(pReader) ); 00849 return pReader->iColumn; 00850 } 00851 static int plrPosition(PLReader *pReader){ 00852 assert( !plrAtEnd(pReader) ); 00853 return pReader->iPosition; 00854 } 00855 static int plrStartOffset(PLReader *pReader){ 00856 assert( !plrAtEnd(pReader) ); 00857 return pReader->iStartOffset; 00858 } 00859 static int plrEndOffset(PLReader *pReader){ 00860 assert( !plrAtEnd(pReader) ); 00861 return pReader->iEndOffset; 00862 } 00863 static void plrStep(PLReader *pReader){ 00864 int i, n; 00865 00866 assert( !plrAtEnd(pReader) ); 00867 00868 if( pReader->nData==0 ){ 00869 pReader->pData = NULL; 00870 return; 00871 } 00872 00873 n = fts3GetVarint32(pReader->pData, &i); 00874 if( i==POS_COLUMN ){ 00875 n += fts3GetVarint32(pReader->pData+n, &pReader->iColumn); 00876 pReader->iPosition = 0; 00877 pReader->iStartOffset = 0; 00878 n += fts3GetVarint32(pReader->pData+n, &i); 00879 } 00880 /* Should never see adjacent column changes. */ 00881 assert( i!=POS_COLUMN ); 00882 00883 if( i==POS_END ){ 00884 pReader->nData = 0; 00885 pReader->pData = NULL; 00886 return; 00887 } 00888 00889 pReader->iPosition += i-POS_BASE; 00890 if( pReader->iType==DL_POSITIONS_OFFSETS ){ 00891 n += fts3GetVarint32(pReader->pData+n, &i); 00892 pReader->iStartOffset += i; 00893 n += fts3GetVarint32(pReader->pData+n, &i); 00894 pReader->iEndOffset = pReader->iStartOffset+i; 00895 } 00896 assert( n<=pReader->nData ); 00897 pReader->pData += n; 00898 pReader->nData -= n; 00899 } 00900 00901 static void plrInit(PLReader *pReader, DLReader *pDLReader){ 00902 pReader->pData = dlrPosData(pDLReader); 00903 pReader->nData = dlrPosDataLen(pDLReader); 00904 pReader->iType = pDLReader->iType; 00905 pReader->iColumn = 0; 00906 pReader->iPosition = 0; 00907 pReader->iStartOffset = 0; 00908 pReader->iEndOffset = 0; 00909 plrStep(pReader); 00910 } 00911 static void plrDestroy(PLReader *pReader){ 00912 SCRAMBLE(pReader); 00913 } 00914 00915 /*******************************************************************/ 00916 /* PLWriter is used in constructing a document's position list. As a 00917 ** convenience, if iType is DL_DOCIDS, PLWriter becomes a no-op. 00918 ** PLWriter writes to the associated DLWriter's buffer. 00919 ** 00920 ** plwInit - init for writing a document's poslist. 00921 ** plwDestroy - clear a writer. 00922 ** plwAdd - append position and offset information. 00923 ** plwCopy - copy next position's data from reader to writer. 00924 ** plwTerminate - add any necessary doclist terminator. 00925 ** 00926 ** Calling plwAdd() after plwTerminate() may result in a corrupt 00927 ** doclist. 00928 */ 00929 /* TODO(shess) Until we've written the second item, we can cache the 00930 ** first item's information. Then we'd have three states: 00931 ** 00932 ** - initialized with docid, no positions. 00933 ** - docid and one position. 00934 ** - docid and multiple positions. 00935 ** 00936 ** Only the last state needs to actually write to dlw->b, which would 00937 ** be an improvement in the DLCollector case. 00938 */ 00939 typedef struct PLWriter { 00940 DLWriter *dlw; 00941 00942 int iColumn; /* the last column written */ 00943 int iPos; /* the last position written */ 00944 int iOffset; /* the last start offset written */ 00945 } PLWriter; 00946 00947 /* TODO(shess) In the case where the parent is reading these values 00948 ** from a PLReader, we could optimize to a copy if that PLReader has 00949 ** the same type as pWriter. 00950 */ 00951 static void plwAdd(PLWriter *pWriter, int iColumn, int iPos, 00952 int iStartOffset, int iEndOffset){ 00953 /* Worst-case space for POS_COLUMN, iColumn, iPosDelta, 00954 ** iStartOffsetDelta, and iEndOffsetDelta. 00955 */ 00956 char c[5*VARINT_MAX]; 00957 int n = 0; 00958 00959 /* Ban plwAdd() after plwTerminate(). */ 00960 assert( pWriter->iPos!=-1 ); 00961 00962 if( pWriter->dlw->iType==DL_DOCIDS ) return; 00963 00964 if( iColumn!=pWriter->iColumn ){ 00965 n += fts3PutVarint(c+n, POS_COLUMN); 00966 n += fts3PutVarint(c+n, iColumn); 00967 pWriter->iColumn = iColumn; 00968 pWriter->iPos = 0; 00969 pWriter->iOffset = 0; 00970 } 00971 assert( iPos>=pWriter->iPos ); 00972 n += fts3PutVarint(c+n, POS_BASE+(iPos-pWriter->iPos)); 00973 pWriter->iPos = iPos; 00974 if( pWriter->dlw->iType==DL_POSITIONS_OFFSETS ){ 00975 assert( iStartOffset>=pWriter->iOffset ); 00976 n += fts3PutVarint(c+n, iStartOffset-pWriter->iOffset); 00977 pWriter->iOffset = iStartOffset; 00978 assert( iEndOffset>=iStartOffset ); 00979 n += fts3PutVarint(c+n, iEndOffset-iStartOffset); 00980 } 00981 dataBufferAppend(pWriter->dlw->b, c, n); 00982 } 00983 static void plwCopy(PLWriter *pWriter, PLReader *pReader){ 00984 plwAdd(pWriter, plrColumn(pReader), plrPosition(pReader), 00985 plrStartOffset(pReader), plrEndOffset(pReader)); 00986 } 00987 static void plwInit(PLWriter *pWriter, DLWriter *dlw, sqlite_int64 iDocid){ 00988 char c[VARINT_MAX]; 00989 int n; 00990 00991 pWriter->dlw = dlw; 00992 00993 /* Docids must ascend. */ 00994 assert( !pWriter->dlw->has_iPrevDocid || iDocid>pWriter->dlw->iPrevDocid ); 00995 n = fts3PutVarint(c, iDocid-pWriter->dlw->iPrevDocid); 00996 dataBufferAppend(pWriter->dlw->b, c, n); 00997 pWriter->dlw->iPrevDocid = iDocid; 00998 #ifndef NDEBUG 00999 pWriter->dlw->has_iPrevDocid = 1; 01000 #endif 01001 01002 pWriter->iColumn = 0; 01003 pWriter->iPos = 0; 01004 pWriter->iOffset = 0; 01005 } 01006 /* TODO(shess) Should plwDestroy() also terminate the doclist? But 01007 ** then plwDestroy() would no longer be just a destructor, it would 01008 ** also be doing work, which isn't consistent with the overall idiom. 01009 ** Another option would be for plwAdd() to always append any necessary 01010 ** terminator, so that the output is always correct. But that would 01011 ** add incremental work to the common case with the only benefit being 01012 ** API elegance. Punt for now. 01013 */ 01014 static void plwTerminate(PLWriter *pWriter){ 01015 if( pWriter->dlw->iType>DL_DOCIDS ){ 01016 char c[VARINT_MAX]; 01017 int n = fts3PutVarint(c, POS_END); 01018 dataBufferAppend(pWriter->dlw->b, c, n); 01019 } 01020 #ifndef NDEBUG 01021 /* Mark as terminated for assert in plwAdd(). */ 01022 pWriter->iPos = -1; 01023 #endif 01024 } 01025 static void plwDestroy(PLWriter *pWriter){ 01026 SCRAMBLE(pWriter); 01027 } 01028 01029 /*******************************************************************/ 01030 /* DLCollector wraps PLWriter and DLWriter to provide a 01031 ** dynamically-allocated doclist area to use during tokenization. 01032 ** 01033 ** dlcNew - malloc up and initialize a collector. 01034 ** dlcDelete - destroy a collector and all contained items. 01035 ** dlcAddPos - append position and offset information. 01036 ** dlcAddDoclist - add the collected doclist to the given buffer. 01037 ** dlcNext - terminate the current document and open another. 01038 */ 01039 typedef struct DLCollector { 01040 DataBuffer b; 01041 DLWriter dlw; 01042 PLWriter plw; 01043 } DLCollector; 01044 01045 /* TODO(shess) This could also be done by calling plwTerminate() and 01046 ** dataBufferAppend(). I tried that, expecting nominal performance 01047 ** differences, but it seemed to pretty reliably be worth 1% to code 01048 ** it this way. I suspect it is the incremental malloc overhead (some 01049 ** percentage of the plwTerminate() calls will cause a realloc), so 01050 ** this might be worth revisiting if the DataBuffer implementation 01051 ** changes. 01052 */ 01053 static void dlcAddDoclist(DLCollector *pCollector, DataBuffer *b){ 01054 if( pCollector->dlw.iType>DL_DOCIDS ){ 01055 char c[VARINT_MAX]; 01056 int n = fts3PutVarint(c, POS_END); 01057 dataBufferAppend2(b, pCollector->b.pData, pCollector->b.nData, c, n); 01058 }else{ 01059 dataBufferAppend(b, pCollector->b.pData, pCollector->b.nData); 01060 } 01061 } 01062 static void dlcNext(DLCollector *pCollector, sqlite_int64 iDocid){ 01063 plwTerminate(&pCollector->plw); 01064 plwDestroy(&pCollector->plw); 01065 plwInit(&pCollector->plw, &pCollector->dlw, iDocid); 01066 } 01067 static void dlcAddPos(DLCollector *pCollector, int iColumn, int iPos, 01068 int iStartOffset, int iEndOffset){ 01069 plwAdd(&pCollector->plw, iColumn, iPos, iStartOffset, iEndOffset); 01070 } 01071 01072 static DLCollector *dlcNew(sqlite_int64 iDocid, DocListType iType){ 01073 DLCollector *pCollector = sqlite3_malloc(sizeof(DLCollector)); 01074 dataBufferInit(&pCollector->b, 0); 01075 dlwInit(&pCollector->dlw, iType, &pCollector->b); 01076 plwInit(&pCollector->plw, &pCollector->dlw, iDocid); 01077 return pCollector; 01078 } 01079 static void dlcDelete(DLCollector *pCollector){ 01080 plwDestroy(&pCollector->plw); 01081 dlwDestroy(&pCollector->dlw); 01082 dataBufferDestroy(&pCollector->b); 01083 SCRAMBLE(pCollector); 01084 sqlite3_free(pCollector); 01085 } 01086 01087 01088 /* Copy the doclist data of iType in pData/nData into *out, trimming 01089 ** unnecessary data as we go. Only columns matching iColumn are 01090 ** copied, all columns copied if iColumn is -1. Elements with no 01091 ** matching columns are dropped. The output is an iOutType doclist. 01092 */ 01093 /* NOTE(shess) This code is only valid after all doclists are merged. 01094 ** If this is run before merges, then doclist items which represent 01095 ** deletion will be trimmed, and will thus not effect a deletion 01096 ** during the merge. 01097 */ 01098 static void docListTrim(DocListType iType, const char *pData, int nData, 01099 int iColumn, DocListType iOutType, DataBuffer *out){ 01100 DLReader dlReader; 01101 DLWriter dlWriter; 01102 01103 assert( iOutType<=iType ); 01104 01105 dlrInit(&dlReader, iType, pData, nData); 01106 dlwInit(&dlWriter, iOutType, out); 01107 01108 while( !dlrAtEnd(&dlReader) ){ 01109 PLReader plReader; 01110 PLWriter plWriter; 01111 int match = 0; 01112 01113 plrInit(&plReader, &dlReader); 01114 01115 while( !plrAtEnd(&plReader) ){ 01116 if( iColumn==-1 || plrColumn(&plReader)==iColumn ){ 01117 if( !match ){ 01118 plwInit(&plWriter, &dlWriter, dlrDocid(&dlReader)); 01119 match = 1; 01120 } 01121 plwAdd(&plWriter, plrColumn(&plReader), plrPosition(&plReader), 01122 plrStartOffset(&plReader), plrEndOffset(&plReader)); 01123 } 01124 plrStep(&plReader); 01125 } 01126 if( match ){ 01127 plwTerminate(&plWriter); 01128 plwDestroy(&plWriter); 01129 } 01130 01131 plrDestroy(&plReader); 01132 dlrStep(&dlReader); 01133 } 01134 dlwDestroy(&dlWriter); 01135 dlrDestroy(&dlReader); 01136 } 01137 01138 /* Used by docListMerge() to keep doclists in the ascending order by 01139 ** docid, then ascending order by age (so the newest comes first). 01140 */ 01141 typedef struct OrderedDLReader { 01142 DLReader *pReader; 01143 01144 /* TODO(shess) If we assume that docListMerge pReaders is ordered by 01145 ** age (which we do), then we could use pReader comparisons to break 01146 ** ties. 01147 */ 01148 int idx; 01149 } OrderedDLReader; 01150 01151 /* Order eof to end, then by docid asc, idx desc. */ 01152 static int orderedDLReaderCmp(OrderedDLReader *r1, OrderedDLReader *r2){ 01153 if( dlrAtEnd(r1->pReader) ){ 01154 if( dlrAtEnd(r2->pReader) ) return 0; /* Both atEnd(). */ 01155 return 1; /* Only r1 atEnd(). */ 01156 } 01157 if( dlrAtEnd(r2->pReader) ) return -1; /* Only r2 atEnd(). */ 01158 01159 if( dlrDocid(r1->pReader)<dlrDocid(r2->pReader) ) return -1; 01160 if( dlrDocid(r1->pReader)>dlrDocid(r2->pReader) ) return 1; 01161 01162 /* Descending on idx. */ 01163 return r2->idx-r1->idx; 01164 } 01165 01166 /* Bubble p[0] to appropriate place in p[1..n-1]. Assumes that 01167 ** p[1..n-1] is already sorted. 01168 */ 01169 /* TODO(shess) Is this frequent enough to warrant a binary search? 01170 ** Before implementing that, instrument the code to check. In most 01171 ** current usage, I expect that p[0] will be less than p[1] a very 01172 ** high proportion of the time. 01173 */ 01174 static void orderedDLReaderReorder(OrderedDLReader *p, int n){ 01175 while( n>1 && orderedDLReaderCmp(p, p+1)>0 ){ 01176 OrderedDLReader tmp = p[0]; 01177 p[0] = p[1]; 01178 p[1] = tmp; 01179 n--; 01180 p++; 01181 } 01182 } 01183 01184 /* Given an array of doclist readers, merge their doclist elements 01185 ** into out in sorted order (by docid), dropping elements from older 01186 ** readers when there is a duplicate docid. pReaders is assumed to be 01187 ** ordered by age, oldest first. 01188 */ 01189 /* TODO(shess) nReaders must be <= MERGE_COUNT. This should probably 01190 ** be fixed. 01191 */ 01192 static void docListMerge(DataBuffer *out, 01193 DLReader *pReaders, int nReaders){ 01194 OrderedDLReader readers[MERGE_COUNT]; 01195 DLWriter writer; 01196 int i, n; 01197 const char *pStart = 0; 01198 int nStart = 0; 01199 sqlite_int64 iFirstDocid = 0, iLastDocid = 0; 01200 01201 assert( nReaders>0 ); 01202 if( nReaders==1 ){ 01203 dataBufferAppend(out, dlrDocData(pReaders), dlrAllDataBytes(pReaders)); 01204 return; 01205 } 01206 01207 assert( nReaders<=MERGE_COUNT ); 01208 n = 0; 01209 for(i=0; i<nReaders; i++){ 01210 assert( pReaders[i].iType==pReaders[0].iType ); 01211 readers[i].pReader = pReaders+i; 01212 readers[i].idx = i; 01213 n += dlrAllDataBytes(&pReaders[i]); 01214 } 01215 /* Conservatively size output to sum of inputs. Output should end 01216 ** up strictly smaller than input. 01217 */ 01218 dataBufferExpand(out, n); 01219 01220 /* Get the readers into sorted order. */ 01221 while( i-->0 ){ 01222 orderedDLReaderReorder(readers+i, nReaders-i); 01223 } 01224 01225 dlwInit(&writer, pReaders[0].iType, out); 01226 while( !dlrAtEnd(readers[0].pReader) ){ 01227 sqlite_int64 iDocid = dlrDocid(readers[0].pReader); 01228 01229 /* If this is a continuation of the current buffer to copy, extend 01230 ** that buffer. memcpy() seems to be more efficient if it has a 01231 ** lots of data to copy. 01232 */ 01233 if( dlrDocData(readers[0].pReader)==pStart+nStart ){ 01234 nStart += dlrDocDataBytes(readers[0].pReader); 01235 }else{ 01236 if( pStart!=0 ){ 01237 dlwAppend(&writer, pStart, nStart, iFirstDocid, iLastDocid); 01238 } 01239 pStart = dlrDocData(readers[0].pReader); 01240 nStart = dlrDocDataBytes(readers[0].pReader); 01241 iFirstDocid = iDocid; 01242 } 01243 iLastDocid = iDocid; 01244 dlrStep(readers[0].pReader); 01245 01246 /* Drop all of the older elements with the same docid. */ 01247 for(i=1; i<nReaders && 01248 !dlrAtEnd(readers[i].pReader) && 01249 dlrDocid(readers[i].pReader)==iDocid; i++){ 01250 dlrStep(readers[i].pReader); 01251 } 01252 01253 /* Get the readers back into order. */ 01254 while( i-->0 ){ 01255 orderedDLReaderReorder(readers+i, nReaders-i); 01256 } 01257 } 01258 01259 /* Copy over any remaining elements. */ 01260 if( nStart>0 ) dlwAppend(&writer, pStart, nStart, iFirstDocid, iLastDocid); 01261 dlwDestroy(&writer); 01262 } 01263 01264 /* Helper function for posListUnion(). Compares the current position 01265 ** between left and right, returning as standard C idiom of <0 if 01266 ** left<right, >0 if left>right, and 0 if left==right. "End" always 01267 ** compares greater. 01268 */ 01269 static int posListCmp(PLReader *pLeft, PLReader *pRight){ 01270 assert( pLeft->iType==pRight->iType ); 01271 if( pLeft->iType==DL_DOCIDS ) return 0; 01272 01273 if( plrAtEnd(pLeft) ) return plrAtEnd(pRight) ? 0 : 1; 01274 if( plrAtEnd(pRight) ) return -1; 01275 01276 if( plrColumn(pLeft)<plrColumn(pRight) ) return -1; 01277 if( plrColumn(pLeft)>plrColumn(pRight) ) return 1; 01278 01279 if( plrPosition(pLeft)<plrPosition(pRight) ) return -1; 01280 if( plrPosition(pLeft)>plrPosition(pRight) ) return 1; 01281 if( pLeft->iType==DL_POSITIONS ) return 0; 01282 01283 if( plrStartOffset(pLeft)<plrStartOffset(pRight) ) return -1; 01284 if( plrStartOffset(pLeft)>plrStartOffset(pRight) ) return 1; 01285 01286 if( plrEndOffset(pLeft)<plrEndOffset(pRight) ) return -1; 01287 if( plrEndOffset(pLeft)>plrEndOffset(pRight) ) return 1; 01288 01289 return 0; 01290 } 01291 01292 /* Write the union of position lists in pLeft and pRight to pOut. 01293 ** "Union" in this case meaning "All unique position tuples". Should 01294 ** work with any doclist type, though both inputs and the output 01295 ** should be the same type. 01296 */ 01297 static void posListUnion(DLReader *pLeft, DLReader *pRight, DLWriter *pOut){ 01298 PLReader left, right; 01299 PLWriter writer; 01300 01301 assert( dlrDocid(pLeft)==dlrDocid(pRight) ); 01302 assert( pLeft->iType==pRight->iType ); 01303 assert( pLeft->iType==pOut->iType ); 01304 01305 plrInit(&left, pLeft); 01306 plrInit(&right, pRight); 01307 plwInit(&writer, pOut, dlrDocid(pLeft)); 01308 01309 while( !plrAtEnd(&left) || !plrAtEnd(&right) ){ 01310 int c = posListCmp(&left, &right); 01311 if( c<0 ){ 01312 plwCopy(&writer, &left); 01313 plrStep(&left); 01314 }else if( c>0 ){ 01315 plwCopy(&writer, &right); 01316 plrStep(&right); 01317 }else{ 01318 plwCopy(&writer, &left); 01319 plrStep(&left); 01320 plrStep(&right); 01321 } 01322 } 01323 01324 plwTerminate(&writer); 01325 plwDestroy(&writer); 01326 plrDestroy(&left); 01327 plrDestroy(&right); 01328 } 01329 01330 /* Write the union of doclists in pLeft and pRight to pOut. For 01331 ** docids in common between the inputs, the union of the position 01332 ** lists is written. Inputs and outputs are always type DL_DEFAULT. 01333 */ 01334 static void docListUnion( 01335 const char *pLeft, int nLeft, 01336 const char *pRight, int nRight, 01337 DataBuffer *pOut /* Write the combined doclist here */ 01338 ){ 01339 DLReader left, right; 01340 DLWriter writer; 01341 01342 if( nLeft==0 ){ 01343 if( nRight!=0) dataBufferAppend(pOut, pRight, nRight); 01344 return; 01345 } 01346 if( nRight==0 ){ 01347 dataBufferAppend(pOut, pLeft, nLeft); 01348 return; 01349 } 01350 01351 dlrInit(&left, DL_DEFAULT, pLeft, nLeft); 01352 dlrInit(&right, DL_DEFAULT, pRight, nRight); 01353 dlwInit(&writer, DL_DEFAULT, pOut); 01354 01355 while( !dlrAtEnd(&left) || !dlrAtEnd(&right) ){ 01356 if( dlrAtEnd(&right) ){ 01357 dlwCopy(&writer, &left); 01358 dlrStep(&left); 01359 }else if( dlrAtEnd(&left) ){ 01360 dlwCopy(&writer, &right); 01361 dlrStep(&right); 01362 }else if( dlrDocid(&left)<dlrDocid(&right) ){ 01363 dlwCopy(&writer, &left); 01364 dlrStep(&left); 01365 }else if( dlrDocid(&left)>dlrDocid(&right) ){ 01366 dlwCopy(&writer, &right); 01367 dlrStep(&right); 01368 }else{ 01369 posListUnion(&left, &right, &writer); 01370 dlrStep(&left); 01371 dlrStep(&right); 01372 } 01373 } 01374 01375 dlrDestroy(&left); 01376 dlrDestroy(&right); 01377 dlwDestroy(&writer); 01378 } 01379 01380 /* 01381 ** This function is used as part of the implementation of phrase and 01382 ** NEAR matching. 01383 ** 01384 ** pLeft and pRight are DLReaders positioned to the same docid in 01385 ** lists of type DL_POSITION. This function writes an entry to the 01386 ** DLWriter pOut for each position in pRight that is less than 01387 ** (nNear+1) greater (but not equal to or smaller) than a position 01388 ** in pLeft. For example, if nNear is 0, and the positions contained 01389 ** by pLeft and pRight are: 01390 ** 01391 ** pLeft: 5 10 15 20 01392 ** pRight: 6 9 17 21 01393 ** 01394 ** then the docid is added to pOut. If pOut is of type DL_POSITIONS, 01395 ** then a positionids "6" and "21" are also added to pOut. 01396 ** 01397 ** If boolean argument isSaveLeft is true, then positionids are copied 01398 ** from pLeft instead of pRight. In the example above, the positions "5" 01399 ** and "20" would be added instead of "6" and "21". 01400 */ 01401 static void posListPhraseMerge( 01402 DLReader *pLeft, 01403 DLReader *pRight, 01404 int nNear, 01405 int isSaveLeft, 01406 DLWriter *pOut 01407 ){ 01408 PLReader left, right; 01409 PLWriter writer; 01410 int match = 0; 01411 01412 assert( dlrDocid(pLeft)==dlrDocid(pRight) ); 01413 assert( pOut->iType!=DL_POSITIONS_OFFSETS ); 01414 01415 plrInit(&left, pLeft); 01416 plrInit(&right, pRight); 01417 01418 while( !plrAtEnd(&left) && !plrAtEnd(&right) ){ 01419 if( plrColumn(&left)<plrColumn(&right) ){ 01420 plrStep(&left); 01421 }else if( plrColumn(&left)>plrColumn(&right) ){ 01422 plrStep(&right); 01423 }else if( plrPosition(&left)>=plrPosition(&right) ){ 01424 plrStep(&right); 01425 }else{ 01426 if( (plrPosition(&right)-plrPosition(&left))<=(nNear+1) ){ 01427 if( !match ){ 01428 plwInit(&writer, pOut, dlrDocid(pLeft)); 01429 match = 1; 01430 } 01431 if( !isSaveLeft ){ 01432 plwAdd(&writer, plrColumn(&right), plrPosition(&right), 0, 0); 01433 }else{ 01434 plwAdd(&writer, plrColumn(&left), plrPosition(&left), 0, 0); 01435 } 01436 plrStep(&right); 01437 }else{ 01438 plrStep(&left); 01439 } 01440 } 01441 } 01442 01443 if( match ){ 01444 plwTerminate(&writer); 01445 plwDestroy(&writer); 01446 } 01447 01448 plrDestroy(&left); 01449 plrDestroy(&right); 01450 } 01451 01452 /* 01453 ** Compare the values pointed to by the PLReaders passed as arguments. 01454 ** Return -1 if the value pointed to by pLeft is considered less than 01455 ** the value pointed to by pRight, +1 if it is considered greater 01456 ** than it, or 0 if it is equal. i.e. 01457 ** 01458 ** (*pLeft - *pRight) 01459 ** 01460 ** A PLReader that is in the EOF condition is considered greater than 01461 ** any other. If neither argument is in EOF state, the return value of 01462 ** plrColumn() is used. If the plrColumn() values are equal, the 01463 ** comparison is on the basis of plrPosition(). 01464 */ 01465 static int plrCompare(PLReader *pLeft, PLReader *pRight){ 01466 assert(!plrAtEnd(pLeft) || !plrAtEnd(pRight)); 01467 01468 if( plrAtEnd(pRight) || plrAtEnd(pLeft) ){ 01469 return (plrAtEnd(pRight) ? -1 : 1); 01470 } 01471 if( plrColumn(pLeft)!=plrColumn(pRight) ){ 01472 return ((plrColumn(pLeft)<plrColumn(pRight)) ? -1 : 1); 01473 } 01474 if( plrPosition(pLeft)!=plrPosition(pRight) ){ 01475 return ((plrPosition(pLeft)<plrPosition(pRight)) ? -1 : 1); 01476 } 01477 return 0; 01478 } 01479 01480 /* We have two doclists with positions: pLeft and pRight. Depending 01481 ** on the value of the nNear parameter, perform either a phrase 01482 ** intersection (if nNear==0) or a NEAR intersection (if nNear>0) 01483 ** and write the results into pOut. 01484 ** 01485 ** A phrase intersection means that two documents only match 01486 ** if pLeft.iPos+1==pRight.iPos. 01487 ** 01488 ** A NEAR intersection means that two documents only match if 01489 ** (abs(pLeft.iPos-pRight.iPos)<nNear). 01490 ** 01491 ** If a NEAR intersection is requested, then the nPhrase argument should 01492 ** be passed the number of tokens in the two operands to the NEAR operator 01493 ** combined. For example: 01494 ** 01495 ** Query syntax nPhrase 01496 ** ------------------------------------ 01497 ** "A B C" NEAR "D E" 5 01498 ** A NEAR B 2 01499 ** 01500 ** iType controls the type of data written to pOut. If iType is 01501 ** DL_POSITIONS, the positions are those from pRight. 01502 */ 01503 static void docListPhraseMerge( 01504 const char *pLeft, int nLeft, 01505 const char *pRight, int nRight, 01506 int nNear, /* 0 for a phrase merge, non-zero for a NEAR merge */ 01507 int nPhrase, /* Number of tokens in left+right operands to NEAR */ 01508 DocListType iType, /* Type of doclist to write to pOut */ 01509 DataBuffer *pOut /* Write the combined doclist here */ 01510 ){ 01511 DLReader left, right; 01512 DLWriter writer; 01513 01514 if( nLeft==0 || nRight==0 ) return; 01515 01516 assert( iType!=DL_POSITIONS_OFFSETS ); 01517 01518 dlrInit(&left, DL_POSITIONS, pLeft, nLeft); 01519 dlrInit(&right, DL_POSITIONS, pRight, nRight); 01520 dlwInit(&writer, iType, pOut); 01521 01522 while( !dlrAtEnd(&left) && !dlrAtEnd(&right) ){ 01523 if( dlrDocid(&left)<dlrDocid(&right) ){ 01524 dlrStep(&left); 01525 }else if( dlrDocid(&right)<dlrDocid(&left) ){ 01526 dlrStep(&right); 01527 }else{ 01528 if( nNear==0 ){ 01529 posListPhraseMerge(&left, &right, 0, 0, &writer); 01530 }else{ 01531 /* This case occurs when two terms (simple terms or phrases) are 01532 * connected by a NEAR operator, span (nNear+1). i.e. 01533 * 01534 * '"terrible company" NEAR widget' 01535 */ 01536 DataBuffer one = {0, 0, 0}; 01537 DataBuffer two = {0, 0, 0}; 01538 01539 DLWriter dlwriter2; 01540 DLReader dr1 = {0, 0, 0, 0, 0}; 01541 DLReader dr2 = {0, 0, 0, 0, 0}; 01542 01543 dlwInit(&dlwriter2, iType, &one); 01544 posListPhraseMerge(&right, &left, nNear-3+nPhrase, 1, &dlwriter2); 01545 dlwInit(&dlwriter2, iType, &two); 01546 posListPhraseMerge(&left, &right, nNear-1, 0, &dlwriter2); 01547 01548 if( one.nData) dlrInit(&dr1, iType, one.pData, one.nData); 01549 if( two.nData) dlrInit(&dr2, iType, two.pData, two.nData); 01550 01551 if( !dlrAtEnd(&dr1) || !dlrAtEnd(&dr2) ){ 01552 PLReader pr1 = {0}; 01553 PLReader pr2 = {0}; 01554 01555 PLWriter plwriter; 01556 plwInit(&plwriter, &writer, dlrDocid(dlrAtEnd(&dr1)?&dr2:&dr1)); 01557 01558 if( one.nData ) plrInit(&pr1, &dr1); 01559 if( two.nData ) plrInit(&pr2, &dr2); 01560 while( !plrAtEnd(&pr1) || !plrAtEnd(&pr2) ){ 01561 int iCompare = plrCompare(&pr1, &pr2); 01562 switch( iCompare ){ 01563 case -1: 01564 plwCopy(&plwriter, &pr1); 01565 plrStep(&pr1); 01566 break; 01567 case 1: 01568 plwCopy(&plwriter, &pr2); 01569 plrStep(&pr2); 01570 break; 01571 case 0: 01572 plwCopy(&plwriter, &pr1); 01573 plrStep(&pr1); 01574 plrStep(&pr2); 01575 break; 01576 } 01577 } 01578 plwTerminate(&plwriter); 01579 } 01580 dataBufferDestroy(&one); 01581 dataBufferDestroy(&two); 01582 } 01583 dlrStep(&left); 01584 dlrStep(&right); 01585 } 01586 } 01587 01588 dlrDestroy(&left); 01589 dlrDestroy(&right); 01590 dlwDestroy(&writer); 01591 } 01592 01593 /* We have two DL_DOCIDS doclists: pLeft and pRight. 01594 ** Write the intersection of these two doclists into pOut as a 01595 ** DL_DOCIDS doclist. 01596 */ 01597 static void docListAndMerge( 01598 const char *pLeft, int nLeft, 01599 const char *pRight, int nRight, 01600 DataBuffer *pOut /* Write the combined doclist here */ 01601 ){ 01602 DLReader left, right; 01603 DLWriter writer; 01604 01605 if( nLeft==0 || nRight==0 ) return; 01606 01607 dlrInit(&left, DL_DOCIDS, pLeft, nLeft); 01608 dlrInit(&right, DL_DOCIDS, pRight, nRight); 01609 dlwInit(&writer, DL_DOCIDS, pOut); 01610 01611 while( !dlrAtEnd(&left) && !dlrAtEnd(&right) ){ 01612 if( dlrDocid(&left)<dlrDocid(&right) ){ 01613 dlrStep(&left); 01614 }else if( dlrDocid(&right)<dlrDocid(&left) ){ 01615 dlrStep(&right); 01616 }else{ 01617 dlwAdd(&writer, dlrDocid(&left)); 01618 dlrStep(&left); 01619 dlrStep(&right); 01620 } 01621 } 01622 01623 dlrDestroy(&left); 01624 dlrDestroy(&right); 01625 dlwDestroy(&writer); 01626 } 01627 01628 /* We have two DL_DOCIDS doclists: pLeft and pRight. 01629 ** Write the union of these two doclists into pOut as a 01630 ** DL_DOCIDS doclist. 01631 */ 01632 static void docListOrMerge( 01633 const char *pLeft, int nLeft, 01634 const char *pRight, int nRight, 01635 DataBuffer *pOut /* Write the combined doclist here */ 01636 ){ 01637 DLReader left, right; 01638 DLWriter writer; 01639 01640 if( nLeft==0 ){ 01641 if( nRight!=0 ) dataBufferAppend(pOut, pRight, nRight); 01642 return; 01643 } 01644 if( nRight==0 ){ 01645 dataBufferAppend(pOut, pLeft, nLeft); 01646 return; 01647 } 01648 01649 dlrInit(&left, DL_DOCIDS, pLeft, nLeft); 01650 dlrInit(&right, DL_DOCIDS, pRight, nRight); 01651 dlwInit(&writer, DL_DOCIDS, pOut); 01652 01653 while( !dlrAtEnd(&left) || !dlrAtEnd(&right) ){ 01654 if( dlrAtEnd(&right) ){ 01655 dlwAdd(&writer, dlrDocid(&left)); 01656 dlrStep(&left); 01657 }else if( dlrAtEnd(&left) ){ 01658 dlwAdd(&writer, dlrDocid(&right)); 01659 dlrStep(&right); 01660 }else if( dlrDocid(&left)<dlrDocid(&right) ){ 01661 dlwAdd(&writer, dlrDocid(&left)); 01662 dlrStep(&left); 01663 }else if( dlrDocid(&right)<dlrDocid(&left) ){ 01664 dlwAdd(&writer, dlrDocid(&right)); 01665 dlrStep(&right); 01666 }else{ 01667 dlwAdd(&writer, dlrDocid(&left)); 01668 dlrStep(&left); 01669 dlrStep(&right); 01670 } 01671 } 01672 01673 dlrDestroy(&left); 01674 dlrDestroy(&right); 01675 dlwDestroy(&writer); 01676 } 01677 01678 /* We have two DL_DOCIDS doclists: pLeft and pRight. 01679 ** Write into pOut as DL_DOCIDS doclist containing all documents that 01680 ** occur in pLeft but not in pRight. 01681 */ 01682 static void docListExceptMerge( 01683 const char *pLeft, int nLeft, 01684 const char *pRight, int nRight, 01685 DataBuffer *pOut /* Write the combined doclist here */ 01686 ){ 01687 DLReader left, right; 01688 DLWriter writer; 01689 01690 if( nLeft==0 ) return; 01691 if( nRight==0 ){ 01692 dataBufferAppend(pOut, pLeft, nLeft); 01693 return; 01694 } 01695 01696 dlrInit(&left, DL_DOCIDS, pLeft, nLeft); 01697 dlrInit(&right, DL_DOCIDS, pRight, nRight); 01698 dlwInit(&writer, DL_DOCIDS, pOut); 01699 01700 while( !dlrAtEnd(&left) ){ 01701 while( !dlrAtEnd(&right) && dlrDocid(&right)<dlrDocid(&left) ){ 01702 dlrStep(&right); 01703 } 01704 if( dlrAtEnd(&right) || dlrDocid(&left)<dlrDocid(&right) ){ 01705 dlwAdd(&writer, dlrDocid(&left)); 01706 } 01707 dlrStep(&left); 01708 } 01709 01710 dlrDestroy(&left); 01711 dlrDestroy(&right); 01712 dlwDestroy(&writer); 01713 } 01714 01715 static char *string_dup_n(const char *s, int n){ 01716 char *str = sqlite3_malloc(n + 1); 01717 memcpy(str, s, n); 01718 str[n] = '\0'; 01719 return str; 01720 } 01721 01722 /* Duplicate a string; the caller must free() the returned string. 01723 * (We don't use strdup() since it is not part of the standard C library and 01724 * may not be available everywhere.) */ 01725 static char *string_dup(const char *s){ 01726 return string_dup_n(s, strlen(s)); 01727 } 01728 01729 /* Format a string, replacing each occurrence of the % character with 01730 * zDb.zName. This may be more convenient than sqlite_mprintf() 01731 * when one string is used repeatedly in a format string. 01732 * The caller must free() the returned string. */ 01733 static char *string_format(const char *zFormat, 01734 const char *zDb, const char *zName){ 01735 const char *p; 01736 size_t len = 0; 01737 size_t nDb = strlen(zDb); 01738 size_t nName = strlen(zName); 01739 size_t nFullTableName = nDb+1+nName; 01740 char *result; 01741 char *r; 01742 01743 /* first compute length needed */ 01744 for(p = zFormat ; *p ; ++p){ 01745 len += (*p=='%' ? nFullTableName : 1); 01746 } 01747 len += 1; /* for null terminator */ 01748 01749 r = result = sqlite3_malloc(len); 01750 for(p = zFormat; *p; ++p){ 01751 if( *p=='%' ){ 01752 memcpy(r, zDb, nDb); 01753 r += nDb; 01754 *r++ = '.'; 01755 memcpy(r, zName, nName); 01756 r += nName; 01757 } else { 01758 *r++ = *p; 01759 } 01760 } 01761 *r++ = '\0'; 01762 assert( r == result + len ); 01763 return result; 01764 } 01765 01766 static int sql_exec(sqlite3 *db, const char *zDb, const char *zName, 01767 const char *zFormat){ 01768 char *zCommand = string_format(zFormat, zDb, zName); 01769 int rc; 01770 FTSTRACE(("FTS3 sql: %s\n", zCommand)); 01771 rc = sqlite3_exec(db, zCommand, NULL, 0, NULL); 01772 sqlite3_free(zCommand); 01773 return rc; 01774 } 01775 01776 static int sql_prepare(sqlite3 *db, const char *zDb, const char *zName, 01777 sqlite3_stmt **ppStmt, const char *zFormat){ 01778 char *zCommand = string_format(zFormat, zDb, zName); 01779 int rc; 01780 FTSTRACE(("FTS3 prepare: %s\n", zCommand)); 01781 rc = sqlite3_prepare_v2(db, zCommand, -1, ppStmt, NULL); 01782 sqlite3_free(zCommand); 01783 return rc; 01784 } 01785 01786 /* end utility functions */ 01787 01788 /* Forward reference */ 01789 typedef struct fulltext_vtab fulltext_vtab; 01790 01791 /* A single term in a query is represented by an instances of 01792 ** the following structure. Each word which may match against 01793 ** document content is a term. Operators, like NEAR or OR, are 01794 ** not terms. Query terms are organized as a flat list stored 01795 ** in the Query.pTerms array. 01796 ** 01797 ** If the QueryTerm.nPhrase variable is non-zero, then the QueryTerm 01798 ** is the first in a contiguous string of terms that are either part 01799 ** of the same phrase, or connected by the NEAR operator. 01800 ** 01801 ** If the QueryTerm.nNear variable is non-zero, then the token is followed 01802 ** by a NEAR operator with span set to (nNear-1). For example, the 01803 ** following query: 01804 ** 01805 ** The QueryTerm.iPhrase variable stores the index of the token within 01806 ** its phrase, indexed starting at 1, or 1 if the token is not part 01807 ** of any phrase. 01808 ** 01809 ** For example, the data structure used to represent the following query: 01810 ** 01811 ** ... MATCH 'sqlite NEAR/5 google NEAR/2 "search engine"' 01812 ** 01813 ** is: 01814 ** 01815 ** {nPhrase=4, iPhrase=1, nNear=6, pTerm="sqlite"}, 01816 ** {nPhrase=0, iPhrase=1, nNear=3, pTerm="google"}, 01817 ** {nPhrase=0, iPhrase=1, nNear=0, pTerm="search"}, 01818 ** {nPhrase=0, iPhrase=2, nNear=0, pTerm="engine"}, 01819 ** 01820 ** compiling the FTS3 syntax to Query structures is done by the parseQuery() 01821 ** function. 01822 */ 01823 typedef struct QueryTerm { 01824 short int nPhrase; /* How many following terms are part of the same phrase */ 01825 short int iPhrase; /* This is the i-th term of a phrase. */ 01826 short int iColumn; /* Column of the index that must match this term */ 01827 short int nNear; /* term followed by a NEAR operator with span=(nNear-1) */ 01828 signed char isOr; /* this term is preceded by "OR" */ 01829 signed char isNot; /* this term is preceded by "-" */ 01830 signed char isPrefix; /* this term is followed by "*" */ 01831 char *pTerm; /* text of the term. '\000' terminated. malloced */ 01832 int nTerm; /* Number of bytes in pTerm[] */ 01833 } QueryTerm; 01834 01835 01836 /* A query string is parsed into a Query structure. 01837 * 01838 * We could, in theory, allow query strings to be complicated 01839 * nested expressions with precedence determined by parentheses. 01840 * But none of the major search engines do this. (Perhaps the 01841 * feeling is that an parenthesized expression is two complex of 01842 * an idea for the average user to grasp.) Taking our lead from 01843 * the major search engines, we will allow queries to be a list 01844 * of terms (with an implied AND operator) or phrases in double-quotes, 01845 * with a single optional "-" before each non-phrase term to designate 01846 * negation and an optional OR connector. 01847 * 01848 * OR binds more tightly than the implied AND, which is what the 01849 * major search engines seem to do. So, for example: 01850 * 01851 * [one two OR three] ==> one AND (two OR three) 01852 * [one OR two three] ==> (one OR two) AND three 01853 * 01854 * A "-" before a term matches all entries that lack that term. 01855 * The "-" must occur immediately before the term with in intervening 01856 * space. This is how the search engines do it. 01857 * 01858 * A NOT term cannot be the right-hand operand of an OR. If this 01859 * occurs in the query string, the NOT is ignored: 01860 * 01861 * [one OR -two] ==> one OR two 01862 * 01863 */ 01864 typedef struct Query { 01865 fulltext_vtab *pFts; /* The full text index */ 01866 int nTerms; /* Number of terms in the query */ 01867 QueryTerm *pTerms; /* Array of terms. Space obtained from malloc() */ 01868 int nextIsOr; /* Set the isOr flag on the next inserted term */ 01869 int nextIsNear; /* Set the isOr flag on the next inserted term */ 01870 int nextColumn; /* Next word parsed must be in this column */ 01871 int dfltColumn; /* The default column */ 01872 } Query; 01873 01874 01875 /* 01876 ** An instance of the following structure keeps track of generated 01877 ** matching-word offset information and snippets. 01878 */ 01879 typedef struct Snippet { 01880 int nMatch; /* Total number of matches */ 01881 int nAlloc; /* Space allocated for aMatch[] */ 01882 struct snippetMatch { /* One entry for each matching term */ 01883 char snStatus; /* Status flag for use while constructing snippets */ 01884 short int iCol; /* The column that contains the match */ 01885 short int iTerm; /* The index in Query.pTerms[] of the matching term */ 01886 int iToken; /* The index of the matching document token */ 01887 short int nByte; /* Number of bytes in the term */ 01888 int iStart; /* The offset to the first character of the term */ 01889 } *aMatch; /* Points to space obtained from malloc */ 01890 char *zOffset; /* Text rendering of aMatch[] */ 01891 int nOffset; /* strlen(zOffset) */ 01892 char *zSnippet; /* Snippet text */ 01893 int nSnippet; /* strlen(zSnippet) */ 01894 } Snippet; 01895 01896 01897 typedef enum QueryType { 01898 QUERY_GENERIC, /* table scan */ 01899 QUERY_DOCID, /* lookup by docid */ 01900 QUERY_FULLTEXT /* QUERY_FULLTEXT + [i] is a full-text search for column i*/ 01901 } QueryType; 01902 01903 typedef enum fulltext_statement { 01904 CONTENT_INSERT_STMT, 01905 CONTENT_SELECT_STMT, 01906 CONTENT_UPDATE_STMT, 01907 CONTENT_DELETE_STMT, 01908 CONTENT_EXISTS_STMT, 01909 01910 BLOCK_INSERT_STMT, 01911 BLOCK_SELECT_STMT, 01912 BLOCK_DELETE_STMT, 01913 BLOCK_DELETE_ALL_STMT, 01914 01915 SEGDIR_MAX_INDEX_STMT, 01916 SEGDIR_SET_STMT, 01917 SEGDIR_SELECT_LEVEL_STMT, 01918 SEGDIR_SPAN_STMT, 01919 SEGDIR_DELETE_STMT, 01920 SEGDIR_SELECT_SEGMENT_STMT, 01921 SEGDIR_SELECT_ALL_STMT, 01922 SEGDIR_DELETE_ALL_STMT, 01923 SEGDIR_COUNT_STMT, 01924 01925 MAX_STMT /* Always at end! */ 01926 } fulltext_statement; 01927 01928 /* These must exactly match the enum above. */ 01929 /* TODO(shess): Is there some risk that a statement will be used in two 01930 ** cursors at once, e.g. if a query joins a virtual table to itself? 01931 ** If so perhaps we should move some of these to the cursor object. 01932 */ 01933 static const char *const fulltext_zStatement[MAX_STMT] = { 01934 /* CONTENT_INSERT */ NULL, /* generated in contentInsertStatement() */ 01935 /* CONTENT_SELECT */ NULL, /* generated in contentSelectStatement() */ 01936 /* CONTENT_UPDATE */ NULL, /* generated in contentUpdateStatement() */ 01937 /* CONTENT_DELETE */ "delete from %_content where docid = ?", 01938 /* CONTENT_EXISTS */ "select docid from %_content limit 1", 01939 01940 /* BLOCK_INSERT */ 01941 "insert into %_segments (blockid, block) values (null, ?)", 01942 /* BLOCK_SELECT */ "select block from %_segments where blockid = ?", 01943 /* BLOCK_DELETE */ "delete from %_segments where blockid between ? and ?", 01944 /* BLOCK_DELETE_ALL */ "delete from %_segments", 01945 01946 /* SEGDIR_MAX_INDEX */ "select max(idx) from %_segdir where level = ?", 01947 /* SEGDIR_SET */ "insert into %_segdir values (?, ?, ?, ?, ?, ?)", 01948 /* SEGDIR_SELECT_LEVEL */ 01949 "select start_block, leaves_end_block, root from %_segdir " 01950 " where level = ? order by idx", 01951 /* SEGDIR_SPAN */ 01952 "select min(start_block), max(end_block) from %_segdir " 01953 " where level = ? and start_block <> 0", 01954 /* SEGDIR_DELETE */ "delete from %_segdir where level = ?", 01955 01956 /* NOTE(shess): The first three results of the following two 01957 ** statements must match. 01958 */ 01959 /* SEGDIR_SELECT_SEGMENT */ 01960 "select start_block, leaves_end_block, root from %_segdir " 01961 " where level = ? and idx = ?", 01962 /* SEGDIR_SELECT_ALL */ 01963 "select start_block, leaves_end_block, root from %_segdir " 01964 " order by level desc, idx asc", 01965 /* SEGDIR_DELETE_ALL */ "delete from %_segdir", 01966 /* SEGDIR_COUNT */ "select count(*), ifnull(max(level),0) from %_segdir", 01967 }; 01968 01969 /* 01970 ** A connection to a fulltext index is an instance of the following 01971 ** structure. The xCreate and xConnect methods create an instance 01972 ** of this structure and xDestroy and xDisconnect free that instance. 01973 ** All other methods receive a pointer to the structure as one of their 01974 ** arguments. 01975 */ 01976 struct fulltext_vtab { 01977 sqlite3_vtab base; /* Base class used by SQLite core */ 01978 sqlite3 *db; /* The database connection */ 01979 const char *zDb; /* logical database name */ 01980 const char *zName; /* virtual table name */ 01981 int nColumn; /* number of columns in virtual table */ 01982 char **azColumn; /* column names. malloced */ 01983 char **azContentColumn; /* column names in content table; malloced */ 01984 sqlite3_tokenizer *pTokenizer; /* tokenizer for inserts and queries */ 01985 01986 /* Precompiled statements which we keep as long as the table is 01987 ** open. 01988 */ 01989 sqlite3_stmt *pFulltextStatements[MAX_STMT]; 01990 01991 /* Precompiled statements used for segment merges. We run a 01992 ** separate select across the leaf level of each tree being merged. 01993 */ 01994 sqlite3_stmt *pLeafSelectStmts[MERGE_COUNT]; 01995 /* The statement used to prepare pLeafSelectStmts. */ 01996 #define LEAF_SELECT \ 01997 "select block from %_segments where blockid between ? and ? order by blockid" 01998 01999 /* These buffer pending index updates during transactions. 02000 ** nPendingData estimates the memory size of the pending data. It 02001 ** doesn't include the hash-bucket overhead, nor any malloc 02002 ** overhead. When nPendingData exceeds kPendingThreshold, the 02003 ** buffer is flushed even before the transaction closes. 02004 ** pendingTerms stores the data, and is only valid when nPendingData 02005 ** is >=0 (nPendingData<0 means pendingTerms has not been 02006 ** initialized). iPrevDocid is the last docid written, used to make 02007 ** certain we're inserting in sorted order. 02008 */ 02009 int nPendingData; 02010 #define kPendingThreshold (1*1024*1024) 02011 sqlite_int64 iPrevDocid; 02012 fts3Hash pendingTerms; 02013 }; 02014 02015 /* 02016 ** When the core wants to do a query, it create a cursor using a 02017 ** call to xOpen. This structure is an instance of a cursor. It 02018 ** is destroyed by xClose. 02019 */ 02020 typedef struct fulltext_cursor { 02021 sqlite3_vtab_cursor base; /* Base class used by SQLite core */ 02022 QueryType iCursorType; /* Copy of sqlite3_index_info.idxNum */ 02023 sqlite3_stmt *pStmt; /* Prepared statement in use by the cursor */ 02024 int eof; /* True if at End Of Results */ 02025 Query q; /* Parsed query string */ 02026 Snippet snippet; /* Cached snippet for the current row */ 02027 int iColumn; /* Column being searched */ 02028 DataBuffer result; /* Doclist results from fulltextQuery */ 02029 DLReader reader; /* Result reader if result not empty */ 02030 } fulltext_cursor; 02031 02032 static struct fulltext_vtab *cursor_vtab(fulltext_cursor *c){ 02033 return (fulltext_vtab *) c->base.pVtab; 02034 } 02035 02036 static const sqlite3_module fts3Module; /* forward declaration */ 02037 02038 /* Return a dynamically generated statement of the form 02039 * insert into %_content (docid, ...) values (?, ...) 02040 */ 02041 static const char *contentInsertStatement(fulltext_vtab *v){ 02042 StringBuffer sb; 02043 int i; 02044 02045 initStringBuffer(&sb); 02046 append(&sb, "insert into %_content (docid, "); 02047 appendList(&sb, v->nColumn, v->azContentColumn); 02048 append(&sb, ") values (?"); 02049 for(i=0; i<v->nColumn; ++i) 02050 append(&sb, ", ?"); 02051 append(&sb, ")"); 02052 return stringBufferData(&sb); 02053 } 02054 02055 /* Return a dynamically generated statement of the form 02056 * select <content columns> from %_content where docid = ? 02057 */ 02058 static const char *contentSelectStatement(fulltext_vtab *v){ 02059 StringBuffer sb; 02060 initStringBuffer(&sb); 02061 append(&sb, "SELECT "); 02062 appendList(&sb, v->nColumn, v->azContentColumn); 02063 append(&sb, " FROM %_content WHERE docid = ?"); 02064 return stringBufferData(&sb); 02065 } 02066 02067 /* Return a dynamically generated statement of the form 02068 * update %_content set [col_0] = ?, [col_1] = ?, ... 02069 * where docid = ? 02070 */ 02071 static const char *contentUpdateStatement(fulltext_vtab *v){ 02072 StringBuffer sb; 02073 int i; 02074 02075 initStringBuffer(&sb); 02076 append(&sb, "update %_content set "); 02077 for(i=0; i<v->nColumn; ++i) { 02078 if( i>0 ){ 02079 append(&sb, ", "); 02080 } 02081 append(&sb, v->azContentColumn[i]); 02082 append(&sb, " = ?"); 02083 } 02084 append(&sb, " where docid = ?"); 02085 return stringBufferData(&sb); 02086 } 02087 02088 /* Puts a freshly-prepared statement determined by iStmt in *ppStmt. 02089 ** If the indicated statement has never been prepared, it is prepared 02090 ** and cached, otherwise the cached version is reset. 02091 */ 02092 static int sql_get_statement(fulltext_vtab *v, fulltext_statement iStmt, 02093 sqlite3_stmt **ppStmt){ 02094 assert( iStmt<MAX_STMT ); 02095 if( v->pFulltextStatements[iStmt]==NULL ){ 02096 const char *zStmt; 02097 int rc; 02098 switch( iStmt ){ 02099 case CONTENT_INSERT_STMT: 02100 zStmt = contentInsertStatement(v); break; 02101 case CONTENT_SELECT_STMT: 02102 zStmt = contentSelectStatement(v); break; 02103 case CONTENT_UPDATE_STMT: 02104 zStmt = contentUpdateStatement(v); break; 02105 default: 02106 zStmt = fulltext_zStatement[iStmt]; 02107 } 02108 rc = sql_prepare(v->db, v->zDb, v->zName, &v->pFulltextStatements[iStmt], 02109 zStmt); 02110 if( zStmt != fulltext_zStatement[iStmt]) sqlite3_free((void *) zStmt); 02111 if( rc!=SQLITE_OK ) return rc; 02112 } else { 02113 int rc = sqlite3_reset(v->pFulltextStatements[iStmt]); 02114 if( rc!=SQLITE_OK ) return rc; 02115 } 02116 02117 *ppStmt = v->pFulltextStatements[iStmt]; 02118 return SQLITE_OK; 02119 } 02120 02121 /* Like sqlite3_step(), but convert SQLITE_DONE to SQLITE_OK and 02122 ** SQLITE_ROW to SQLITE_ERROR. Useful for statements like UPDATE, 02123 ** where we expect no results. 02124 */ 02125 static int sql_single_step(sqlite3_stmt *s){ 02126 int rc = sqlite3_step(s); 02127 return (rc==SQLITE_DONE) ? SQLITE_OK : rc; 02128 } 02129 02130 /* Like sql_get_statement(), but for special replicated LEAF_SELECT 02131 ** statements. idx -1 is a special case for an uncached version of 02132 ** the statement (used in the optimize implementation). 02133 */ 02134 /* TODO(shess) Write version for generic statements and then share 02135 ** that between the cached-statement functions. 02136 */ 02137 static int sql_get_leaf_statement(fulltext_vtab *v, int idx, 02138 sqlite3_stmt **ppStmt){ 02139 assert( idx>=-1 && idx<MERGE_COUNT ); 02140 if( idx==-1 ){ 02141 return sql_prepare(v->db, v->zDb, v->zName, ppStmt, LEAF_SELECT); 02142 }else if( v->pLeafSelectStmts[idx]==NULL ){ 02143 int rc = sql_prepare(v->db, v->zDb, v->zName, &v->pLeafSelectStmts[idx], 02144 LEAF_SELECT); 02145 if( rc!=SQLITE_OK ) return rc; 02146 }else{ 02147 int rc = sqlite3_reset(v->pLeafSelectStmts[idx]); 02148 if( rc!=SQLITE_OK ) return rc; 02149 } 02150 02151 *ppStmt = v->pLeafSelectStmts[idx]; 02152 return SQLITE_OK; 02153 } 02154 02155 /* insert into %_content (docid, ...) values ([docid], [pValues]) 02156 ** If the docid contains SQL NULL, then a unique docid will be 02157 ** generated. 02158 */ 02159 static int content_insert(fulltext_vtab *v, sqlite3_value *docid, 02160 sqlite3_value **pValues){ 02161 sqlite3_stmt *s; 02162 int i; 02163 int rc = sql_get_statement(v, CONTENT_INSERT_STMT, &s); 02164 if( rc!=SQLITE_OK ) return rc; 02165 02166 rc = sqlite3_bind_value(s, 1, docid); 02167 if( rc!=SQLITE_OK ) return rc; 02168 02169 for(i=0; i<v->nColumn; ++i){ 02170 rc = sqlite3_bind_value(s, 2+i, pValues[i]); 02171 if( rc!=SQLITE_OK ) return rc; 02172 } 02173 02174 return sql_single_step(s); 02175 } 02176 02177 /* update %_content set col0 = pValues[0], col1 = pValues[1], ... 02178 * where docid = [iDocid] */ 02179 static int content_update(fulltext_vtab *v, sqlite3_value **pValues, 02180 sqlite_int64 iDocid){ 02181 sqlite3_stmt *s; 02182 int i; 02183 int rc = sql_get_statement(v, CONTENT_UPDATE_STMT, &s); 02184 if( rc!=SQLITE_OK ) return rc; 02185 02186 for(i=0; i<v->nColumn; ++i){ 02187 rc = sqlite3_bind_value(s, 1+i, pValues[i]); 02188 if( rc!=SQLITE_OK ) return rc; 02189 } 02190 02191 rc = sqlite3_bind_int64(s, 1+v->nColumn, iDocid); 02192 if( rc!=SQLITE_OK ) return rc; 02193 02194 return sql_single_step(s); 02195 } 02196 02197 static void freeStringArray(int nString, const char **pString){ 02198 int i; 02199 02200 for (i=0 ; i < nString ; ++i) { 02201 if( pString[i]!=NULL ) sqlite3_free((void *) pString[i]); 02202 } 02203 sqlite3_free((void *) pString); 02204 } 02205 02206 /* select * from %_content where docid = [iDocid] 02207 * The caller must delete the returned array and all strings in it. 02208 * null fields will be NULL in the returned array. 02209 * 02210 * TODO: Perhaps we should return pointer/length strings here for consistency 02211 * with other code which uses pointer/length. */ 02212 static int content_select(fulltext_vtab *v, sqlite_int64 iDocid, 02213 const char ***pValues){ 02214 sqlite3_stmt *s; 02215 const char **values; 02216 int i; 02217 int rc; 02218 02219 *pValues = NULL; 02220 02221 rc = sql_get_statement(v, CONTENT_SELECT_STMT, &s); 02222 if( rc!=SQLITE_OK ) return rc; 02223 02224 rc = sqlite3_bind_int64(s, 1, iDocid); 02225 if( rc!=SQLITE_OK ) return rc; 02226 02227 rc = sqlite3_step(s); 02228 if( rc!=SQLITE_ROW ) return rc; 02229 02230 values = (const char **) sqlite3_malloc(v->nColumn * sizeof(const char *)); 02231 for(i=0; i<v->nColumn; ++i){ 02232 if( sqlite3_column_type(s, i)==SQLITE_NULL ){ 02233 values[i] = NULL; 02234 }else{ 02235 values[i] = string_dup((char*)sqlite3_column_text(s, i)); 02236 } 02237 } 02238 02239 /* We expect only one row. We must execute another sqlite3_step() 02240 * to complete the iteration; otherwise the table will remain locked. */ 02241 rc = sqlite3_step(s); 02242 if( rc==SQLITE_DONE ){ 02243 *pValues = values; 02244 return SQLITE_OK; 02245 } 02246 02247 freeStringArray(v->nColumn, values); 02248 return rc; 02249 } 02250 02251 /* delete from %_content where docid = [iDocid ] */ 02252 static int content_delete(fulltext_vtab *v, sqlite_int64 iDocid){ 02253 sqlite3_stmt *s; 02254 int rc = sql_get_statement(v, CONTENT_DELETE_STMT, &s); 02255 if( rc!=SQLITE_OK ) return rc; 02256 02257 rc = sqlite3_bind_int64(s, 1, iDocid); 02258 if( rc!=SQLITE_OK ) return rc; 02259 02260 return sql_single_step(s); 02261 } 02262 02263 /* Returns SQLITE_ROW if any rows exist in %_content, SQLITE_DONE if 02264 ** no rows exist, and any error in case of failure. 02265 */ 02266 static int content_exists(fulltext_vtab *v){ 02267 sqlite3_stmt *s; 02268 int rc = sql_get_statement(v, CONTENT_EXISTS_STMT, &s); 02269 if( rc!=SQLITE_OK ) return rc; 02270 02271 rc = sqlite3_step(s); 02272 if( rc!=SQLITE_ROW ) return rc; 02273 02274 /* We expect only one row. We must execute another sqlite3_step() 02275 * to complete the iteration; otherwise the table will remain locked. */ 02276 rc = sqlite3_step(s); 02277 if( rc==SQLITE_DONE ) return SQLITE_ROW; 02278 if( rc==SQLITE_ROW ) return SQLITE_ERROR; 02279 return rc; 02280 } 02281 02282 /* insert into %_segments values ([pData]) 02283 ** returns assigned blockid in *piBlockid 02284 */ 02285 static int block_insert(fulltext_vtab *v, const char *pData, int nData, 02286 sqlite_int64 *piBlockid){ 02287 sqlite3_stmt *s; 02288 int rc = sql_get_statement(v, BLOCK_INSERT_STMT, &s); 02289 if( rc!=SQLITE_OK ) return rc; 02290 02291 rc = sqlite3_bind_blob(s, 1, pData, nData, SQLITE_STATIC); 02292 if( rc!=SQLITE_OK ) return rc; 02293 02294 rc = sqlite3_step(s); 02295 if( rc==SQLITE_ROW ) return SQLITE_ERROR; 02296 if( rc!=SQLITE_DONE ) return rc; 02297 02298 /* blockid column is an alias for rowid. */ 02299 *piBlockid = sqlite3_last_insert_rowid(v->db); 02300 return SQLITE_OK; 02301 } 02302 02303 /* delete from %_segments 02304 ** where blockid between [iStartBlockid] and [iEndBlockid] 02305 ** 02306 ** Deletes the range of blocks, inclusive, used to delete the blocks 02307 ** which form a segment. 02308 */ 02309 static int block_delete(fulltext_vtab *v, 02310 sqlite_int64 iStartBlockid, sqlite_int64 iEndBlockid){ 02311 sqlite3_stmt *s; 02312 int rc = sql_get_statement(v, BLOCK_DELETE_STMT, &s); 02313 if( rc!=SQLITE_OK ) return rc; 02314 02315 rc = sqlite3_bind_int64(s, 1, iStartBlockid); 02316 if( rc!=SQLITE_OK ) return rc; 02317 02318 rc = sqlite3_bind_int64(s, 2, iEndBlockid); 02319 if( rc!=SQLITE_OK ) return rc; 02320 02321 return sql_single_step(s); 02322 } 02323 02324 /* Returns SQLITE_ROW with *pidx set to the maximum segment idx found 02325 ** at iLevel. Returns SQLITE_DONE if there are no segments at 02326 ** iLevel. Otherwise returns an error. 02327 */ 02328 static int segdir_max_index(fulltext_vtab *v, int iLevel, int *pidx){ 02329 sqlite3_stmt *s; 02330 int rc = sql_get_statement(v, SEGDIR_MAX_INDEX_STMT, &s); 02331 if( rc!=SQLITE_OK ) return rc; 02332 02333 rc = sqlite3_bind_int(s, 1, iLevel); 02334 if( rc!=SQLITE_OK ) return rc; 02335 02336 rc = sqlite3_step(s); 02337 /* Should always get at least one row due to how max() works. */ 02338 if( rc==SQLITE_DONE ) return SQLITE_DONE; 02339 if( rc!=SQLITE_ROW ) return rc; 02340 02341 /* NULL means that there were no inputs to max(). */ 02342 if( SQLITE_NULL==sqlite3_column_type(s, 0) ){ 02343 rc = sqlite3_step(s); 02344 if( rc==SQLITE_ROW ) return SQLITE_ERROR; 02345 return rc; 02346 } 02347 02348 *pidx = sqlite3_column_int(s, 0); 02349 02350 /* We expect only one row. We must execute another sqlite3_step() 02351 * to complete the iteration; otherwise the table will remain locked. */ 02352 rc = sqlite3_step(s); 02353 if( rc==SQLITE_ROW ) return SQLITE_ERROR; 02354 if( rc!=SQLITE_DONE ) return rc; 02355 return SQLITE_ROW; 02356 } 02357 02358 /* insert into %_segdir values ( 02359 ** [iLevel], [idx], 02360 ** [iStartBlockid], [iLeavesEndBlockid], [iEndBlockid], 02361 ** [pRootData] 02362 ** ) 02363 */ 02364 static int segdir_set(fulltext_vtab *v, int iLevel, int idx, 02365 sqlite_int64 iStartBlockid, 02366 sqlite_int64 iLeavesEndBlockid, 02367 sqlite_int64 iEndBlockid, 02368 const char *pRootData, int nRootData){ 02369 sqlite3_stmt *s; 02370 int rc = sql_get_statement(v, SEGDIR_SET_STMT, &s); 02371 if( rc!=SQLITE_OK ) return rc; 02372 02373 rc = sqlite3_bind_int(s, 1, iLevel); 02374 if( rc!=SQLITE_OK ) return rc; 02375 02376 rc = sqlite3_bind_int(s, 2, idx); 02377 if( rc!=SQLITE_OK ) return rc; 02378 02379 rc = sqlite3_bind_int64(s, 3, iStartBlockid); 02380 if( rc!=SQLITE_OK ) return rc; 02381 02382 rc = sqlite3_bind_int64(s, 4, iLeavesEndBlockid); 02383 if( rc!=SQLITE_OK ) return rc; 02384 02385 rc = sqlite3_bind_int64(s, 5, iEndBlockid); 02386 if( rc!=SQLITE_OK ) return rc; 02387 02388 rc = sqlite3_bind_blob(s, 6, pRootData, nRootData, SQLITE_STATIC); 02389 if( rc!=SQLITE_OK ) return rc; 02390 02391 return sql_single_step(s); 02392 } 02393 02394 /* Queries %_segdir for the block span of the segments in level 02395 ** iLevel. Returns SQLITE_DONE if there are no blocks for iLevel, 02396 ** SQLITE_ROW if there are blocks, else an error. 02397 */ 02398 static int segdir_span(fulltext_vtab *v, int iLevel, 02399 sqlite_int64 *piStartBlockid, 02400 sqlite_int64 *piEndBlockid){ 02401 sqlite3_stmt *s; 02402 int rc = sql_get_statement(v, SEGDIR_SPAN_STMT, &s); 02403 if( rc!=SQLITE_OK ) return rc; 02404 02405 rc = sqlite3_bind_int(s, 1, iLevel); 02406 if( rc!=SQLITE_OK ) return rc; 02407 02408 rc = sqlite3_step(s); 02409 if( rc==SQLITE_DONE ) return SQLITE_DONE; /* Should never happen */ 02410 if( rc!=SQLITE_ROW ) return rc; 02411 02412 /* This happens if all segments at this level are entirely inline. */ 02413 if( SQLITE_NULL==sqlite3_column_type(s, 0) ){ 02414 /* We expect only one row. We must execute another sqlite3_step() 02415 * to complete the iteration; otherwise the table will remain locked. */ 02416 int rc2 = sqlite3_step(s); 02417 if( rc2==SQLITE_ROW ) return SQLITE_ERROR; 02418 return rc2; 02419 } 02420 02421 *piStartBlockid = sqlite3_column_int64(s, 0); 02422 *piEndBlockid = sqlite3_column_int64(s, 1); 02423 02424 /* We expect only one row. We must execute another sqlite3_step() 02425 * to complete the iteration; otherwise the table will remain locked. */ 02426 rc = sqlite3_step(s); 02427 if( rc==SQLITE_ROW ) return SQLITE_ERROR; 02428 if( rc!=SQLITE_DONE ) return rc; 02429 return SQLITE_ROW; 02430 } 02431 02432 /* Delete the segment blocks and segment directory records for all 02433 ** segments at iLevel. 02434 */ 02435 static int segdir_delete(fulltext_vtab *v, int iLevel){ 02436 sqlite3_stmt *s; 02437 sqlite_int64 iStartBlockid, iEndBlockid; 02438 int rc = segdir_span(v, iLevel, &iStartBlockid, &iEndBlockid); 02439 if( rc!=SQLITE_ROW && rc!=SQLITE_DONE ) return rc; 02440 02441 if( rc==SQLITE_ROW ){ 02442 rc = block_delete(v, iStartBlockid, iEndBlockid); 02443 if( rc!=SQLITE_OK ) return rc; 02444 } 02445 02446 /* Delete the segment directory itself. */ 02447 rc = sql_get_statement(v, SEGDIR_DELETE_STMT, &s); 02448 if( rc!=SQLITE_OK ) return rc; 02449 02450 rc = sqlite3_bind_int64(s, 1, iLevel); 02451 if( rc!=SQLITE_OK ) return rc; 02452 02453 return sql_single_step(s); 02454 } 02455 02456 /* Delete entire fts index, SQLITE_OK on success, relevant error on 02457 ** failure. 02458 */ 02459 static int segdir_delete_all(fulltext_vtab *v){ 02460 sqlite3_stmt *s; 02461 int rc = sql_get_statement(v, SEGDIR_DELETE_ALL_STMT, &s); 02462 if( rc!=SQLITE_OK ) return rc; 02463 02464 rc = sql_single_step(s); 02465 if( rc!=SQLITE_OK ) return rc; 02466 02467 rc = sql_get_statement(v, BLOCK_DELETE_ALL_STMT, &s); 02468 if( rc!=SQLITE_OK ) return rc; 02469 02470 return sql_single_step(s); 02471 } 02472 02473 /* Returns SQLITE_OK with *pnSegments set to the number of entries in 02474 ** %_segdir and *piMaxLevel set to the highest level which has a 02475 ** segment. Otherwise returns the SQLite error which caused failure. 02476 */ 02477 static int segdir_count(fulltext_vtab *v, int *pnSegments, int *piMaxLevel){ 02478 sqlite3_stmt *s; 02479 int rc = sql_get_statement(v, SEGDIR_COUNT_STMT, &s); 02480 if( rc!=SQLITE_OK ) return rc; 02481 02482 rc = sqlite3_step(s); 02483 /* TODO(shess): This case should not be possible? Should stronger 02484 ** measures be taken if it happens? 02485 */ 02486 if( rc==SQLITE_DONE ){ 02487 *pnSegments = 0; 02488 *piMaxLevel = 0; 02489 return SQLITE_OK; 02490 } 02491 if( rc!=SQLITE_ROW ) return rc; 02492 02493 *pnSegments = sqlite3_column_int(s, 0); 02494 *piMaxLevel = sqlite3_column_int(s, 1); 02495 02496 /* We expect only one row. We must execute another sqlite3_step() 02497 * to complete the iteration; otherwise the table will remain locked. */ 02498 rc = sqlite3_step(s); 02499 if( rc==SQLITE_DONE ) return SQLITE_OK; 02500 if( rc==SQLITE_ROW ) return SQLITE_ERROR; 02501 return rc; 02502 } 02503 02504 /* TODO(shess) clearPendingTerms() is far down the file because 02505 ** writeZeroSegment() is far down the file because LeafWriter is far 02506 ** down the file. Consider refactoring the code to move the non-vtab 02507 ** code above the vtab code so that we don't need this forward 02508 ** reference. 02509 */ 02510 static int clearPendingTerms(fulltext_vtab *v); 02511 02512 /* 02513 ** Free the memory used to contain a fulltext_vtab structure. 02514 */ 02515 static void fulltext_vtab_destroy(fulltext_vtab *v){ 02516 int iStmt, i; 02517 02518 FTSTRACE(("FTS3 Destroy %p\n", v)); 02519 for( iStmt=0; iStmt<MAX_STMT; iStmt++ ){ 02520 if( v->pFulltextStatements[iStmt]!=NULL ){ 02521 sqlite3_finalize(v->pFulltextStatements[iStmt]); 02522 v->pFulltextStatements[iStmt] = NULL; 02523 } 02524 } 02525 02526 for( i=0; i<MERGE_COUNT; i++ ){ 02527 if( v->pLeafSelectStmts[i]!=NULL ){ 02528 sqlite3_finalize(v->pLeafSelectStmts[i]); 02529 v->pLeafSelectStmts[i] = NULL; 02530 } 02531 } 02532 02533 if( v->pTokenizer!=NULL ){ 02534 v->pTokenizer->pModule->xDestroy(v->pTokenizer); 02535 v->pTokenizer = NULL; 02536 } 02537 02538 clearPendingTerms(v); 02539 02540 sqlite3_free(v->azColumn); 02541 for(i = 0; i < v->nColumn; ++i) { 02542 sqlite3_free(v->azContentColumn[i]); 02543 } 02544 sqlite3_free(v->azContentColumn); 02545 sqlite3_free(v); 02546 } 02547 02548 /* 02549 ** Token types for parsing the arguments to xConnect or xCreate. 02550 */ 02551 #define TOKEN_EOF 0 /* End of file */ 02552 #define TOKEN_SPACE 1 /* Any kind of whitespace */ 02553 #define TOKEN_ID 2 /* An identifier */ 02554 #define TOKEN_STRING 3 /* A string literal */ 02555 #define TOKEN_PUNCT 4 /* A single punctuation character */ 02556 02557 /* 02558 ** If X is a character that can be used in an identifier then 02559 ** ftsIdChar(X) will be true. Otherwise it is false. 02560 ** 02561 ** For ASCII, any character with the high-order bit set is 02562 ** allowed in an identifier. For 7-bit characters, 02563 ** isFtsIdChar[X] must be 1. 02564 ** 02565 ** Ticket #1066. the SQL standard does not allow '$' in the 02566 ** middle of identfiers. But many SQL implementations do. 02567 ** SQLite will allow '$' in identifiers for compatibility. 02568 ** But the feature is undocumented. 02569 */ 02570 static const char isFtsIdChar[] = { 02571 /* x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 xA xB xC xD xE xF */ 02572 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* 2x */ 02573 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, /* 3x */ 02574 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, /* 4x */ 02575 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, /* 5x */ 02576 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, /* 6x */ 02577 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, /* 7x */ 02578 }; 02579 #define ftsIdChar(C) (((c=C)&0x80)!=0 || (c>0x1f && isFtsIdChar[c-0x20])) 02580 02581 02582 /* 02583 ** Return the length of the token that begins at z[0]. 02584 ** Store the token type in *tokenType before returning. 02585 */ 02586 static int ftsGetToken(const char *z, int *tokenType){ 02587 int i, c; 02588 switch( *z ){ 02589 case 0: { 02590 *tokenType = TOKEN_EOF; 02591 return 0; 02592 } 02593 case ' ': case '\t': case '\n': case '\f': case '\r': { 02594 for(i=1; safe_isspace(z[i]); i++){} 02595 *tokenType = TOKEN_SPACE; 02596 return i; 02597 } 02598 case '`': 02599 case '\'': 02600 case '"': { 02601 int delim = z[0]; 02602 for(i=1; (c=z[i])!=0; i++){ 02603 if( c==delim ){ 02604 if( z[i+1]==delim ){ 02605 i++; 02606 }else{ 02607 break; 02608 } 02609 } 02610 } 02611 *tokenType = TOKEN_STRING; 02612 return i + (c!=0); 02613 } 02614 case '[': { 02615 for(i=1, c=z[0]; c!=']' && (c=z[i])!=0; i++){} 02616 *tokenType = TOKEN_ID; 02617 return i; 02618 } 02619 default: { 02620 if( !ftsIdChar(*z) ){ 02621 break; 02622 } 02623 for(i=1; ftsIdChar(z[i]); i++){} 02624 *tokenType = TOKEN_ID; 02625 return i; 02626 } 02627 } 02628 *tokenType = TOKEN_PUNCT; 02629 return 1; 02630 } 02631 02632 /* 02633 ** A token extracted from a string is an instance of the following 02634 ** structure. 02635 */ 02636 typedef struct FtsToken { 02637 const char *z; /* Pointer to token text. Not '\000' terminated */ 02638 short int n; /* Length of the token text in bytes. */ 02639 } FtsToken; 02640 02641 /* 02642 ** Given a input string (which is really one of the argv[] parameters 02643 ** passed into xConnect or xCreate) split the string up into tokens. 02644 ** Return an array of pointers to '\000' terminated strings, one string 02645 ** for each non-whitespace token. 02646 ** 02647 ** The returned array is terminated by a single NULL pointer. 02648 ** 02649 ** Space to hold the returned array is obtained from a single 02650 ** malloc and should be freed by passing the return value to free(). 02651 ** The individual strings within the token list are all a part of 02652 ** the single memory allocation and will all be freed at once. 02653 */ 02654 static char **tokenizeString(const char *z, int *pnToken){ 02655 int nToken = 0; 02656 FtsToken *aToken = sqlite3_malloc( strlen(z) * sizeof(aToken[0]) ); 02657 int n = 1; 02658 int e, i; 02659 int totalSize = 0; 02660 char **azToken; 02661 char *zCopy; 02662 while( n>0 ){ 02663 n = ftsGetToken(z, &e); 02664 if( e!=TOKEN_SPACE ){ 02665 aToken[nToken].z = z; 02666 aToken[nToken].n = n; 02667 nToken++; 02668 totalSize += n+1; 02669 } 02670 z += n; 02671 } 02672 azToken = (char**)sqlite3_malloc( nToken*sizeof(char*) + totalSize ); 02673 zCopy = (char*)&azToken[nToken]; 02674 nToken--; 02675 for(i=0; i<nToken; i++){ 02676 azToken[i] = zCopy; 02677 n = aToken[i].n; 02678 memcpy(zCopy, aToken[i].z, n); 02679 zCopy[n] = 0; 02680 zCopy += n+1; 02681 } 02682 azToken[nToken] = 0; 02683 sqlite3_free(aToken); 02684 *pnToken = nToken; 02685 return azToken; 02686 } 02687 02688 /* 02689 ** Convert an SQL-style quoted string into a normal string by removing 02690 ** the quote characters. The conversion is done in-place. If the 02691 ** input does not begin with a quote character, then this routine 02692 ** is a no-op. 02693 ** 02694 ** Examples: 02695 ** 02696 ** "abc" becomes abc 02697 ** 'xyz' becomes xyz 02698 ** [pqr] becomes pqr 02699 ** `mno` becomes mno 02700 */ 02701 static void dequoteString(char *z){ 02702 int quote; 02703 int i, j; 02704 if( z==0 ) return; 02705 quote = z[0]; 02706 switch( quote ){ 02707 case '\'': break; 02708 case '"': break; 02709 case '`': break; /* For MySQL compatibility */ 02710 case '[': quote = ']'; break; /* For MS SqlServer compatibility */ 02711 default: return; 02712 } 02713 for(i=1, j=0; z[i]; i++){ 02714 if( z[i]==quote ){ 02715 if( z[i+1]==quote ){ 02716 z[j++] = quote; 02717 i++; 02718 }else{ 02719 z[j++] = 0; 02720 break; 02721 } 02722 }else{ 02723 z[j++] = z[i]; 02724 } 02725 } 02726 } 02727 02728 /* 02729 ** The input azIn is a NULL-terminated list of tokens. Remove the first 02730 ** token and all punctuation tokens. Remove the quotes from 02731 ** around string literal tokens. 02732 ** 02733 ** Example: 02734 ** 02735 ** input: tokenize chinese ( 'simplifed' , 'mixed' ) 02736 ** output: chinese simplifed mixed 02737 ** 02738 ** Another example: 02739 ** 02740 ** input: delimiters ( '[' , ']' , '...' ) 02741 ** output: [ ] ... 02742 */ 02743 static void tokenListToIdList(char **azIn){ 02744 int i, j; 02745 if( azIn ){ 02746 for(i=0, j=-1; azIn[i]; i++){ 02747 if( safe_isalnum(azIn[i][0]) || azIn[i][1] ){ 02748 dequoteString(azIn[i]); 02749 if( j>=0 ){ 02750 azIn[j] = azIn[i]; 02751 } 02752 j++; 02753 } 02754 } 02755 azIn[j] = 0; 02756 } 02757 } 02758 02759 02760 /* 02761 ** Find the first alphanumeric token in the string zIn. Null-terminate 02762 ** this token. Remove any quotation marks. And return a pointer to 02763 ** the result. 02764 */ 02765 static char *firstToken(char *zIn, char **pzTail){ 02766 int n, ttype; 02767 while(1){ 02768 n = ftsGetToken(zIn, &ttype); 02769 if( ttype==TOKEN_SPACE ){ 02770 zIn += n; 02771 }else if( ttype==TOKEN_EOF ){ 02772 *pzTail = zIn; 02773 return 0; 02774 }else{ 02775 zIn[n] = 0; 02776 *pzTail = &zIn[1]; 02777 dequoteString(zIn); 02778 return zIn; 02779 } 02780 } 02781 /*NOTREACHED*/ 02782 } 02783 02784 /* Return true if... 02785 ** 02786 ** * s begins with the string t, ignoring case 02787 ** * s is longer than t 02788 ** * The first character of s beyond t is not a alphanumeric 02789 ** 02790 ** Ignore leading space in *s. 02791 ** 02792 ** To put it another way, return true if the first token of 02793 ** s[] is t[]. 02794 */ 02795 static int startsWith(const char *s, const char *t){ 02796 while( safe_isspace(*s) ){ s++; } 02797 while( *t ){ 02798 if( safe_tolower(*s++)!=safe_tolower(*t++) ) return 0; 02799 } 02800 return *s!='_' && !safe_isalnum(*s); 02801 } 02802 02803 /* 02804 ** An instance of this structure defines the "spec" of a 02805 ** full text index. This structure is populated by parseSpec 02806 ** and use by fulltextConnect and fulltextCreate. 02807 */ 02808 typedef struct TableSpec { 02809 const char *zDb; /* Logical database name */ 02810 const char *zName; /* Name of the full-text index */ 02811 int nColumn; /* Number of columns to be indexed */ 02812 char **azColumn; /* Original names of columns to be indexed */ 02813 char **azContentColumn; /* Column names for %_content */ 02814 char **azTokenizer; /* Name of tokenizer and its arguments */ 02815 } TableSpec; 02816 02817 /* 02818 ** Reclaim all of the memory used by a TableSpec 02819 */ 02820 static void clearTableSpec(TableSpec *p) { 02821 sqlite3_free(p->azColumn); 02822 sqlite3_free(p->azContentColumn); 02823 sqlite3_free(p->azTokenizer); 02824 } 02825 02826 /* Parse a CREATE VIRTUAL TABLE statement, which looks like this: 02827 * 02828 * CREATE VIRTUAL TABLE email 02829 * USING fts3(subject, body, tokenize mytokenizer(myarg)) 02830 * 02831 * We return parsed information in a TableSpec structure. 02832 * 02833 */ 02834 static int parseSpec(TableSpec *pSpec, int argc, const char *const*argv, 02835 char**pzErr){ 02836 int i, n; 02837 char *z, *zDummy; 02838 char **azArg; 02839 const char *zTokenizer = 0; /* argv[] entry describing the tokenizer */ 02840 02841 assert( argc>=3 ); 02842 /* Current interface: 02843 ** argv[0] - module name 02844 ** argv[1] - database name 02845 ** argv[2] - table name 02846 ** argv[3..] - columns, optionally followed by tokenizer specification 02847 ** and snippet delimiters specification. 02848 */ 02849 02850 /* Make a copy of the complete argv[][] array in a single allocation. 02851 ** The argv[][] array is read-only and transient. We can write to the 02852 ** copy in order to modify things and the copy is persistent. 02853 */ 02854 CLEAR(pSpec); 02855 for(i=n=0; i<argc; i++){ 02856 n += strlen(argv[i]) + 1; 02857 } 02858 azArg = sqlite3_malloc( sizeof(char*)*argc + n ); 02859 if( azArg==0 ){ 02860 return SQLITE_NOMEM; 02861 } 02862 z = (char*)&azArg[argc]; 02863 for(i=0; i<argc; i++){ 02864 azArg[i] = z; 02865 strcpy(z, argv[i]); 02866 z += strlen(z)+1; 02867 } 02868 02869 /* Identify the column names and the tokenizer and delimiter arguments 02870 ** in the argv[][] array. 02871 */ 02872 pSpec->zDb = azArg[1]; 02873 pSpec->zName = azArg[2]; 02874 pSpec->nColumn = 0; 02875 pSpec->azColumn = azArg; 02876 zTokenizer = "tokenize simple"; 02877 for(i=3; i<argc; ++i){ 02878 if( startsWith(azArg[i],"tokenize") ){ 02879 zTokenizer = azArg[i]; 02880 }else{ 02881 z = azArg[pSpec->nColumn] = firstToken(azArg[i], &zDummy); 02882 pSpec->nColumn++; 02883 } 02884 } 02885 if( pSpec->nColumn==0 ){ 02886 azArg[0] = "content"; 02887 pSpec->nColumn = 1; 02888 } 02889 02890 /* 02891 ** Construct the list of content column names. 02892 ** 02893 ** Each content column name will be of the form cNNAAAA 02894 ** where NN is the column number and AAAA is the sanitized 02895 ** column name. "sanitized" means that special characters are 02896 ** converted to "_". The cNN prefix guarantees that all column 02897 ** names are unique. 02898 ** 02899 ** The AAAA suffix is not strictly necessary. It is included 02900 ** for the convenience of people who might examine the generated 02901 ** %_content table and wonder what the columns are used for. 02902 */ 02903 pSpec->azContentColumn = sqlite3_malloc( pSpec->nColumn * sizeof(char *) ); 02904 if( pSpec->azContentColumn==0 ){ 02905 clearTableSpec(pSpec); 02906 return SQLITE_NOMEM; 02907 } 02908 for(i=0; i<pSpec->nColumn; i++){ 02909 char *p; 02910 pSpec->azContentColumn[i] = sqlite3_mprintf("c%d%s", i, azArg[i]); 02911 for (p = pSpec->azContentColumn[i]; *p ; ++p) { 02912 if( !safe_isalnum(*p) ) *p = '_'; 02913 } 02914 } 02915 02916 /* 02917 ** Parse the tokenizer specification string. 02918 */ 02919 pSpec->azTokenizer = tokenizeString(zTokenizer, &n); 02920 tokenListToIdList(pSpec->azTokenizer); 02921 02922 return SQLITE_OK; 02923 } 02924 02925 /* 02926 ** Generate a CREATE TABLE statement that describes the schema of 02927 ** the virtual table. Return a pointer to this schema string. 02928 ** 02929 ** Space is obtained from sqlite3_mprintf() and should be freed 02930 ** using sqlite3_free(). 02931 */ 02932 static char *fulltextSchema( 02933 int nColumn, /* Number of columns */ 02934 const char *const* azColumn, /* List of columns */ 02935 const char *zTableName /* Name of the table */ 02936 ){ 02937 int i; 02938 char *zSchema, *zNext; 02939 const char *zSep = "("; 02940 zSchema = sqlite3_mprintf("CREATE TABLE x"); 02941 for(i=0; i<nColumn; i++){ 02942 zNext = sqlite3_mprintf("%s%s%Q", zSchema, zSep, azColumn[i]); 02943 sqlite3_free(zSchema); 02944 zSchema = zNext; 02945 zSep = ","; 02946 } 02947 zNext = sqlite3_mprintf("%s,%Q HIDDEN", zSchema, zTableName); 02948 sqlite3_free(zSchema); 02949 zSchema = zNext; 02950 zNext = sqlite3_mprintf("%s,docid HIDDEN)", zSchema); 02951 sqlite3_free(zSchema); 02952 return zNext; 02953 } 02954 02955 /* 02956 ** Build a new sqlite3_vtab structure that will describe the 02957 ** fulltext index defined by spec. 02958 */ 02959 static int constructVtab( 02960 sqlite3 *db, /* The SQLite database connection */ 02961 fts3Hash *pHash, /* Hash table containing tokenizers */ 02962 TableSpec *spec, /* Parsed spec information from parseSpec() */ 02963 sqlite3_vtab **ppVTab, /* Write the resulting vtab structure here */ 02964 char **pzErr /* Write any error message here */ 02965 ){ 02966 int rc; 02967 int n; 02968 fulltext_vtab *v = 0; 02969 const sqlite3_tokenizer_module *m = NULL; 02970 char *schema; 02971 02972 char const *zTok; /* Name of tokenizer to use for this fts table */ 02973 int nTok; /* Length of zTok, including nul terminator */ 02974 02975 v = (fulltext_vtab *) sqlite3_malloc(sizeof(fulltext_vtab)); 02976 if( v==0 ) return SQLITE_NOMEM; 02977 CLEAR(v); 02978 /* sqlite will initialize v->base */ 02979 v->db = db; 02980 v->zDb = spec->zDb; /* Freed when azColumn is freed */ 02981 v->zName = spec->zName; /* Freed when azColumn is freed */ 02982 v->nColumn = spec->nColumn; 02983 v->azContentColumn = spec->azContentColumn; 02984 spec->azContentColumn = 0; 02985 v->azColumn = spec->azColumn; 02986 spec->azColumn = 0; 02987 02988 if( spec->azTokenizer==0 ){ 02989 return SQLITE_NOMEM; 02990 } 02991 02992 zTok = spec->azTokenizer[0]; 02993 if( !zTok ){ 02994 zTok = "simple"; 02995 } 02996 nTok = strlen(zTok)+1; 02997 02998 m = (sqlite3_tokenizer_module *)sqlite3Fts3HashFind(pHash, zTok, nTok); 02999 if( !m ){ 03000 *pzErr = sqlite3_mprintf("unknown tokenizer: %s", spec->azTokenizer[0]); 03001 rc = SQLITE_ERROR; 03002 goto err; 03003 } 03004 03005 for(n=0; spec->azTokenizer[n]; n++){} 03006 if( n ){ 03007 rc = m->xCreate(n-1, (const char*const*)&spec->azTokenizer[1], 03008 &v->pTokenizer); 03009 }else{ 03010 rc = m->xCreate(0, 0, &v->pTokenizer); 03011 } 03012 if( rc!=SQLITE_OK ) goto err; 03013 v->pTokenizer->pModule = m; 03014 03015 /* TODO: verify the existence of backing tables foo_content, foo_term */ 03016 03017 schema = fulltextSchema(v->nColumn, (const char*const*)v->azColumn, 03018 spec->zName); 03019 rc = sqlite3_declare_vtab(db, schema); 03020 sqlite3_free(schema); 03021 if( rc!=SQLITE_OK ) goto err; 03022 03023 memset(v->pFulltextStatements, 0, sizeof(v->pFulltextStatements)); 03024 03025 /* Indicate that the buffer is not live. */ 03026 v->nPendingData = -1; 03027 03028 *ppVTab = &v->base; 03029 FTSTRACE(("FTS3 Connect %p\n", v)); 03030 03031 return rc; 03032 03033 err: 03034 fulltext_vtab_destroy(v); 03035 return rc; 03036 } 03037 03038 static int fulltextConnect( 03039 sqlite3 *db, 03040 void *pAux, 03041 int argc, const char *const*argv, 03042 sqlite3_vtab **ppVTab, 03043 char **pzErr 03044 ){ 03045 TableSpec spec; 03046 int rc = parseSpec(&spec, argc, argv, pzErr); 03047 if( rc!=SQLITE_OK ) return rc; 03048 03049 rc = constructVtab(db, (fts3Hash *)pAux, &spec, ppVTab, pzErr); 03050 clearTableSpec(&spec); 03051 return rc; 03052 } 03053 03054 /* The %_content table holds the text of each document, with 03055 ** the docid column exposed as the SQLite rowid for the table. 03056 */ 03057 /* TODO(shess) This comment needs elaboration to match the updated 03058 ** code. Work it into the top-of-file comment at that time. 03059 */ 03060 static int fulltextCreate(sqlite3 *db, void *pAux, 03061 int argc, const char * const *argv, 03062 sqlite3_vtab **ppVTab, char **pzErr){ 03063 int rc; 03064 TableSpec spec; 03065 StringBuffer schema; 03066 FTSTRACE(("FTS3 Create\n")); 03067 03068 rc = parseSpec(&spec, argc, argv, pzErr); 03069 if( rc!=SQLITE_OK ) return rc; 03070 03071 initStringBuffer(&schema); 03072 append(&schema, "CREATE TABLE %_content("); 03073 append(&schema, " docid INTEGER PRIMARY KEY,"); 03074 appendList(&schema, spec.nColumn, spec.azContentColumn); 03075 append(&schema, ")"); 03076 rc = sql_exec(db, spec.zDb, spec.zName, stringBufferData(&schema)); 03077 stringBufferDestroy(&schema); 03078 if( rc!=SQLITE_OK ) goto out; 03079 03080 rc = sql_exec(db, spec.zDb, spec.zName, 03081 "create table %_segments(" 03082 " blockid INTEGER PRIMARY KEY," 03083 " block blob" 03084 ");" 03085 ); 03086 if( rc!=SQLITE_OK ) goto out; 03087 03088 rc = sql_exec(db, spec.zDb, spec.zName, 03089 "create table %_segdir(" 03090 " level integer," 03091 " idx integer," 03092 " start_block integer," 03093 " leaves_end_block integer," 03094 " end_block integer," 03095 " root blob," 03096 " primary key(level, idx)" 03097 ");"); 03098 if( rc!=SQLITE_OK ) goto out; 03099 03100 rc = constructVtab(db, (fts3Hash *)pAux, &spec, ppVTab, pzErr); 03101 03102 out: 03103 clearTableSpec(&spec); 03104 return rc; 03105 } 03106 03107 /* Decide how to handle an SQL query. */ 03108 static int fulltextBestIndex(sqlite3_vtab *pVTab, sqlite3_index_info *pInfo){ 03109 fulltext_vtab *v = (fulltext_vtab *)pVTab; 03110 int i; 03111 FTSTRACE(("FTS3 BestIndex\n")); 03112 03113 for(i=0; i<pInfo->nConstraint; ++i){ 03114 const struct sqlite3_index_constraint *pConstraint; 03115 pConstraint = &pInfo->aConstraint[i]; 03116 if( pConstraint->usable ) { 03117 if( (pConstraint->iColumn==-1 || pConstraint->iColumn==v->nColumn+1) && 03118 pConstraint->op==SQLITE_INDEX_CONSTRAINT_EQ ){ 03119 pInfo->idxNum = QUERY_DOCID; /* lookup by docid */ 03120 FTSTRACE(("FTS3 QUERY_DOCID\n")); 03121 } else if( pConstraint->iColumn>=0 && pConstraint->iColumn<=v->nColumn && 03122 pConstraint->op==SQLITE_INDEX_CONSTRAINT_MATCH ){ 03123 /* full-text search */ 03124 pInfo->idxNum = QUERY_FULLTEXT + pConstraint->iColumn; 03125 FTSTRACE(("FTS3 QUERY_FULLTEXT %d\n", pConstraint->iColumn)); 03126 } else continue; 03127 03128 pInfo->aConstraintUsage[i].argvIndex = 1; 03129 pInfo->aConstraintUsage[i].omit = 1; 03130 03131 /* An arbitrary value for now. 03132 * TODO: Perhaps docid matches should be considered cheaper than 03133 * full-text searches. */ 03134 pInfo->estimatedCost = 1.0; 03135 03136 return SQLITE_OK; 03137 } 03138 } 03139 pInfo->idxNum = QUERY_GENERIC; 03140 return SQLITE_OK; 03141 } 03142 03143 static int fulltextDisconnect(sqlite3_vtab *pVTab){ 03144 FTSTRACE(("FTS3 Disconnect %p\n", pVTab)); 03145 fulltext_vtab_destroy((fulltext_vtab *)pVTab); 03146 return SQLITE_OK; 03147 } 03148 03149 static int fulltextDestroy(sqlite3_vtab *pVTab){ 03150 fulltext_vtab *v = (fulltext_vtab *)pVTab; 03151 int rc; 03152 03153 FTSTRACE(("FTS3 Destroy %p\n", pVTab)); 03154 rc = sql_exec(v->db, v->zDb, v->zName, 03155 "drop table if exists %_content;" 03156 "drop table if exists %_segments;" 03157 "drop table if exists %_segdir;" 03158 ); 03159 if( rc!=SQLITE_OK ) return rc; 03160 03161 fulltext_vtab_destroy((fulltext_vtab *)pVTab); 03162 return SQLITE_OK; 03163 } 03164 03165 static int fulltextOpen(sqlite3_vtab *pVTab, sqlite3_vtab_cursor **ppCursor){ 03166 fulltext_cursor *c; 03167 03168 c = (fulltext_cursor *) sqlite3_malloc(sizeof(fulltext_cursor)); 03169 if( c ){ 03170 memset(c, 0, sizeof(fulltext_cursor)); 03171 /* sqlite will initialize c->base */ 03172 *ppCursor = &c->base; 03173 FTSTRACE(("FTS3 Open %p: %p\n", pVTab, c)); 03174 return SQLITE_OK; 03175 }else{ 03176 return SQLITE_NOMEM; 03177 } 03178 } 03179 03180 03181 /* Free all of the dynamically allocated memory held by *q 03182 */ 03183 static void queryClear(Query *q){ 03184 int i; 03185 for(i = 0; i < q->nTerms; ++i){ 03186 sqlite3_free(q->pTerms[i].pTerm); 03187 } 03188 sqlite3_free(q->pTerms); 03189 CLEAR(q); 03190 } 03191 03192 /* Free all of the dynamically allocated memory held by the 03193 ** Snippet 03194 */ 03195 static void snippetClear(Snippet *p){ 03196 sqlite3_free(p->aMatch); 03197 sqlite3_free(p->zOffset); 03198 sqlite3_free(p->zSnippet); 03199 CLEAR(p); 03200 } 03201 /* 03202 ** Append a single entry to the p->aMatch[] log. 03203 */ 03204 static void snippetAppendMatch( 03205 Snippet *p, /* Append the entry to this snippet */ 03206 int iCol, int iTerm, /* The column and query term */ 03207 int iToken, /* Matching token in document */ 03208 int iStart, int nByte /* Offset and size of the match */ 03209 ){ 03210 int i; 03211 struct snippetMatch *pMatch; 03212 if( p->nMatch+1>=p->nAlloc ){ 03213 p->nAlloc = p->nAlloc*2 + 10; 03214 p->aMatch = sqlite3_realloc(p->aMatch, p->nAlloc*sizeof(p->aMatch[0]) ); 03215 if( p->aMatch==0 ){ 03216 p->nMatch = 0; 03217 p->nAlloc = 0; 03218 return; 03219 } 03220 } 03221 i = p->nMatch++; 03222 pMatch = &p->aMatch[i]; 03223 pMatch->iCol = iCol; 03224 pMatch->iTerm = iTerm; 03225 pMatch->iToken = iToken; 03226 pMatch->iStart = iStart; 03227 pMatch->nByte = nByte; 03228 } 03229 03230 /* 03231 ** Sizing information for the circular buffer used in snippetOffsetsOfColumn() 03232 */ 03233 #define FTS3_ROTOR_SZ (32) 03234 #define FTS3_ROTOR_MASK (FTS3_ROTOR_SZ-1) 03235 03236 /* 03237 ** Add entries to pSnippet->aMatch[] for every match that occurs against 03238 ** document zDoc[0..nDoc-1] which is stored in column iColumn. 03239 */ 03240 static void snippetOffsetsOfColumn( 03241 Query *pQuery, 03242 Snippet *pSnippet, 03243 int iColumn, 03244 const char *zDoc, 03245 int nDoc 03246 ){ 03247 const sqlite3_tokenizer_module *pTModule; /* The tokenizer module */ 03248 sqlite3_tokenizer *pTokenizer; /* The specific tokenizer */ 03249 sqlite3_tokenizer_cursor *pTCursor; /* Tokenizer cursor */ 03250 fulltext_vtab *pVtab; /* The full text index */ 03251 int nColumn; /* Number of columns in the index */ 03252 const QueryTerm *aTerm; /* Query string terms */ 03253 int nTerm; /* Number of query string terms */ 03254 int i, j; /* Loop counters */ 03255 int rc; /* Return code */ 03256 unsigned int match, prevMatch; /* Phrase search bitmasks */ 03257 const char *zToken; /* Next token from the tokenizer */ 03258 int nToken; /* Size of zToken */ 03259 int iBegin, iEnd, iPos; /* Offsets of beginning and end */ 03260 03261 /* The following variables keep a circular buffer of the last 03262 ** few tokens */ 03263 unsigned int iRotor = 0; /* Index of current token */ 03264 int iRotorBegin[FTS3_ROTOR_SZ]; /* Beginning offset of token */ 03265 int iRotorLen[FTS3_ROTOR_SZ]; /* Length of token */ 03266 03267 pVtab = pQuery->pFts; 03268 nColumn = pVtab->nColumn; 03269 pTokenizer = pVtab->pTokenizer; 03270 pTModule = pTokenizer->pModule; 03271 rc = pTModule->xOpen(pTokenizer, zDoc, nDoc, &pTCursor); 03272 if( rc ) return; 03273 pTCursor->pTokenizer = pTokenizer; 03274 aTerm = pQuery->pTerms; 03275 nTerm = pQuery->nTerms; 03276 if( nTerm>=FTS3_ROTOR_SZ ){ 03277 nTerm = FTS3_ROTOR_SZ - 1; 03278 } 03279 prevMatch = 0; 03280 while(1){ 03281 rc = pTModule->xNext(pTCursor, &zToken, &nToken, &iBegin, &iEnd, &iPos); 03282 if( rc ) break; 03283 iRotorBegin[iRotor&FTS3_ROTOR_MASK] = iBegin; 03284 iRotorLen[iRotor&FTS3_ROTOR_MASK] = iEnd-iBegin; 03285 match = 0; 03286 for(i=0; i<nTerm; i++){ 03287 int iCol; 03288 iCol = aTerm[i].iColumn; 03289 if( iCol>=0 && iCol<nColumn && iCol!=iColumn ) continue; 03290 if( aTerm[i].nTerm>nToken ) continue; 03291 if( !aTerm[i].isPrefix && aTerm[i].nTerm<nToken ) continue; 03292 assert( aTerm[i].nTerm<=nToken ); 03293 if( memcmp(aTerm[i].pTerm, zToken, aTerm[i].nTerm) ) continue; 03294 if( aTerm[i].iPhrase>1 && (prevMatch & (1<<i))==0 ) continue; 03295 match |= 1<<i; 03296 if( i==nTerm-1 || aTerm[i+1].iPhrase==1 ){ 03297 for(j=aTerm[i].iPhrase-1; j>=0; j--){ 03298 int k = (iRotor-j) & FTS3_ROTOR_MASK; 03299 snippetAppendMatch(pSnippet, iColumn, i-j, iPos-j, 03300 iRotorBegin[k], iRotorLen[k]); 03301 } 03302 } 03303 } 03304 prevMatch = match<<1; 03305 iRotor++; 03306 } 03307 pTModule->xClose(pTCursor); 03308 } 03309 03310 /* 03311 ** Remove entries from the pSnippet structure to account for the NEAR 03312 ** operator. When this is called, pSnippet contains the list of token 03313 ** offsets produced by treating all NEAR operators as AND operators. 03314 ** This function removes any entries that should not be present after 03315 ** accounting for the NEAR restriction. For example, if the queried 03316 ** document is: 03317 ** 03318 ** "A B C D E A" 03319 ** 03320 ** and the query is: 03321 ** 03322 ** A NEAR/0 E 03323 ** 03324 ** then when this function is called the Snippet contains token offsets 03325 ** 0, 4 and 5. This function removes the "0" entry (because the first A 03326 ** is not near enough to an E). 03327 */ 03328 static void trimSnippetOffsetsForNear(Query *pQuery, Snippet *pSnippet){ 03329 int ii; 03330 int iDir = 1; 03331 03332 while(iDir>-2) { 03333 assert( iDir==1 || iDir==-1 ); 03334 for(ii=0; ii<pSnippet->nMatch; ii++){ 03335 int jj; 03336 int nNear; 03337 struct snippetMatch *pMatch = &pSnippet->aMatch[ii]; 03338 QueryTerm *pQueryTerm = &pQuery->pTerms[pMatch->iTerm]; 03339 03340 if( (pMatch->iTerm+iDir)<0 03341 || (pMatch->iTerm+iDir)>=pQuery->nTerms 03342 ){ 03343 continue; 03344 } 03345 03346 nNear = pQueryTerm->nNear; 03347 if( iDir<0 ){ 03348 nNear = pQueryTerm[-1].nNear; 03349 } 03350 03351 if( pMatch->iTerm>=0 && nNear ){ 03352 int isOk = 0; 03353 int iNextTerm = pMatch->iTerm+iDir; 03354 int iPrevTerm = iNextTerm; 03355 03356 int iEndToken; 03357 int iStartToken; 03358 03359 if( iDir<0 ){ 03360 int nPhrase = 1; 03361 iStartToken = pMatch->iToken; 03362 while( (pMatch->iTerm+nPhrase)<pQuery->nTerms 03363 && pQuery->pTerms[pMatch->iTerm+nPhrase].iPhrase>1 03364 ){ 03365 nPhrase++; 03366 } 03367 iEndToken = iStartToken + nPhrase - 1; 03368 }else{ 03369 iEndToken = pMatch->iToken; 03370 iStartToken = pMatch->iToken+1-pQueryTerm->iPhrase; 03371 } 03372 03373 while( pQuery->pTerms[iNextTerm].iPhrase>1 ){ 03374 iNextTerm--; 03375 } 03376 while( (iPrevTerm+1)<pQuery->nTerms && 03377 pQuery->pTerms[iPrevTerm+1].iPhrase>1 03378 ){ 03379 iPrevTerm++; 03380 } 03381 03382 for(jj=0; isOk==0 && jj<pSnippet->nMatch; jj++){ 03383 struct snippetMatch *p = &pSnippet->aMatch[jj]; 03384 if( p->iCol==pMatch->iCol && (( 03385 p->iTerm==iNextTerm && 03386 p->iToken>iEndToken && 03387 p->iToken<=iEndToken+nNear 03388 ) || ( 03389 p->iTerm==iPrevTerm && 03390 p->iToken<iStartToken && 03391 p->iToken>=iStartToken-nNear 03392 ))){ 03393 isOk = 1; 03394 } 03395 } 03396 if( !isOk ){ 03397 for(jj=1-pQueryTerm->iPhrase; jj<=0; jj++){ 03398 pMatch[jj].iTerm = -1; 03399 } 03400 ii = -1; 03401 iDir = 1; 03402 } 03403 } 03404 } 03405 iDir -= 2; 03406 } 03407 } 03408 03409 /* 03410 ** Compute all offsets for the current row of the query. 03411 ** If the offsets have already been computed, this routine is a no-op. 03412 */ 03413 static void snippetAllOffsets(fulltext_cursor *p){ 03414 int nColumn; 03415 int iColumn, i; 03416 int iFirst, iLast; 03417 fulltext_vtab *pFts; 03418 03419 if( p->snippet.nMatch ) return; 03420 if( p->q.nTerms==0 ) return; 03421 pFts = p->q.pFts; 03422 nColumn = pFts->nColumn; 03423 iColumn = (p->iCursorType - QUERY_FULLTEXT); 03424 if( iColumn<0 || iColumn>=nColumn ){ 03425 iFirst = 0; 03426 iLast = nColumn-1; 03427 }else{ 03428 iFirst = iColumn; 03429 iLast = iColumn; 03430 } 03431 for(i=iFirst; i<=iLast; i++){ 03432 const char *zDoc; 03433 int nDoc; 03434 zDoc = (const char*)sqlite3_column_text(p->pStmt, i+1); 03435 nDoc = sqlite3_column_bytes(p->pStmt, i+1); 03436 snippetOffsetsOfColumn(&p->q, &p->snippet, i, zDoc, nDoc); 03437 } 03438 03439 trimSnippetOffsetsForNear(&p->q, &p->snippet); 03440 } 03441 03442 /* 03443 ** Convert the information in the aMatch[] array of the snippet 03444 ** into the string zOffset[0..nOffset-1]. 03445 */ 03446 static void snippetOffsetText(Snippet *p){ 03447 int i; 03448 int cnt = 0; 03449 StringBuffer sb; 03450 char zBuf[200]; 03451 if( p->zOffset ) return; 03452 initStringBuffer(&sb); 03453 for(i=0; i<p->nMatch; i++){ 03454 struct snippetMatch *pMatch = &p->aMatch[i]; 03455 if( pMatch->iTerm>=0 ){ 03456 /* If snippetMatch.iTerm is less than 0, then the match was 03457 ** discarded as part of processing the NEAR operator (see the 03458 ** trimSnippetOffsetsForNear() function for details). Ignore 03459 ** it in this case 03460 */ 03461 zBuf[0] = ' '; 03462 sqlite3_snprintf(sizeof(zBuf)-1, &zBuf[cnt>0], "%d %d %d %d", 03463 pMatch->iCol, pMatch->iTerm, pMatch->iStart, pMatch->nByte); 03464 append(&sb, zBuf); 03465 cnt++; 03466 } 03467 } 03468 p->zOffset = stringBufferData(&sb); 03469 p->nOffset = stringBufferLength(&sb); 03470 } 03471 03472 /* 03473 ** zDoc[0..nDoc-1] is phrase of text. aMatch[0..nMatch-1] are a set 03474 ** of matching words some of which might be in zDoc. zDoc is column 03475 ** number iCol. 03476 ** 03477 ** iBreak is suggested spot in zDoc where we could begin or end an 03478 ** excerpt. Return a value similar to iBreak but possibly adjusted 03479 ** to be a little left or right so that the break point is better. 03480 */ 03481 static int wordBoundary( 03482 int iBreak, /* The suggested break point */ 03483 const char *zDoc, /* Document text */ 03484 int nDoc, /* Number of bytes in zDoc[] */ 03485 struct snippetMatch *aMatch, /* Matching words */ 03486 int nMatch, /* Number of entries in aMatch[] */ 03487 int iCol /* The column number for zDoc[] */ 03488 ){ 03489 int i; 03490 if( iBreak<=10 ){ 03491 return 0; 03492 } 03493 if( iBreak>=nDoc-10 ){ 03494 return nDoc; 03495 } 03496 for(i=0; i<nMatch && aMatch[i].iCol<iCol; i++){} 03497 while( i<nMatch && aMatch[i].iStart+aMatch[i].nByte<iBreak ){ i++; } 03498 if( i<nMatch ){ 03499 if( aMatch[i].iStart<iBreak+10 ){ 03500 return aMatch[i].iStart; 03501 } 03502 if( i>0 && aMatch[i-1].iStart+aMatch[i-1].nByte>=iBreak ){ 03503 return aMatch[i-1].iStart; 03504 } 03505 } 03506 for(i=1; i<=10; i++){ 03507 if( safe_isspace(zDoc[iBreak-i]) ){ 03508 return iBreak - i + 1; 03509 } 03510 if( safe_isspace(zDoc[iBreak+i]) ){ 03511 return iBreak + i + 1; 03512 } 03513 } 03514 return iBreak; 03515 } 03516 03517 03518 03519 /* 03520 ** Allowed values for Snippet.aMatch[].snStatus 03521 */ 03522 #define SNIPPET_IGNORE 0 /* It is ok to omit this match from the snippet */ 03523 #define SNIPPET_DESIRED 1 /* We want to include this match in the snippet */ 03524 03525 /* 03526 ** Generate the text of a snippet. 03527 */ 03528 static void snippetText( 03529 fulltext_cursor *pCursor, /* The cursor we need the snippet for */ 03530 const char *zStartMark, /* Markup to appear before each match */ 03531 const char *zEndMark, /* Markup to appear after each match */ 03532 const char *zEllipsis /* Ellipsis mark */ 03533 ){ 03534 int i, j; 03535 struct snippetMatch *aMatch; 03536 int nMatch; 03537 int nDesired; 03538 StringBuffer sb; 03539 int tailCol; 03540 int tailOffset; 03541 int iCol; 03542 int nDoc; 03543 const char *zDoc; 03544 int iStart, iEnd; 03545 int tailEllipsis = 0; 03546 int iMatch; 03547 03548 03549 sqlite3_free(pCursor->snippet.zSnippet); 03550 pCursor->snippet.zSnippet = 0; 03551 aMatch = pCursor->snippet.aMatch; 03552 nMatch = pCursor->snippet.nMatch; 03553 initStringBuffer(&sb); 03554 03555 for(i=0; i<nMatch; i++){ 03556 aMatch[i].snStatus = SNIPPET_IGNORE; 03557 } 03558 nDesired = 0; 03559 for(i=0; i<pCursor->q.nTerms; i++){ 03560 for(j=0; j<nMatch; j++){ 03561 if( aMatch[j].iTerm==i ){ 03562 aMatch[j].snStatus = SNIPPET_DESIRED; 03563 nDesired++; 03564 break; 03565 } 03566 } 03567 } 03568 03569 iMatch = 0; 03570 tailCol = -1; 03571 tailOffset = 0; 03572 for(i=0; i<nMatch && nDesired>0; i++){ 03573 if( aMatch[i].snStatus!=SNIPPET_DESIRED ) continue; 03574 nDesired--; 03575 iCol = aMatch[i].iCol; 03576 zDoc = (const char*)sqlite3_column_text(pCursor->pStmt, iCol+1); 03577 nDoc = sqlite3_column_bytes(pCursor->pStmt, iCol+1); 03578 iStart = aMatch[i].iStart - 40; 03579 iStart = wordBoundary(iStart, zDoc, nDoc, aMatch, nMatch, iCol); 03580 if( iStart<=10 ){ 03581 iStart = 0; 03582 } 03583 if( iCol==tailCol && iStart<=tailOffset+20 ){ 03584 iStart = tailOffset; 03585 } 03586 if( (iCol!=tailCol && tailCol>=0) || iStart!=tailOffset ){ 03587 trimWhiteSpace(&sb); 03588 appendWhiteSpace(&sb); 03589 append(&sb, zEllipsis); 03590 appendWhiteSpace(&sb); 03591 } 03592 iEnd = aMatch[i].iStart + aMatch[i].nByte + 40; 03593 iEnd = wordBoundary(iEnd, zDoc, nDoc, aMatch, nMatch, iCol); 03594 if( iEnd>=nDoc-10 ){ 03595 iEnd = nDoc; 03596 tailEllipsis = 0; 03597 }else{ 03598 tailEllipsis = 1; 03599 } 03600 while( iMatch<nMatch && aMatch[iMatch].iCol<iCol ){ iMatch++; } 03601 while( iStart<iEnd ){ 03602 while( iMatch<nMatch && aMatch[iMatch].iStart<iStart 03603 && aMatch[iMatch].iCol<=iCol ){ 03604 iMatch++; 03605 } 03606 if( iMatch<nMatch && aMatch[iMatch].iStart<iEnd 03607 && aMatch[iMatch].iCol==iCol ){ 03608 nappend(&sb, &zDoc[iStart], aMatch[iMatch].iStart - iStart); 03609 iStart = aMatch[iMatch].iStart; 03610 append(&sb, zStartMark); 03611 nappend(&sb, &zDoc[iStart], aMatch[iMatch].nByte); 03612 append(&sb, zEndMark); 03613 iStart += aMatch[iMatch].nByte; 03614 for(j=iMatch+1; j<nMatch; j++){ 03615 if( aMatch[j].iTerm==aMatch[iMatch].iTerm 03616 && aMatch[j].snStatus==SNIPPET_DESIRED ){ 03617 nDesired--; 03618 aMatch[j].snStatus = SNIPPET_IGNORE; 03619 } 03620 } 03621 }else{ 03622 nappend(&sb, &zDoc[iStart], iEnd - iStart); 03623 iStart = iEnd; 03624 } 03625 } 03626 tailCol = iCol; 03627 tailOffset = iEnd; 03628 } 03629 trimWhiteSpace(&sb); 03630 if( tailEllipsis ){ 03631 appendWhiteSpace(&sb); 03632 append(&sb, zEllipsis); 03633 } 03634 pCursor->snippet.zSnippet = stringBufferData(&sb); 03635 pCursor->snippet.nSnippet = stringBufferLength(&sb); 03636 } 03637 03638 03639 /* 03640 ** Close the cursor. For additional information see the documentation 03641 ** on the xClose method of the virtual table interface. 03642 */ 03643 static int fulltextClose(sqlite3_vtab_cursor *pCursor){ 03644 fulltext_cursor *c = (fulltext_cursor *) pCursor; 03645 FTSTRACE(("FTS3 Close %p\n", c)); 03646 sqlite3_finalize(c->pStmt); 03647 queryClear(&c->q); 03648 snippetClear(&c->snippet); 03649 if( c->result.nData!=0 ) dlrDestroy(&c->reader); 03650 dataBufferDestroy(&c->result); 03651 sqlite3_free(c); 03652 return SQLITE_OK; 03653 } 03654 03655 static int fulltextNext(sqlite3_vtab_cursor *pCursor){ 03656 fulltext_cursor *c = (fulltext_cursor *) pCursor; 03657 int rc; 03658 03659 FTSTRACE(("FTS3 Next %p\n", pCursor)); 03660 snippetClear(&c->snippet); 03661 if( c->iCursorType < QUERY_FULLTEXT ){ 03662 /* TODO(shess) Handle SQLITE_SCHEMA AND SQLITE_BUSY. */ 03663 rc = sqlite3_step(c->pStmt); 03664 switch( rc ){ 03665 case SQLITE_ROW: 03666 c->eof = 0; 03667 return SQLITE_OK; 03668 case SQLITE_DONE: 03669 c->eof = 1; 03670 return SQLITE_OK; 03671 default: 03672 c->eof = 1; 03673 return rc; 03674 } 03675 } else { /* full-text query */ 03676 rc = sqlite3_reset(c->pStmt); 03677 if( rc!=SQLITE_OK ) return rc; 03678 03679 if( c->result.nData==0 || dlrAtEnd(&c->reader) ){ 03680 c->eof = 1; 03681 return SQLITE_OK; 03682 } 03683 rc = sqlite3_bind_int64(c->pStmt, 1, dlrDocid(&c->reader)); 03684 dlrStep(&c->reader); 03685 if( rc!=SQLITE_OK ) return rc; 03686 /* TODO(shess) Handle SQLITE_SCHEMA AND SQLITE_BUSY. */ 03687 rc = sqlite3_step(c->pStmt); 03688 if( rc==SQLITE_ROW ){ /* the case we expect */ 03689 c->eof = 0; 03690 return SQLITE_OK; 03691 } 03692 /* an error occurred; abort */ 03693 return rc==SQLITE_DONE ? SQLITE_ERROR : rc; 03694 } 03695 } 03696 03697 03698 /* TODO(shess) If we pushed LeafReader to the top of the file, or to 03699 ** another file, term_select() could be pushed above 03700 ** docListOfTerm(). 03701 */ 03702 static int termSelect(fulltext_vtab *v, int iColumn, 03703 const char *pTerm, int nTerm, int isPrefix, 03704 DocListType iType, DataBuffer *out); 03705 03706 /* Return a DocList corresponding to the query term *pTerm. If *pTerm 03707 ** is the first term of a phrase query, go ahead and evaluate the phrase 03708 ** query and return the doclist for the entire phrase query. 03709 ** 03710 ** The resulting DL_DOCIDS doclist is stored in pResult, which is 03711 ** overwritten. 03712 */ 03713 static int docListOfTerm( 03714 fulltext_vtab *v, /* The full text index */ 03715 int iColumn, /* column to restrict to. No restriction if >=nColumn */ 03716 QueryTerm *pQTerm, /* Term we are looking for, or 1st term of a phrase */ 03717 DataBuffer *pResult /* Write the result here */ 03718 ){ 03719 DataBuffer left, right, new; 03720 int i, rc; 03721 03722 /* No phrase search if no position info. */ 03723 assert( pQTerm->nPhrase==0 || DL_DEFAULT!=DL_DOCIDS ); 03724 03725 /* This code should never be called with buffered updates. */ 03726 assert( v->nPendingData<0 ); 03727 03728 dataBufferInit(&left, 0); 03729 rc = termSelect(v, iColumn, pQTerm->pTerm, pQTerm->nTerm, pQTerm->isPrefix, 03730 (0<pQTerm->nPhrase ? DL_POSITIONS : DL_DOCIDS), &left); 03731 if( rc ) return rc; 03732 for(i=1; i<=pQTerm->nPhrase && left.nData>0; i++){ 03733 /* If this token is connected to the next by a NEAR operator, and 03734 ** the next token is the start of a phrase, then set nPhraseRight 03735 ** to the number of tokens in the phrase. Otherwise leave it at 1. 03736 */ 03737 int nPhraseRight = 1; 03738 while( (i+nPhraseRight)<=pQTerm->nPhrase 03739 && pQTerm[i+nPhraseRight].nNear==0 03740 ){ 03741 nPhraseRight++; 03742 } 03743 03744 dataBufferInit(&right, 0); 03745 rc = termSelect(v, iColumn, pQTerm[i].pTerm, pQTerm[i].nTerm, 03746 pQTerm[i].isPrefix, DL_POSITIONS, &right); 03747 if( rc ){ 03748 dataBufferDestroy(&left); 03749 return rc; 03750 } 03751 dataBufferInit(&new, 0); 03752 docListPhraseMerge(left.pData, left.nData, right.pData, right.nData, 03753 pQTerm[i-1].nNear, pQTerm[i-1].iPhrase + nPhraseRight, 03754 ((i<pQTerm->nPhrase) ? DL_POSITIONS : DL_DOCIDS), 03755 &new); 03756 dataBufferDestroy(&left); 03757 dataBufferDestroy(&right); 03758 left = new; 03759 } 03760 *pResult = left; 03761 return SQLITE_OK; 03762 } 03763 03764 /* Add a new term pTerm[0..nTerm-1] to the query *q. 03765 */ 03766 static void queryAdd(Query *q, const char *pTerm, int nTerm){ 03767 QueryTerm *t; 03768 ++q->nTerms; 03769 q->pTerms = sqlite3_realloc(q->pTerms, q->nTerms * sizeof(q->pTerms[0])); 03770 if( q->pTerms==0 ){ 03771 q->nTerms = 0; 03772 return; 03773 } 03774 t = &q->pTerms[q->nTerms - 1]; 03775 CLEAR(t); 03776 t->pTerm = sqlite3_malloc(nTerm+1); 03777 memcpy(t->pTerm, pTerm, nTerm); 03778 t->pTerm[nTerm] = 0; 03779 t->nTerm = nTerm; 03780 t->isOr = q->nextIsOr; 03781 t->isPrefix = 0; 03782 q->nextIsOr = 0; 03783 t->iColumn = q->nextColumn; 03784 q->nextColumn = q->dfltColumn; 03785 } 03786 03787 /* 03788 ** Check to see if the string zToken[0...nToken-1] matches any 03789 ** column name in the virtual table. If it does, 03790 ** return the zero-indexed column number. If not, return -1. 03791 */ 03792 static int checkColumnSpecifier( 03793 fulltext_vtab *pVtab, /* The virtual table */ 03794 const char *zToken, /* Text of the token */ 03795 int nToken /* Number of characters in the token */ 03796 ){ 03797 int i; 03798 for(i=0; i<pVtab->nColumn; i++){ 03799 if( memcmp(pVtab->azColumn[i], zToken, nToken)==0 03800 && pVtab->azColumn[i][nToken]==0 ){ 03801 return i; 03802 } 03803 } 03804 return -1; 03805 } 03806 03807 /* 03808 ** Parse the text at zSegment[0..nSegment-1]. Add additional terms 03809 ** to the query being assemblied in pQuery. 03810 ** 03811 ** inPhrase is true if zSegment[0..nSegement-1] is contained within 03812 ** double-quotes. If inPhrase is true, then the first term 03813 ** is marked with the number of terms in the phrase less one and 03814 ** OR and "-" syntax is ignored. If inPhrase is false, then every 03815 ** term found is marked with nPhrase=0 and OR and "-" syntax is significant. 03816 */ 03817 static int tokenizeSegment( 03818 sqlite3_tokenizer *pTokenizer, /* The tokenizer to use */ 03819 const char *zSegment, int nSegment, /* Query expression being parsed */ 03820 int inPhrase, /* True if within "..." */ 03821 Query *pQuery /* Append results here */ 03822 ){ 03823 const sqlite3_tokenizer_module *pModule = pTokenizer->pModule; 03824 sqlite3_tokenizer_cursor *pCursor; 03825 int firstIndex = pQuery->nTerms; 03826 int iCol; 03827 int nTerm = 1; 03828 03829 int rc = pModule->xOpen(pTokenizer, zSegment, nSegment, &pCursor); 03830 if( rc!=SQLITE_OK ) return rc; 03831 pCursor->pTokenizer = pTokenizer; 03832 03833 while( 1 ){ 03834 const char *zToken; 03835 int nToken, iBegin, iEnd, iPos; 03836 03837 rc = pModule->xNext(pCursor, 03838 &zToken, &nToken, 03839 &iBegin, &iEnd, &iPos); 03840 if( rc!=SQLITE_OK ) break; 03841 if( !inPhrase && 03842 zSegment[iEnd]==':' && 03843 (iCol = checkColumnSpecifier(pQuery->pFts, zToken, nToken))>=0 ){ 03844 pQuery->nextColumn = iCol; 03845 continue; 03846 } 03847 if( !inPhrase && pQuery->nTerms>0 && nToken==2 03848 && zSegment[iBegin+0]=='O' 03849 && zSegment[iBegin+1]=='R' 03850 ){ 03851 pQuery->nextIsOr = 1; 03852 continue; 03853 } 03854 if( !inPhrase && pQuery->nTerms>0 && !pQuery->nextIsOr && nToken==4 03855 && memcmp(&zSegment[iBegin], "NEAR", 4)==0 03856 ){ 03857 QueryTerm *pTerm = &pQuery->pTerms[pQuery->nTerms-1]; 03858 if( (iBegin+6)<nSegment 03859 && zSegment[iBegin+4] == '/' 03860 && isdigit(zSegment[iBegin+5]) 03861 ){ 03862 int k; 03863 pTerm->nNear = 0; 03864 for(k=5; (iBegin+k)<=nSegment && isdigit(zSegment[iBegin+k]); k++){ 03865 pTerm->nNear = pTerm->nNear*10 + (zSegment[iBegin+k] - '0'); 03866 } 03867 pModule->xNext(pCursor, &zToken, &nToken, &iBegin, &iEnd, &iPos); 03868 } else { 03869 pTerm->nNear = SQLITE_FTS3_DEFAULT_NEAR_PARAM; 03870 } 03871 pTerm->nNear++; 03872 continue; 03873 } 03874 03875 queryAdd(pQuery, zToken, nToken); 03876 if( !inPhrase && iBegin>0 && zSegment[iBegin-1]=='-' ){ 03877 pQuery->pTerms[pQuery->nTerms-1].isNot = 1; 03878 } 03879 if( iEnd<nSegment && zSegment[iEnd]=='*' ){ 03880 pQuery->pTerms[pQuery->nTerms-1].isPrefix = 1; 03881 } 03882 pQuery->pTerms[pQuery->nTerms-1].iPhrase = nTerm; 03883 if( inPhrase ){ 03884 nTerm++; 03885 } 03886 } 03887 03888 if( inPhrase && pQuery->nTerms>firstIndex ){ 03889 pQuery->pTerms[firstIndex].nPhrase = pQuery->nTerms - firstIndex - 1; 03890 } 03891 03892 return pModule->xClose(pCursor); 03893 } 03894 03895 /* Parse a query string, yielding a Query object pQuery. 03896 ** 03897 ** The calling function will need to queryClear() to clean up 03898 ** the dynamically allocated memory held by pQuery. 03899 */ 03900 static int parseQuery( 03901 fulltext_vtab *v, /* The fulltext index */ 03902 const char *zInput, /* Input text of the query string */ 03903 int nInput, /* Size of the input text */ 03904 int dfltColumn, /* Default column of the index to match against */ 03905 Query *pQuery /* Write the parse results here. */ 03906 ){ 03907 int iInput, inPhrase = 0; 03908 int ii; 03909 QueryTerm *aTerm; 03910 03911 if( zInput==0 ) nInput = 0; 03912 if( nInput<0 ) nInput = strlen(zInput); 03913 pQuery->nTerms = 0; 03914 pQuery->pTerms = NULL; 03915 pQuery->nextIsOr = 0; 03916 pQuery->nextColumn = dfltColumn; 03917 pQuery->dfltColumn = dfltColumn; 03918 pQuery->pFts = v; 03919 03920 for(iInput=0; iInput<nInput; ++iInput){ 03921 int i; 03922 for(i=iInput; i<nInput && zInput[i]!='"'; ++i){} 03923 if( i>iInput ){ 03924 tokenizeSegment(v->pTokenizer, zInput+iInput, i-iInput, inPhrase, 03925 pQuery); 03926 } 03927 iInput = i; 03928 if( i<nInput ){ 03929 assert( zInput[i]=='"' ); 03930 inPhrase = !inPhrase; 03931 } 03932 } 03933 03934 if( inPhrase ){ 03935 /* unmatched quote */ 03936 queryClear(pQuery); 03937 return SQLITE_ERROR; 03938 } 03939 03940 /* Modify the values of the QueryTerm.nPhrase variables to account for 03941 ** the NEAR operator. For the purposes of QueryTerm.nPhrase, phrases 03942 ** and tokens connected by the NEAR operator are handled as a single 03943 ** phrase. See comments above the QueryTerm structure for details. 03944 */ 03945 aTerm = pQuery->pTerms; 03946 for(ii=0; ii<pQuery->nTerms; ii++){ 03947 if( aTerm[ii].nNear || aTerm[ii].nPhrase ){ 03948 while (aTerm[ii+aTerm[ii].nPhrase].nNear) { 03949 aTerm[ii].nPhrase += (1 + aTerm[ii+aTerm[ii].nPhrase+1].nPhrase); 03950 } 03951 } 03952 } 03953 03954 return SQLITE_OK; 03955 } 03956 03957 /* TODO(shess) Refactor the code to remove this forward decl. */ 03958 static int flushPendingTerms(fulltext_vtab *v); 03959 03960 /* Perform a full-text query using the search expression in 03961 ** zInput[0..nInput-1]. Return a list of matching documents 03962 ** in pResult. 03963 ** 03964 ** Queries must match column iColumn. Or if iColumn>=nColumn 03965 ** they are allowed to match against any column. 03966 */ 03967 static int fulltextQuery( 03968 fulltext_vtab *v, /* The full text index */ 03969 int iColumn, /* Match against this column by default */ 03970 const char *zInput, /* The query string */ 03971 int nInput, /* Number of bytes in zInput[] */ 03972 DataBuffer *pResult, /* Write the result doclist here */ 03973 Query *pQuery /* Put parsed query string here */ 03974 ){ 03975 int i, iNext, rc; 03976 DataBuffer left, right, or, new; 03977 int nNot = 0; 03978 QueryTerm *aTerm; 03979 03980 /* TODO(shess) Instead of flushing pendingTerms, we could query for 03981 ** the relevant term and merge the doclist into what we receive from 03982 ** the database. Wait and see if this is a common issue, first. 03983 ** 03984 ** A good reason not to flush is to not generate update-related 03985 ** error codes from here. 03986 */ 03987 03988 /* Flush any buffered updates before executing the query. */ 03989 rc = flushPendingTerms(v); 03990 if( rc!=SQLITE_OK ) return rc; 03991 03992 /* TODO(shess) I think that the queryClear() calls below are not 03993 ** necessary, because fulltextClose() already clears the query. 03994 */ 03995 rc = parseQuery(v, zInput, nInput, iColumn, pQuery); 03996 if( rc!=SQLITE_OK ) return rc; 03997 03998 /* Empty or NULL queries return no results. */ 03999 if( pQuery->nTerms==0 ){ 04000 dataBufferInit(pResult, 0); 04001 return SQLITE_OK; 04002 } 04003 04004 /* Merge AND terms. */ 04005 /* TODO(shess) I think we can early-exit if( i>nNot && left.nData==0 ). */ 04006 aTerm = pQuery->pTerms; 04007 for(i = 0; i<pQuery->nTerms; i=iNext){ 04008 if( aTerm[i].isNot ){ 04009 /* Handle all NOT terms in a separate pass */ 04010 nNot++; 04011 iNext = i + aTerm[i].nPhrase+1; 04012 continue; 04013 } 04014 iNext = i + aTerm[i].nPhrase + 1; 04015 rc = docListOfTerm(v, aTerm[i].iColumn, &aTerm[i], &right); 04016 if( rc ){ 04017 if( i!=nNot ) dataBufferDestroy(&left); 04018 queryClear(pQuery); 04019 return rc; 04020 } 04021 while( iNext<pQuery->nTerms && aTerm[iNext].isOr ){ 04022 rc = docListOfTerm(v, aTerm[iNext].iColumn, &aTerm[iNext], &or); 04023 iNext += aTerm[iNext].nPhrase + 1; 04024 if( rc ){ 04025 if( i!=nNot ) dataBufferDestroy(&left); 04026 dataBufferDestroy(&right); 04027 queryClear(pQuery); 04028 return rc; 04029 } 04030 dataBufferInit(&new, 0); 04031 docListOrMerge(right.pData, right.nData, or.pData, or.nData, &new); 04032 dataBufferDestroy(&right); 04033 dataBufferDestroy(&or); 04034 right = new; 04035 } 04036 if( i==nNot ){ /* first term processed. */ 04037 left = right; 04038 }else{ 04039 dataBufferInit(&new, 0); 04040 docListAndMerge(left.pData, left.nData, right.pData, right.nData, &new); 04041 dataBufferDestroy(&right); 04042 dataBufferDestroy(&left); 04043 left = new; 04044 } 04045 } 04046 04047 if( nNot==pQuery->nTerms ){ 04048 /* We do not yet know how to handle a query of only NOT terms */ 04049 return SQLITE_ERROR; 04050 } 04051 04052 /* Do the EXCEPT terms */ 04053 for(i=0; i<pQuery->nTerms; i += aTerm[i].nPhrase + 1){ 04054 if( !aTerm[i].isNot ) continue; 04055 rc = docListOfTerm(v, aTerm[i].iColumn, &aTerm[i], &right); 04056 if( rc ){ 04057 queryClear(pQuery); 04058 dataBufferDestroy(&left); 04059 return rc; 04060 } 04061 dataBufferInit(&new, 0); 04062 docListExceptMerge(left.pData, left.nData, right.pData, right.nData, &new); 04063 dataBufferDestroy(&right); 04064 dataBufferDestroy(&left); 04065 left = new; 04066 } 04067 04068 *pResult = left; 04069 return rc; 04070 } 04071 04072 /* 04073 ** This is the xFilter interface for the virtual table. See 04074 ** the virtual table xFilter method documentation for additional 04075 ** information. 04076 ** 04077 ** If idxNum==QUERY_GENERIC then do a full table scan against 04078 ** the %_content table. 04079 ** 04080 ** If idxNum==QUERY_DOCID then do a docid lookup for a single entry 04081 ** in the %_content table. 04082 ** 04083 ** If idxNum>=QUERY_FULLTEXT then use the full text index. The 04084 ** column on the left-hand side of the MATCH operator is column 04085 ** number idxNum-QUERY_FULLTEXT, 0 indexed. argv[0] is the right-hand 04086 ** side of the MATCH operator. 04087 */ 04088 /* TODO(shess) Upgrade the cursor initialization and destruction to 04089 ** account for fulltextFilter() being called multiple times on the 04090 ** same cursor. The current solution is very fragile. Apply fix to 04091 ** fts3 as appropriate. 04092 */ 04093 static int fulltextFilter( 04094 sqlite3_vtab_cursor *pCursor, /* The cursor used for this query */ 04095 int idxNum, const char *idxStr, /* Which indexing scheme to use */ 04096 int argc, sqlite3_value **argv /* Arguments for the indexing scheme */ 04097 ){ 04098 fulltext_cursor *c = (fulltext_cursor *) pCursor; 04099 fulltext_vtab *v = cursor_vtab(c); 04100 int rc; 04101 04102 FTSTRACE(("FTS3 Filter %p\n",pCursor)); 04103 04104 /* If the cursor has a statement that was not prepared according to 04105 ** idxNum, clear it. I believe all calls to fulltextFilter with a 04106 ** given cursor will have the same idxNum , but in this case it's 04107 ** easy to be safe. 04108 */ 04109 if( c->pStmt && c->iCursorType!=idxNum ){ 04110 sqlite3_finalize(c->pStmt); 04111 c->pStmt = NULL; 04112 } 04113 04114 /* Get a fresh statement appropriate to idxNum. */ 04115 /* TODO(shess): Add a prepared-statement cache in the vt structure. 04116 ** The cache must handle multiple open cursors. Easier to cache the 04117 ** statement variants at the vt to reduce malloc/realloc/free here. 04118 ** Or we could have a StringBuffer variant which allowed stack 04119 ** construction for small values. 04120 */ 04121 if( !c->pStmt ){ 04122 StringBuffer sb; 04123 initStringBuffer(&sb); 04124 append(&sb, "SELECT docid, "); 04125 appendList(&sb, v->nColumn, v->azContentColumn); 04126 append(&sb, " FROM %_content"); 04127 if( idxNum!=QUERY_GENERIC ) append(&sb, " WHERE docid = ?"); 04128 rc = sql_prepare(v->db, v->zDb, v->zName, &c->pStmt, 04129 stringBufferData(&sb)); 04130 stringBufferDestroy(&sb); 04131 if( rc!=SQLITE_OK ) return rc; 04132 c->iCursorType = idxNum; 04133 }else{ 04134 sqlite3_reset(c->pStmt); 04135 assert( c->iCursorType==idxNum ); 04136 } 04137 04138 switch( idxNum ){ 04139 case QUERY_GENERIC: 04140 break; 04141 04142 case QUERY_DOCID: 04143 rc = sqlite3_bind_int64(c->pStmt, 1, sqlite3_value_int64(argv[0])); 04144 if( rc!=SQLITE_OK ) return rc; 04145 break; 04146 04147 default: /* full-text search */ 04148 { 04149 const char *zQuery = (const char *)sqlite3_value_text(argv[0]); 04150 assert( idxNum<=QUERY_FULLTEXT+v->nColumn); 04151 assert( argc==1 ); 04152 queryClear(&c->q); 04153 if( c->result.nData!=0 ){ 04154 /* This case happens if the same cursor is used repeatedly. */ 04155 dlrDestroy(&c->reader); 04156 dataBufferReset(&c->result); 04157 }else{ 04158 dataBufferInit(&c->result, 0); 04159 } 04160 rc = fulltextQuery(v, idxNum-QUERY_FULLTEXT, zQuery, -1, &c->result, &c->q); 04161 if( rc!=SQLITE_OK ) return rc; 04162 if( c->result.nData!=0 ){ 04163 dlrInit(&c->reader, DL_DOCIDS, c->result.pData, c->result.nData); 04164 } 04165 break; 04166 } 04167 } 04168 04169 return fulltextNext(pCursor); 04170 } 04171 04172 /* This is the xEof method of the virtual table. The SQLite core 04173 ** calls this routine to find out if it has reached the end of 04174 ** a query's results set. 04175 */ 04176 static int fulltextEof(sqlite3_vtab_cursor *pCursor){ 04177 fulltext_cursor *c = (fulltext_cursor *) pCursor; 04178 return c->eof; 04179 } 04180 04181 /* This is the xColumn method of the virtual table. The SQLite 04182 ** core calls this method during a query when it needs the value 04183 ** of a column from the virtual table. This method needs to use 04184 ** one of the sqlite3_result_*() routines to store the requested 04185 ** value back in the pContext. 04186 */ 04187 static int fulltextColumn(sqlite3_vtab_cursor *pCursor, 04188 sqlite3_context *pContext, int idxCol){ 04189 fulltext_cursor *c = (fulltext_cursor *) pCursor; 04190 fulltext_vtab *v = cursor_vtab(c); 04191 04192 if( idxCol<v->nColumn ){ 04193 sqlite3_value *pVal = sqlite3_column_value(c->pStmt, idxCol+1); 04194 sqlite3_result_value(pContext, pVal); 04195 }else if( idxCol==v->nColumn ){ 04196 /* The extra column whose name is the same as the table. 04197 ** Return a blob which is a pointer to the cursor 04198 */ 04199 sqlite3_result_blob(pContext, &c, sizeof(c), SQLITE_TRANSIENT); 04200 }else if( idxCol==v->nColumn+1 ){ 04201 /* The docid column, which is an alias for rowid. */ 04202 sqlite3_value *pVal = sqlite3_column_value(c->pStmt, 0); 04203 sqlite3_result_value(pContext, pVal); 04204 } 04205 return SQLITE_OK; 04206 } 04207 04208 /* This is the xRowid method. The SQLite core calls this routine to 04209 ** retrieve the rowid for the current row of the result set. fts3 04210 ** exposes %_content.docid as the rowid for the virtual table. The 04211 ** rowid should be written to *pRowid. 04212 */ 04213 static int fulltextRowid(sqlite3_vtab_cursor *pCursor, sqlite_int64 *pRowid){ 04214 fulltext_cursor *c = (fulltext_cursor *) pCursor; 04215 04216 *pRowid = sqlite3_column_int64(c->pStmt, 0); 04217 return SQLITE_OK; 04218 } 04219 04220 /* Add all terms in [zText] to pendingTerms table. If [iColumn] > 0, 04221 ** we also store positions and offsets in the hash table using that 04222 ** column number. 04223 */ 04224 static int buildTerms(fulltext_vtab *v, sqlite_int64 iDocid, 04225 const char *zText, int iColumn){ 04226 sqlite3_tokenizer *pTokenizer = v->pTokenizer; 04227 sqlite3_tokenizer_cursor *pCursor; 04228 const char *pToken; 04229 int nTokenBytes; 04230 int iStartOffset, iEndOffset, iPosition; 04231 int rc; 04232 04233 rc = pTokenizer->pModule->xOpen(pTokenizer, zText, -1, &pCursor); 04234 if( rc!=SQLITE_OK ) return rc; 04235 04236 pCursor->pTokenizer = pTokenizer; 04237 while( SQLITE_OK==(rc=pTokenizer->pModule->xNext(pCursor, 04238 &pToken, &nTokenBytes, 04239 &iStartOffset, &iEndOffset, 04240 &iPosition)) ){ 04241 DLCollector *p; 04242 int nData; /* Size of doclist before our update. */ 04243 04244 /* Positions can't be negative; we use -1 as a terminator 04245 * internally. Token can't be NULL or empty. */ 04246 if( iPosition<0 || pToken == NULL || nTokenBytes == 0 ){ 04247 rc = SQLITE_ERROR; 04248 break; 04249 } 04250 04251 p = fts3HashFind(&v->pendingTerms, pToken, nTokenBytes); 04252 if( p==NULL ){ 04253 nData = 0; 04254 p = dlcNew(iDocid, DL_DEFAULT); 04255 fts3HashInsert(&v->pendingTerms, pToken, nTokenBytes, p); 04256 04257 /* Overhead for our hash table entry, the key, and the value. */ 04258 v->nPendingData += sizeof(struct fts3HashElem)+sizeof(*p)+nTokenBytes; 04259 }else{ 04260 nData = p->b.nData; 04261 if( p->dlw.iPrevDocid!=iDocid ) dlcNext(p, iDocid); 04262 } 04263 if( iColumn>=0 ){ 04264 dlcAddPos(p, iColumn, iPosition, iStartOffset, iEndOffset); 04265 } 04266 04267 /* Accumulate data added by dlcNew or dlcNext, and dlcAddPos. */ 04268 v->nPendingData += p->b.nData-nData; 04269 } 04270 04271 /* TODO(shess) Check return? Should this be able to cause errors at 04272 ** this point? Actually, same question about sqlite3_finalize(), 04273 ** though one could argue that failure there means that the data is 04274 ** not durable. *ponder* 04275 */ 04276 pTokenizer->pModule->xClose(pCursor); 04277 if( SQLITE_DONE == rc ) return SQLITE_OK; 04278 return rc; 04279 } 04280 04281 /* Add doclists for all terms in [pValues] to pendingTerms table. */ 04282 static int insertTerms(fulltext_vtab *v, sqlite_int64 iDocid, 04283 sqlite3_value **pValues){ 04284 int i; 04285 for(i = 0; i < v->nColumn ; ++i){ 04286 char *zText = (char*)sqlite3_value_text(pValues[i]); 04287 int rc = buildTerms(v, iDocid, zText, i); 04288 if( rc!=SQLITE_OK ) return rc; 04289 } 04290 return SQLITE_OK; 04291 } 04292 04293 /* Add empty doclists for all terms in the given row's content to 04294 ** pendingTerms. 04295 */ 04296 static int deleteTerms(fulltext_vtab *v, sqlite_int64 iDocid){ 04297 const char **pValues; 04298 int i, rc; 04299 04300 /* TODO(shess) Should we allow such tables at all? */ 04301 if( DL_DEFAULT==DL_DOCIDS ) return SQLITE_ERROR; 04302 04303 rc = content_select(v, iDocid, &pValues); 04304 if( rc!=SQLITE_OK ) return rc; 04305 04306 for(i = 0 ; i < v->nColumn; ++i) { 04307 rc = buildTerms(v, iDocid, pValues[i], -1); 04308 if( rc!=SQLITE_OK ) break; 04309 } 04310 04311 freeStringArray(v->nColumn, pValues); 04312 return SQLITE_OK; 04313 } 04314 04315 /* TODO(shess) Refactor the code to remove this forward decl. */ 04316 static int initPendingTerms(fulltext_vtab *v, sqlite_int64 iDocid); 04317 04318 /* Insert a row into the %_content table; set *piDocid to be the ID of the 04319 ** new row. Add doclists for terms to pendingTerms. 04320 */ 04321 static int index_insert(fulltext_vtab *v, sqlite3_value *pRequestDocid, 04322 sqlite3_value **pValues, sqlite_int64 *piDocid){ 04323 int rc; 04324 04325 rc = content_insert(v, pRequestDocid, pValues); /* execute an SQL INSERT */ 04326 if( rc!=SQLITE_OK ) return rc; 04327 04328 /* docid column is an alias for rowid. */ 04329 *piDocid = sqlite3_last_insert_rowid(v->db); 04330 rc = initPendingTerms(v, *piDocid); 04331 if( rc!=SQLITE_OK ) return rc; 04332 04333 return insertTerms(v, *piDocid, pValues); 04334 } 04335 04336 /* Delete a row from the %_content table; add empty doclists for terms 04337 ** to pendingTerms. 04338 */ 04339 static int index_delete(fulltext_vtab *v, sqlite_int64 iRow){ 04340 int rc = initPendingTerms(v, iRow); 04341 if( rc!=SQLITE_OK ) return rc; 04342 04343 rc = deleteTerms(v, iRow); 04344 if( rc!=SQLITE_OK ) return rc; 04345 04346 return content_delete(v, iRow); /* execute an SQL DELETE */ 04347 } 04348 04349 /* Update a row in the %_content table; add delete doclists to 04350 ** pendingTerms for old terms not in the new data, add insert doclists 04351 ** to pendingTerms for terms in the new data. 04352 */ 04353 static int index_update(fulltext_vtab *v, sqlite_int64 iRow, 04354 sqlite3_value **pValues){ 04355 int rc = initPendingTerms(v, iRow); 04356 if( rc!=SQLITE_OK ) return rc; 04357 04358 /* Generate an empty doclist for each term that previously appeared in this 04359 * row. */ 04360 rc = deleteTerms(v, iRow); 04361 if( rc!=SQLITE_OK ) return rc; 04362 04363 rc = content_update(v, pValues, iRow); /* execute an SQL UPDATE */ 04364 if( rc!=SQLITE_OK ) return rc; 04365 04366 /* Now add positions for terms which appear in the updated row. */ 04367 return insertTerms(v, iRow, pValues); 04368 } 04369 04370 /*******************************************************************/ 04371 /* InteriorWriter is used to collect terms and block references into 04372 ** interior nodes in %_segments. See commentary at top of file for 04373 ** format. 04374 */ 04375 04376 /* How large interior nodes can grow. */ 04377 #define INTERIOR_MAX 2048 04378 04379 /* Minimum number of terms per interior node (except the root). This 04380 ** prevents large terms from making the tree too skinny - must be >0 04381 ** so that the tree always makes progress. Note that the min tree 04382 ** fanout will be INTERIOR_MIN_TERMS+1. 04383 */ 04384 #define INTERIOR_MIN_TERMS 7 04385 #if INTERIOR_MIN_TERMS<1 04386 # error INTERIOR_MIN_TERMS must be greater than 0. 04387 #endif 04388 04389 /* ROOT_MAX controls how much data is stored inline in the segment 04390 ** directory. 04391 */ 04392 /* TODO(shess) Push ROOT_MAX down to whoever is writing things. It's 04393 ** only here so that interiorWriterRootInfo() and leafWriterRootInfo() 04394 ** can both see it, but if the caller passed it in, we wouldn't even 04395 ** need a define. 04396 */ 04397 #define ROOT_MAX 1024 04398 #if ROOT_MAX<VARINT_MAX*2 04399 # error ROOT_MAX must have enough space for a header. 04400 #endif 04401 04402 /* InteriorBlock stores a linked-list of interior blocks while a lower 04403 ** layer is being constructed. 04404 */ 04405 typedef struct InteriorBlock { 04406 DataBuffer term; /* Leftmost term in block's subtree. */ 04407 DataBuffer data; /* Accumulated data for the block. */ 04408 struct InteriorBlock *next; 04409 } InteriorBlock; 04410 04411 static InteriorBlock *interiorBlockNew(int iHeight, sqlite_int64 iChildBlock, 04412 const char *pTerm, int nTerm){ 04413 InteriorBlock *block = sqlite3_malloc(sizeof(InteriorBlock)); 04414 char c[VARINT_MAX+VARINT_MAX]; 04415 int n; 04416 04417 if( block ){ 04418 memset(block, 0, sizeof(*block)); 04419 dataBufferInit(&block->term, 0); 04420 dataBufferReplace(&block->term, pTerm, nTerm); 04421 04422 n = fts3PutVarint(c, iHeight); 04423 n += fts3PutVarint(c+n, iChildBlock); 04424 dataBufferInit(&block->data, INTERIOR_MAX); 04425 dataBufferReplace(&block->data, c, n); 04426 } 04427 return block; 04428 } 04429 04430 #ifndef NDEBUG 04431 /* Verify that the data is readable as an interior node. */ 04432 static void interiorBlockValidate(InteriorBlock *pBlock){ 04433 const char *pData = pBlock->data.pData; 04434 int nData = pBlock->data.nData; 04435 int n, iDummy; 04436 sqlite_int64 iBlockid; 04437 04438 assert( nData>0 ); 04439 assert( pData!=0 ); 04440 assert( pData+nData>pData ); 04441 04442 /* Must lead with height of node as a varint(n), n>0 */ 04443 n = fts3GetVarint32(pData, &iDummy); 04444 assert( n>0 ); 04445 assert( iDummy>0 ); 04446 assert( n<nData ); 04447 pData += n; 04448 nData -= n; 04449 04450 /* Must contain iBlockid. */ 04451 n = fts3GetVarint(pData, &iBlockid); 04452 assert( n>0 ); 04453 assert( n<=nData ); 04454 pData += n; 04455 nData -= n; 04456 04457 /* Zero or more terms of positive length */ 04458 if( nData!=0 ){ 04459 /* First term is not delta-encoded. */ 04460 n = fts3GetVarint32(pData, &iDummy); 04461 assert( n>0 ); 04462 assert( iDummy>0 ); 04463 assert( n+iDummy>0); 04464 assert( n+iDummy<=nData ); 04465 pData += n+iDummy; 04466 nData -= n+iDummy; 04467 04468 /* Following terms delta-encoded. */ 04469 while( nData!=0 ){ 04470 /* Length of shared prefix. */ 04471 n = fts3GetVarint32(pData, &iDummy); 04472 assert( n>0 ); 04473 assert( iDummy>=0 ); 04474 assert( n<nData ); 04475 pData += n; 04476 nData -= n; 04477 04478 /* Length and data of distinct suffix. */ 04479 n = fts3GetVarint32(pData, &iDummy); 04480 assert( n>0 ); 04481 assert( iDummy>0 ); 04482 assert( n+iDummy>0); 04483 assert( n+iDummy<=nData ); 04484 pData += n+iDummy; 04485 nData -= n+iDummy; 04486 } 04487 } 04488 } 04489 #define ASSERT_VALID_INTERIOR_BLOCK(x) interiorBlockValidate(x) 04490 #else 04491 #define ASSERT_VALID_INTERIOR_BLOCK(x) assert( 1 ) 04492 #endif 04493 04494 typedef struct InteriorWriter { 04495 int iHeight; /* from 0 at leaves. */ 04496 InteriorBlock *first, *last; 04497 struct InteriorWriter *parentWriter; 04498 04499 DataBuffer term; /* Last term written to block "last". */ 04500 sqlite_int64 iOpeningChildBlock; /* First child block in block "last". */ 04501 #ifndef NDEBUG 04502 sqlite_int64 iLastChildBlock; /* for consistency checks. */ 04503 #endif 04504 } InteriorWriter; 04505 04506 /* Initialize an interior node where pTerm[nTerm] marks the leftmost 04507 ** term in the tree. iChildBlock is the leftmost child block at the 04508 ** next level down the tree. 04509 */ 04510 static void interiorWriterInit(int iHeight, const char *pTerm, int nTerm, 04511 sqlite_int64 iChildBlock, 04512 InteriorWriter *pWriter){ 04513 InteriorBlock *block; 04514 assert( iHeight>0 ); 04515 CLEAR(pWriter); 04516 04517 pWriter->iHeight = iHeight; 04518 pWriter->iOpeningChildBlock = iChildBlock; 04519 #ifndef NDEBUG 04520 pWriter->iLastChildBlock = iChildBlock; 04521 #endif 04522 block = interiorBlockNew(iHeight, iChildBlock, pTerm, nTerm); 04523 pWriter->last = pWriter->first = block; 04524 ASSERT_VALID_INTERIOR_BLOCK(pWriter->last); 04525 dataBufferInit(&pWriter->term, 0); 04526 } 04527 04528 /* Append the child node rooted at iChildBlock to the interior node, 04529 ** with pTerm[nTerm] as the leftmost term in iChildBlock's subtree. 04530 */ 04531 static void interiorWriterAppend(InteriorWriter *pWriter, 04532 const char *pTerm, int nTerm, 04533 sqlite_int64 iChildBlock){ 04534 char c[VARINT_MAX+VARINT_MAX]; 04535 int n, nPrefix = 0; 04536 04537 ASSERT_VALID_INTERIOR_BLOCK(pWriter->last); 04538 04539 /* The first term written into an interior node is actually 04540 ** associated with the second child added (the first child was added 04541 ** in interiorWriterInit, or in the if clause at the bottom of this 04542 ** function). That term gets encoded straight up, with nPrefix left 04543 ** at 0. 04544 */ 04545 if( pWriter->term.nData==0 ){ 04546 n = fts3PutVarint(c, nTerm); 04547 }else{ 04548 while( nPrefix<pWriter->term.nData && 04549 pTerm[nPrefix]==pWriter->term.pData[nPrefix] ){ 04550 nPrefix++; 04551 } 04552 04553 n = fts3PutVarint(c, nPrefix); 04554 n += fts3PutVarint(c+n, nTerm-nPrefix); 04555 } 04556 04557 #ifndef NDEBUG 04558 pWriter->iLastChildBlock++; 04559 #endif 04560 assert( pWriter->iLastChildBlock==iChildBlock ); 04561 04562 /* Overflow to a new block if the new term makes the current block 04563 ** too big, and the current block already has enough terms. 04564 */ 04565 if( pWriter->last->data.nData+n+nTerm-nPrefix>INTERIOR_MAX && 04566 iChildBlock-pWriter->iOpeningChildBlock>INTERIOR_MIN_TERMS ){ 04567 pWriter->last->next = interiorBlockNew(pWriter->iHeight, iChildBlock, 04568 pTerm, nTerm); 04569 pWriter->last = pWriter->last->next; 04570 pWriter->iOpeningChildBlock = iChildBlock; 04571 dataBufferReset(&pWriter->term); 04572 }else{ 04573 dataBufferAppend2(&pWriter->last->data, c, n, 04574 pTerm+nPrefix, nTerm-nPrefix); 04575 dataBufferReplace(&pWriter->term, pTerm, nTerm); 04576 } 04577 ASSERT_VALID_INTERIOR_BLOCK(pWriter->last); 04578 } 04579 04580 /* Free the space used by pWriter, including the linked-list of 04581 ** InteriorBlocks, and parentWriter, if present. 04582 */ 04583 static int interiorWriterDestroy(InteriorWriter *pWriter){ 04584 InteriorBlock *block = pWriter->first; 04585 04586 while( block!=NULL ){ 04587 InteriorBlock *b = block; 04588 block = block->next; 04589 dataBufferDestroy(&b->term); 04590 dataBufferDestroy(&b->data); 04591 sqlite3_free(b); 04592 } 04593 if( pWriter->parentWriter!=NULL ){ 04594 interiorWriterDestroy(pWriter->parentWriter); 04595 sqlite3_free(pWriter->parentWriter); 04596 } 04597 dataBufferDestroy(&pWriter->term); 04598 SCRAMBLE(pWriter); 04599 return SQLITE_OK; 04600 } 04601 04602 /* If pWriter can fit entirely in ROOT_MAX, return it as the root info 04603 ** directly, leaving *piEndBlockid unchanged. Otherwise, flush 04604 ** pWriter to %_segments, building a new layer of interior nodes, and 04605 ** recursively ask for their root into. 04606 */ 04607 static int interiorWriterRootInfo(fulltext_vtab *v, InteriorWriter *pWriter, 04608 char **ppRootInfo, int *pnRootInfo, 04609 sqlite_int64 *piEndBlockid){ 04610 InteriorBlock *block = pWriter->first; 04611 sqlite_int64 iBlockid = 0; 04612 int rc; 04613 04614 /* If we can fit the segment inline */ 04615 if( block==pWriter->last && block->data.nData<ROOT_MAX ){ 04616 *ppRootInfo = block->data.pData; 04617 *pnRootInfo = block->data.nData; 04618 return SQLITE_OK; 04619 } 04620 04621 /* Flush the first block to %_segments, and create a new level of 04622 ** interior node. 04623 */ 04624 ASSERT_VALID_INTERIOR_BLOCK(block); 04625 rc = block_insert(v, block->data.pData, block->data.nData, &iBlockid); 04626 if( rc!=SQLITE_OK ) return rc; 04627 *piEndBlockid = iBlockid; 04628 04629 pWriter->parentWriter = sqlite3_malloc(sizeof(*pWriter->parentWriter)); 04630 interiorWriterInit(pWriter->iHeight+1, 04631 block->term.pData, block->term.nData, 04632 iBlockid, pWriter->parentWriter); 04633 04634 /* Flush additional blocks and append to the higher interior 04635 ** node. 04636 */ 04637 for(block=block->next; block!=NULL; block=block->next){ 04638 ASSERT_VALID_INTERIOR_BLOCK(block); 04639 rc = block_insert(v, block->data.pData, block->data.nData, &iBlockid); 04640 if( rc!=SQLITE_OK ) return rc; 04641 *piEndBlockid = iBlockid; 04642 04643 interiorWriterAppend(pWriter->parentWriter, 04644 block->term.pData, block->term.nData, iBlockid); 04645 } 04646 04647 /* Parent node gets the chance to be the root. */ 04648 return interiorWriterRootInfo(v, pWriter->parentWriter, 04649 ppRootInfo, pnRootInfo, piEndBlockid); 04650 } 04651 04652 /****************************************************************/ 04653 /* InteriorReader is used to read off the data from an interior node 04654 ** (see comment at top of file for the format). 04655 */ 04656 typedef struct InteriorReader { 04657 const char *pData; 04658 int nData; 04659 04660 DataBuffer term; /* previous term, for decoding term delta. */ 04661 04662 sqlite_int64 iBlockid; 04663 } InteriorReader; 04664 04665 static void interiorReaderDestroy(InteriorReader *pReader){ 04666 dataBufferDestroy(&pReader->term); 04667 SCRAMBLE(pReader); 04668 } 04669 04670 /* TODO(shess) The assertions are great, but what if we're in NDEBUG 04671 ** and the blob is empty or otherwise contains suspect data? 04672 */ 04673 static void interiorReaderInit(const char *pData, int nData, 04674 InteriorReader *pReader){ 04675 int n, nTerm; 04676 04677 /* Require at least the leading flag byte */ 04678 assert( nData>0 ); 04679 assert( pData[0]!='\0' ); 04680 04681 CLEAR(pReader); 04682 04683 /* Decode the base blockid, and set the cursor to the first term. */ 04684 n = fts3GetVarint(pData+1, &pReader->iBlockid); 04685 assert( 1+n<=nData ); 04686 pReader->pData = pData+1+n; 04687 pReader->nData = nData-(1+n); 04688 04689 /* A single-child interior node (such as when a leaf node was too 04690 ** large for the segment directory) won't have any terms. 04691 ** Otherwise, decode the first term. 04692 */ 04693 if( pReader->nData==0 ){ 04694 dataBufferInit(&pReader->term, 0); 04695 }else{ 04696 n = fts3GetVarint32(pReader->pData, &nTerm); 04697 dataBufferInit(&pReader->term, nTerm); 04698 dataBufferReplace(&pReader->term, pReader->pData+n, nTerm); 04699 assert( n+nTerm<=pReader->nData ); 04700 pReader->pData += n+nTerm; 04701 pReader->nData -= n+nTerm; 04702 } 04703 } 04704 04705 static int interiorReaderAtEnd(InteriorReader *pReader){ 04706 return pReader->term.nData==0; 04707 } 04708 04709 static sqlite_int64 interiorReaderCurrentBlockid(InteriorReader *pReader){ 04710 return pReader->iBlockid; 04711 } 04712 04713 static int interiorReaderTermBytes(InteriorReader *pReader){ 04714 assert( !interiorReaderAtEnd(pReader) ); 04715 return pReader->term.nData; 04716 } 04717 static const char *interiorReaderTerm(InteriorReader *pReader){ 04718 assert( !interiorReaderAtEnd(pReader) ); 04719 return pReader->term.pData; 04720 } 04721 04722 /* Step forward to the next term in the node. */ 04723 static void interiorReaderStep(InteriorReader *pReader){ 04724 assert( !interiorReaderAtEnd(pReader) ); 04725 04726 /* If the last term has been read, signal eof, else construct the 04727 ** next term. 04728 */ 04729 if( pReader->nData==0 ){ 04730 dataBufferReset(&pReader->term); 04731 }else{ 04732 int n, nPrefix, nSuffix; 04733 04734 n = fts3GetVarint32(pReader->pData, &nPrefix); 04735 n += fts3GetVarint32(pReader->pData+n, &nSuffix); 04736 04737 /* Truncate the current term and append suffix data. */ 04738 pReader->term.nData = nPrefix; 04739 dataBufferAppend(&pReader->term, pReader->pData+n, nSuffix); 04740 04741 assert( n+nSuffix<=pReader->nData ); 04742 pReader->pData += n+nSuffix; 04743 pReader->nData -= n+nSuffix; 04744 } 04745 pReader->iBlockid++; 04746 } 04747 04748 /* Compare the current term to pTerm[nTerm], returning strcmp-style 04749 ** results. If isPrefix, equality means equal through nTerm bytes. 04750 */ 04751 static int interiorReaderTermCmp(InteriorReader *pReader, 04752 const char *pTerm, int nTerm, int isPrefix){ 04753 const char *pReaderTerm = interiorReaderTerm(pReader); 04754 int nReaderTerm = interiorReaderTermBytes(pReader); 04755 int c, n = nReaderTerm<nTerm ? nReaderTerm : nTerm; 04756 04757 if( n==0 ){ 04758 if( nReaderTerm>0 ) return -1; 04759 if( nTerm>0 ) return 1; 04760 return 0; 04761 } 04762 04763 c = memcmp(pReaderTerm, pTerm, n); 04764 if( c!=0 ) return c; 04765 if( isPrefix && n==nTerm ) return 0; 04766 return nReaderTerm - nTerm; 04767 } 04768 04769 /****************************************************************/ 04770 /* LeafWriter is used to collect terms and associated doclist data 04771 ** into leaf blocks in %_segments (see top of file for format info). 04772 ** Expected usage is: 04773 ** 04774 ** LeafWriter writer; 04775 ** leafWriterInit(0, 0, &writer); 04776 ** while( sorted_terms_left_to_process ){ 04777 ** // data is doclist data for that term. 04778 ** rc = leafWriterStep(v, &writer, pTerm, nTerm, pData, nData); 04779 ** if( rc!=SQLITE_OK ) goto err; 04780 ** } 04781 ** rc = leafWriterFinalize(v, &writer); 04782 **err: 04783 ** leafWriterDestroy(&writer); 04784 ** return rc; 04785 ** 04786 ** leafWriterStep() may write a collected leaf out to %_segments. 04787 ** leafWriterFinalize() finishes writing any buffered data and stores 04788 ** a root node in %_segdir. leafWriterDestroy() frees all buffers and 04789 ** InteriorWriters allocated as part of writing this segment. 04790 ** 04791 ** TODO(shess) Document leafWriterStepMerge(). 04792 */ 04793 04794 /* Put terms with data this big in their own block. */ 04795 #define STANDALONE_MIN 1024 04796 04797 /* Keep leaf blocks below this size. */ 04798 #define LEAF_MAX 2048 04799 04800 typedef struct LeafWriter { 04801 int iLevel; 04802 int idx; 04803 sqlite_int64 iStartBlockid; /* needed to create the root info */ 04804 sqlite_int64 iEndBlockid; /* when we're done writing. */ 04805 04806 DataBuffer term; /* previous encoded term */ 04807 DataBuffer data; /* encoding buffer */ 04808 04809 /* bytes of first term in the current node which distinguishes that 04810 ** term from the last term of the previous node. 04811 */ 04812 int nTermDistinct; 04813 04814 InteriorWriter parentWriter; /* if we overflow */ 04815 int has_parent; 04816 } LeafWriter; 04817 04818 static void leafWriterInit(int iLevel, int idx, LeafWriter *pWriter){ 04819 CLEAR(pWriter); 04820 pWriter->iLevel = iLevel; 04821 pWriter->idx = idx; 04822 04823 dataBufferInit(&pWriter->term, 32); 04824 04825 /* Start out with a reasonably sized block, though it can grow. */ 04826 dataBufferInit(&pWriter->data, LEAF_MAX); 04827 } 04828 04829 #ifndef NDEBUG 04830 /* Verify that the data is readable as a leaf node. */ 04831 static void leafNodeValidate(const char *pData, int nData){ 04832 int n, iDummy; 04833 04834 if( nData==0 ) return; 04835 assert( nData>0 ); 04836 assert( pData!=0 ); 04837 assert( pData+nData>pData ); 04838 04839 /* Must lead with a varint(0) */ 04840 n = fts3GetVarint32(pData, &iDummy); 04841 assert( iDummy==0 ); 04842 assert( n>0 ); 04843 assert( n<nData ); 04844 pData += n; 04845 nData -= n; 04846 04847 /* Leading term length and data must fit in buffer. */ 04848 n = fts3GetVarint32(pData, &iDummy); 04849 assert( n>0 ); 04850 assert( iDummy>0 ); 04851 assert( n+iDummy>0 ); 04852 assert( n+iDummy<nData ); 04853 pData += n+iDummy; 04854 nData -= n+iDummy; 04855 04856 /* Leading term's doclist length and data must fit. */ 04857 n = fts3GetVarint32(pData, &iDummy); 04858 assert( n>0 ); 04859 assert( iDummy>0 ); 04860 assert( n+iDummy>0 ); 04861 assert( n+iDummy<=nData ); 04862 ASSERT_VALID_DOCLIST(DL_DEFAULT, pData+n, iDummy, NULL); 04863 pData += n+iDummy; 04864 nData -= n+iDummy; 04865 04866 /* Verify that trailing terms and doclists also are readable. */ 04867 while( nData!=0 ){ 04868 n = fts3GetVarint32(pData, &iDummy); 04869 assert( n>0 ); 04870 assert( iDummy>=0 ); 04871 assert( n<nData ); 04872 pData += n; 04873 nData -= n; 04874 n = fts3GetVarint32(pData, &iDummy); 04875 assert( n>0 ); 04876 assert( iDummy>0 ); 04877 assert( n+iDummy>0 ); 04878 assert( n+iDummy<nData ); 04879 pData += n+iDummy; 04880 nData -= n+iDummy; 04881 04882 n = fts3GetVarint32(pData, &iDummy); 04883 assert( n>0 ); 04884 assert( iDummy>0 ); 04885 assert( n+iDummy>0 ); 04886 assert( n+iDummy<=nData ); 04887 ASSERT_VALID_DOCLIST(DL_DEFAULT, pData+n, iDummy, NULL); 04888 pData += n+iDummy; 04889 nData -= n+iDummy; 04890 } 04891 } 04892 #define ASSERT_VALID_LEAF_NODE(p, n) leafNodeValidate(p, n) 04893 #else 04894 #define ASSERT_VALID_LEAF_NODE(p, n) assert( 1 ) 04895 #endif 04896 04897 /* Flush the current leaf node to %_segments, and adding the resulting 04898 ** blockid and the starting term to the interior node which will 04899 ** contain it. 04900 */ 04901 static int leafWriterInternalFlush(fulltext_vtab *v, LeafWriter *pWriter, 04902 int iData, int nData){ 04903 sqlite_int64 iBlockid = 0; 04904 const char *pStartingTerm; 04905 int nStartingTerm, rc, n; 04906 04907 /* Must have the leading varint(0) flag, plus at least some 04908 ** valid-looking data. 04909 */ 04910 assert( nData>2 ); 04911 assert( iData>=0 ); 04912 assert( iData+nData<=pWriter->data.nData ); 04913 ASSERT_VALID_LEAF_NODE(pWriter->data.pData+iData, nData); 04914 04915 rc = block_insert(v, pWriter->data.pData+iData, nData, &iBlockid); 04916 if( rc!=SQLITE_OK ) return rc; 04917 assert( iBlockid!=0 ); 04918 04919 /* Reconstruct the first term in the leaf for purposes of building 04920 ** the interior node. 04921 */ 04922 n = fts3GetVarint32(pWriter->data.pData+iData+1, &nStartingTerm); 04923 pStartingTerm = pWriter->data.pData+iData+1+n; 04924 assert( pWriter->data.nData>iData+1+n+nStartingTerm ); 04925 assert( pWriter->nTermDistinct>0 ); 04926 assert( pWriter->nTermDistinct<=nStartingTerm ); 04927 nStartingTerm = pWriter->nTermDistinct; 04928 04929 if( pWriter->has_parent ){ 04930 interiorWriterAppend(&pWriter->parentWriter, 04931 pStartingTerm, nStartingTerm, iBlockid); 04932 }else{ 04933 interiorWriterInit(1, pStartingTerm, nStartingTerm, iBlockid, 04934 &pWriter->parentWriter); 04935 pWriter->has_parent = 1; 04936 } 04937 04938 /* Track the span of this segment's leaf nodes. */ 04939 if( pWriter->iEndBlockid==0 ){ 04940 pWriter->iEndBlockid = pWriter->iStartBlockid = iBlockid; 04941 }else{ 04942 pWriter->iEndBlockid++; 04943 assert( iBlockid==pWriter->iEndBlockid ); 04944 } 04945 04946 return SQLITE_OK; 04947 } 04948 static int leafWriterFlush(fulltext_vtab *v, LeafWriter *pWriter){ 04949 int rc = leafWriterInternalFlush(v, pWriter, 0, pWriter->data.nData); 04950 if( rc!=SQLITE_OK ) return rc; 04951 04952 /* Re-initialize the output buffer. */ 04953 dataBufferReset(&pWriter->data); 04954 04955 return SQLITE_OK; 04956 } 04957 04958 /* Fetch the root info for the segment. If the entire leaf fits 04959 ** within ROOT_MAX, then it will be returned directly, otherwise it 04960 ** will be flushed and the root info will be returned from the 04961 ** interior node. *piEndBlockid is set to the blockid of the last 04962 ** interior or leaf node written to disk (0 if none are written at 04963 ** all). 04964 */ 04965 static int leafWriterRootInfo(fulltext_vtab *v, LeafWriter *pWriter, 04966 char **ppRootInfo, int *pnRootInfo, 04967 sqlite_int64 *piEndBlockid){ 04968 /* we can fit the segment entirely inline */ 04969 if( !pWriter->has_parent && pWriter->data.nData<ROOT_MAX ){ 04970 *ppRootInfo = pWriter->data.pData; 04971 *pnRootInfo = pWriter->data.nData; 04972 *piEndBlockid = 0; 04973 return SQLITE_OK; 04974 } 04975 04976 /* Flush remaining leaf data. */ 04977 if( pWriter->data.nData>0 ){ 04978 int rc = leafWriterFlush(v, pWriter); 04979 if( rc!=SQLITE_OK ) return rc; 04980 } 04981 04982 /* We must have flushed a leaf at some point. */ 04983 assert( pWriter->has_parent ); 04984 04985 /* Tenatively set the end leaf blockid as the end blockid. If the 04986 ** interior node can be returned inline, this will be the final 04987 ** blockid, otherwise it will be overwritten by 04988 ** interiorWriterRootInfo(). 04989 */ 04990 *piEndBlockid = pWriter->iEndBlockid; 04991 04992 return interiorWriterRootInfo(v, &pWriter->parentWriter, 04993 ppRootInfo, pnRootInfo, piEndBlockid); 04994 } 04995 04996 /* Collect the rootInfo data and store it into the segment directory. 04997 ** This has the effect of flushing the segment's leaf data to 04998 ** %_segments, and also flushing any interior nodes to %_segments. 04999 */ 05000 static int leafWriterFinalize(fulltext_vtab *v, LeafWriter *pWriter){ 05001 sqlite_int64 iEndBlockid; 05002 char *pRootInfo; 05003 int rc, nRootInfo; 05004 05005 rc = leafWriterRootInfo(v, pWriter, &pRootInfo, &nRootInfo, &iEndBlockid); 05006 if( rc!=SQLITE_OK ) return rc; 05007 05008 /* Don't bother storing an entirely empty segment. */ 05009 if( iEndBlockid==0 && nRootInfo==0 ) return SQLITE_OK; 05010 05011 return segdir_set(v, pWriter->iLevel, pWriter->idx, 05012 pWriter->iStartBlockid, pWriter->iEndBlockid, 05013 iEndBlockid, pRootInfo, nRootInfo); 05014 } 05015 05016 static void leafWriterDestroy(LeafWriter *pWriter){ 05017 if( pWriter->has_parent ) interiorWriterDestroy(&pWriter->parentWriter); 05018 dataBufferDestroy(&pWriter->term); 05019 dataBufferDestroy(&pWriter->data); 05020 } 05021 05022 /* Encode a term into the leafWriter, delta-encoding as appropriate. 05023 ** Returns the length of the new term which distinguishes it from the 05024 ** previous term, which can be used to set nTermDistinct when a node 05025 ** boundary is crossed. 05026 */ 05027 static int leafWriterEncodeTerm(LeafWriter *pWriter, 05028 const char *pTerm, int nTerm){ 05029 char c[VARINT_MAX+VARINT_MAX]; 05030 int n, nPrefix = 0; 05031 05032 assert( nTerm>0 ); 05033 while( nPrefix<pWriter->term.nData && 05034 pTerm[nPrefix]==pWriter->term.pData[nPrefix] ){ 05035 nPrefix++; 05036 /* Failing this implies that the terms weren't in order. */ 05037 assert( nPrefix<nTerm ); 05038 } 05039 05040 if( pWriter->data.nData==0 ){ 05041 /* Encode the node header and leading term as: 05042 ** varint(0) 05043 ** varint(nTerm) 05044 ** char pTerm[nTerm] 05045 */ 05046 n = fts3PutVarint(c, '\0'); 05047 n += fts3PutVarint(c+n, nTerm); 05048 dataBufferAppend2(&pWriter->data, c, n, pTerm, nTerm); 05049 }else{ 05050 /* Delta-encode the term as: 05051 ** varint(nPrefix) 05052 ** varint(nSuffix) 05053 ** char pTermSuffix[nSuffix] 05054 */ 05055 n = fts3PutVarint(c, nPrefix); 05056 n += fts3PutVarint(c+n, nTerm-nPrefix); 05057 dataBufferAppend2(&pWriter->data, c, n, pTerm+nPrefix, nTerm-nPrefix); 05058 } 05059 dataBufferReplace(&pWriter->term, pTerm, nTerm); 05060 05061 return nPrefix+1; 05062 } 05063 05064 /* Used to avoid a memmove when a large amount of doclist data is in 05065 ** the buffer. This constructs a node and term header before 05066 ** iDoclistData and flushes the resulting complete node using 05067 ** leafWriterInternalFlush(). 05068 */ 05069 static int leafWriterInlineFlush(fulltext_vtab *v, LeafWriter *pWriter, 05070 const char *pTerm, int nTerm, 05071 int iDoclistData){ 05072 char c[VARINT_MAX+VARINT_MAX]; 05073 int iData, n = fts3PutVarint(c, 0); 05074 n += fts3PutVarint(c+n, nTerm); 05075 05076 /* There should always be room for the header. Even if pTerm shared 05077 ** a substantial prefix with the previous term, the entire prefix 05078 ** could be constructed from earlier data in the doclist, so there 05079 ** should be room. 05080 */ 05081 assert( iDoclistData>=n+nTerm ); 05082 05083 iData = iDoclistData-(n+nTerm); 05084 memcpy(pWriter->data.pData+iData, c, n); 05085 memcpy(pWriter->data.pData+iData+n, pTerm, nTerm); 05086 05087 return leafWriterInternalFlush(v, pWriter, iData, pWriter->data.nData-iData); 05088 } 05089 05090 /* Push pTerm[nTerm] along with the doclist data to the leaf layer of 05091 ** %_segments. 05092 */ 05093 static int leafWriterStepMerge(fulltext_vtab *v, LeafWriter *pWriter, 05094 const char *pTerm, int nTerm, 05095 DLReader *pReaders, int nReaders){ 05096 char c[VARINT_MAX+VARINT_MAX]; 05097 int iTermData = pWriter->data.nData, iDoclistData; 05098 int i, nData, n, nActualData, nActual, rc, nTermDistinct; 05099 05100 ASSERT_VALID_LEAF_NODE(pWriter->data.pData, pWriter->data.nData); 05101 nTermDistinct = leafWriterEncodeTerm(pWriter, pTerm, nTerm); 05102 05103 /* Remember nTermDistinct if opening a new node. */ 05104 if( iTermData==0 ) pWriter->nTermDistinct = nTermDistinct; 05105 05106 iDoclistData = pWriter->data.nData; 05107 05108 /* Estimate the length of the merged doclist so we can leave space 05109 ** to encode it. 05110 */ 05111 for(i=0, nData=0; i<nReaders; i++){ 05112 nData += dlrAllDataBytes(&pReaders[i]); 05113 } 05114 n = fts3PutVarint(c, nData); 05115 dataBufferAppend(&pWriter->data, c, n); 05116 05117 docListMerge(&pWriter->data, pReaders, nReaders); 05118 ASSERT_VALID_DOCLIST(DL_DEFAULT, 05119 pWriter->data.pData+iDoclistData+n, 05120 pWriter->data.nData-iDoclistData-n, NULL); 05121 05122 /* The actual amount of doclist data at this point could be smaller 05123 ** than the length we encoded. Additionally, the space required to 05124 ** encode this length could be smaller. For small doclists, this is 05125 ** not a big deal, we can just use memmove() to adjust things. 05126 */ 05127 nActualData = pWriter->data.nData-(iDoclistData+n); 05128 nActual = fts3PutVarint(c, nActualData); 05129 assert( nActualData<=nData ); 05130 assert( nActual<=n ); 05131 05132 /* If the new doclist is big enough for force a standalone leaf 05133 ** node, we can immediately flush it inline without doing the 05134 ** memmove(). 05135 */ 05136 /* TODO(shess) This test matches leafWriterStep(), which does this 05137 ** test before it knows the cost to varint-encode the term and 05138 ** doclist lengths. At some point, change to 05139 ** pWriter->data.nData-iTermData>STANDALONE_MIN. 05140 */ 05141 if( nTerm+nActualData>STANDALONE_MIN ){ 05142 /* Push leaf node from before this term. */ 05143 if( iTermData>0 ){ 05144 rc = leafWriterInternalFlush(v, pWriter, 0, iTermData); 05145 if( rc!=SQLITE_OK ) return rc; 05146 05147 pWriter->nTermDistinct = nTermDistinct; 05148 } 05149 05150 /* Fix the encoded doclist length. */ 05151 iDoclistData += n - nActual; 05152 memcpy(pWriter->data.pData+iDoclistData, c, nActual); 05153 05154 /* Push the standalone leaf node. */ 05155 rc = leafWriterInlineFlush(v, pWriter, pTerm, nTerm, iDoclistData); 05156 if( rc!=SQLITE_OK ) return rc; 05157 05158 /* Leave the node empty. */ 05159 dataBufferReset(&pWriter->data); 05160 05161 return rc; 05162 } 05163 05164 /* At this point, we know that the doclist was small, so do the 05165 ** memmove if indicated. 05166 */ 05167 if( nActual<n ){ 05168 memmove(pWriter->data.pData+iDoclistData+nActual, 05169 pWriter->data.pData+iDoclistData+n, 05170 pWriter->data.nData-(iDoclistData+n)); 05171 pWriter->data.nData -= n-nActual; 05172 } 05173 05174 /* Replace written length with actual length. */ 05175 memcpy(pWriter->data.pData+iDoclistData, c, nActual); 05176 05177 /* If the node is too large, break things up. */ 05178 /* TODO(shess) This test matches leafWriterStep(), which does this 05179 ** test before it knows the cost to varint-encode the term and 05180 ** doclist lengths. At some point, change to 05181 ** pWriter->data.nData>LEAF_MAX. 05182 */ 05183 if( iTermData+nTerm+nActualData>LEAF_MAX ){ 05184 /* Flush out the leading data as a node */ 05185 rc = leafWriterInternalFlush(v, pWriter, 0, iTermData); 05186 if( rc!=SQLITE_OK ) return rc; 05187 05188 pWriter->nTermDistinct = nTermDistinct; 05189 05190 /* Rebuild header using the current term */ 05191 n = fts3PutVarint(pWriter->data.pData, 0); 05192 n += fts3PutVarint(pWriter->data.pData+n, nTerm); 05193 memcpy(pWriter->data.pData+n, pTerm, nTerm); 05194 n += nTerm; 05195 05196 /* There should always be room, because the previous encoding 05197 ** included all data necessary to construct the term. 05198 */ 05199 assert( n<iDoclistData ); 05200 /* So long as STANDALONE_MIN is half or less of LEAF_MAX, the 05201 ** following memcpy() is safe (as opposed to needing a memmove). 05202 */ 05203 assert( 2*STANDALONE_MIN<=LEAF_MAX ); 05204 assert( n+pWriter->data.nData-iDoclistData<iDoclistData ); 05205 memcpy(pWriter->data.pData+n, 05206 pWriter->data.pData+iDoclistData, 05207 pWriter->data.nData-iDoclistData); 05208 pWriter->data.nData -= iDoclistData-n; 05209 } 05210 ASSERT_VALID_LEAF_NODE(pWriter->data.pData, pWriter->data.nData); 05211 05212 return SQLITE_OK; 05213 } 05214 05215 /* Push pTerm[nTerm] along with the doclist data to the leaf layer of 05216 ** %_segments. 05217 */ 05218 /* TODO(shess) Revise writeZeroSegment() so that doclists are 05219 ** constructed directly in pWriter->data. 05220 */ 05221 static int leafWriterStep(fulltext_vtab *v, LeafWriter *pWriter, 05222 const char *pTerm, int nTerm, 05223 const char *pData, int nData){ 05224 int rc; 05225 DLReader reader; 05226 05227 dlrInit(&reader, DL_DEFAULT, pData, nData); 05228 rc = leafWriterStepMerge(v, pWriter, pTerm, nTerm, &reader, 1); 05229 dlrDestroy(&reader); 05230 05231 return rc; 05232 } 05233 05234 05235 /****************************************************************/ 05236 /* LeafReader is used to iterate over an individual leaf node. */ 05237 typedef struct LeafReader { 05238 DataBuffer term; /* copy of current term. */ 05239 05240 const char *pData; /* data for current term. */ 05241 int nData; 05242 } LeafReader; 05243 05244 static void leafReaderDestroy(LeafReader *pReader){ 05245 dataBufferDestroy(&pReader->term); 05246 SCRAMBLE(pReader); 05247 } 05248 05249 static int leafReaderAtEnd(LeafReader *pReader){ 05250 return pReader->nData<=0; 05251 } 05252 05253 /* Access the current term. */ 05254 static int leafReaderTermBytes(LeafReader *pReader){ 05255 return pReader->term.nData; 05256 } 05257 static const char *leafReaderTerm(LeafReader *pReader){ 05258 assert( pReader->term.nData>0 ); 05259 return pReader->term.pData; 05260 } 05261 05262 /* Access the doclist data for the current term. */ 05263 static int leafReaderDataBytes(LeafReader *pReader){ 05264 int nData; 05265 assert( pReader->term.nData>0 ); 05266 fts3GetVarint32(pReader->pData, &nData); 05267 return nData; 05268 } 05269 static const char *leafReaderData(LeafReader *pReader){ 05270 int n, nData; 05271 assert( pReader->term.nData>0 ); 05272 n = fts3GetVarint32(pReader->pData, &nData); 05273 return pReader->pData+n; 05274 } 05275 05276 static void leafReaderInit(const char *pData, int nData, 05277 LeafReader *pReader){ 05278 int nTerm, n; 05279 05280 assert( nData>0 ); 05281 assert( pData[0]=='\0' ); 05282 05283 CLEAR(pReader); 05284 05285 /* Read the first term, skipping the header byte. */ 05286 n = fts3GetVarint32(pData+1, &nTerm); 05287 dataBufferInit(&pReader->term, nTerm); 05288 dataBufferReplace(&pReader->term, pData+1+n, nTerm); 05289 05290 /* Position after the first term. */ 05291 assert( 1+n+nTerm<nData ); 05292 pReader->pData = pData+1+n+nTerm; 05293 pReader->nData = nData-1-n-nTerm; 05294 } 05295 05296 /* Step the reader forward to the next term. */ 05297 static void leafReaderStep(LeafReader *pReader){ 05298 int n, nData, nPrefix, nSuffix; 05299 assert( !leafReaderAtEnd(pReader) ); 05300 05301 /* Skip previous entry's data block. */ 05302 n = fts3GetVarint32(pReader->pData, &nData); 05303 assert( n+nData<=pReader->nData ); 05304 pReader->pData += n+nData; 05305 pReader->nData -= n+nData; 05306 05307 if( !leafReaderAtEnd(pReader) ){ 05308 /* Construct the new term using a prefix from the old term plus a 05309 ** suffix from the leaf data. 05310 */ 05311 n = fts3GetVarint32(pReader->pData, &nPrefix); 05312 n += fts3GetVarint32(pReader->pData+n, &nSuffix); 05313 assert( n+nSuffix<pReader->nData ); 05314 pReader->term.nData = nPrefix; 05315 dataBufferAppend(&pReader->term, pReader->pData+n, nSuffix); 05316 05317 pReader->pData += n+nSuffix; 05318 pReader->nData -= n+nSuffix; 05319 } 05320 } 05321 05322 /* strcmp-style comparison of pReader's current term against pTerm. 05323 ** If isPrefix, equality means equal through nTerm bytes. 05324 */ 05325 static int leafReaderTermCmp(LeafReader *pReader, 05326 const char *pTerm, int nTerm, int isPrefix){ 05327 int c, n = pReader->term.nData<nTerm ? pReader->term.nData : nTerm; 05328 if( n==0 ){ 05329 if( pReader->term.nData>0 ) return -1; 05330 if(nTerm>0 ) return 1; 05331 return 0; 05332 } 05333 05334 c = memcmp(pReader->term.pData, pTerm, n); 05335 if( c!=0 ) return c; 05336 if( isPrefix && n==nTerm ) return 0; 05337 return pReader->term.nData - nTerm; 05338 } 05339 05340 05341 /****************************************************************/ 05342 /* LeavesReader wraps LeafReader to allow iterating over the entire 05343 ** leaf layer of the tree. 05344 */ 05345 typedef struct LeavesReader { 05346 int idx; /* Index within the segment. */ 05347 05348 sqlite3_stmt *pStmt; /* Statement we're streaming leaves from. */ 05349 int eof; /* we've seen SQLITE_DONE from pStmt. */ 05350 05351 LeafReader leafReader; /* reader for the current leaf. */ 05352 DataBuffer rootData; /* root data for inline. */ 05353 } LeavesReader; 05354 05355 /* Access the current term. */ 05356 static int leavesReaderTermBytes(LeavesReader *pReader){ 05357 assert( !pReader->eof ); 05358 return leafReaderTermBytes(&pReader->leafReader); 05359 } 05360 static const char *leavesReaderTerm(LeavesReader *pReader){ 05361 assert( !pReader->eof ); 05362 return leafReaderTerm(&pReader->leafReader); 05363 } 05364 05365 /* Access the doclist data for the current term. */ 05366 static int leavesReaderDataBytes(LeavesReader *pReader){ 05367 assert( !pReader->eof ); 05368 return leafReaderDataBytes(&pReader->leafReader); 05369 } 05370 static const char *leavesReaderData(LeavesReader *pReader){ 05371 assert( !pReader->eof ); 05372 return leafReaderData(&pReader->leafReader); 05373 } 05374 05375 static int leavesReaderAtEnd(LeavesReader *pReader){ 05376 return pReader->eof; 05377 } 05378 05379 /* loadSegmentLeaves() may not read all the way to SQLITE_DONE, thus 05380 ** leaving the statement handle open, which locks the table. 05381 */ 05382 /* TODO(shess) This "solution" is not satisfactory. Really, there 05383 ** should be check-in function for all statement handles which 05384 ** arranges to call sqlite3_reset(). This most likely will require 05385 ** modification to control flow all over the place, though, so for now 05386 ** just punt. 05387 ** 05388 ** Note the the current system assumes that segment merges will run to 05389 ** completion, which is why this particular probably hasn't arisen in 05390 ** this case. Probably a brittle assumption. 05391 */ 05392 static int leavesReaderReset(LeavesReader *pReader){ 05393 return sqlite3_reset(pReader->pStmt); 05394 } 05395 05396 static void leavesReaderDestroy(LeavesReader *pReader){ 05397 /* If idx is -1, that means we're using a non-cached statement 05398 ** handle in the optimize() case, so we need to release it. 05399 */ 05400 if( pReader->pStmt!=NULL && pReader->idx==-1 ){ 05401 sqlite3_finalize(pReader->pStmt); 05402 } 05403 leafReaderDestroy(&pReader->leafReader); 05404 dataBufferDestroy(&pReader->rootData); 05405 SCRAMBLE(pReader); 05406 } 05407 05408 /* Initialize pReader with the given root data (if iStartBlockid==0 05409 ** the leaf data was entirely contained in the root), or from the 05410 ** stream of blocks between iStartBlockid and iEndBlockid, inclusive. 05411 */ 05412 static int leavesReaderInit(fulltext_vtab *v, 05413 int idx, 05414 sqlite_int64 iStartBlockid, 05415 sqlite_int64 iEndBlockid, 05416 const char *pRootData, int nRootData, 05417 LeavesReader *pReader){ 05418 CLEAR(pReader); 05419 pReader->idx = idx; 05420 05421 dataBufferInit(&pReader->rootData, 0); 05422 if( iStartBlockid==0 ){ 05423 /* Entire leaf level fit in root data. */ 05424 dataBufferReplace(&pReader->rootData, pRootData, nRootData); 05425 leafReaderInit(pReader->rootData.pData, pReader->rootData.nData, 05426 &pReader->leafReader); 05427 }else{ 05428 sqlite3_stmt *s; 05429 int rc = sql_get_leaf_statement(v, idx, &s); 05430 if( rc!=SQLITE_OK ) return rc; 05431 05432 rc = sqlite3_bind_int64(s, 1, iStartBlockid); 05433 if( rc!=SQLITE_OK ) return rc; 05434 05435 rc = sqlite3_bind_int64(s, 2, iEndBlockid); 05436 if( rc!=SQLITE_OK ) return rc; 05437 05438 rc = sqlite3_step(s); 05439 if( rc==SQLITE_DONE ){ 05440 pReader->eof = 1; 05441 return SQLITE_OK; 05442 } 05443 if( rc!=SQLITE_ROW ) return rc; 05444 05445 pReader->pStmt = s; 05446 leafReaderInit(sqlite3_column_blob(pReader->pStmt, 0), 05447 sqlite3_column_bytes(pReader->pStmt, 0), 05448 &pReader->leafReader); 05449 } 05450 return SQLITE_OK; 05451 } 05452 05453 /* Step the current leaf forward to the next term. If we reach the 05454 ** end of the current leaf, step forward to the next leaf block. 05455 */ 05456 static int leavesReaderStep(fulltext_vtab *v, LeavesReader *pReader){ 05457 assert( !leavesReaderAtEnd(pReader) ); 05458 leafReaderStep(&pReader->leafReader); 05459 05460 if( leafReaderAtEnd(&pReader->leafReader) ){ 05461 int rc; 05462 if( pReader->rootData.pData ){ 05463 pReader->eof = 1; 05464 return SQLITE_OK; 05465 } 05466 rc = sqlite3_step(pReader->pStmt); 05467 if( rc!=SQLITE_ROW ){ 05468 pReader->eof = 1; 05469 return rc==SQLITE_DONE ? SQLITE_OK : rc; 05470 } 05471 leafReaderDestroy(&pReader->leafReader); 05472 leafReaderInit(sqlite3_column_blob(pReader->pStmt, 0), 05473 sqlite3_column_bytes(pReader->pStmt, 0), 05474 &pReader->leafReader); 05475 } 05476 return SQLITE_OK; 05477 } 05478 05479 /* Order LeavesReaders by their term, ignoring idx. Readers at eof 05480 ** always sort to the end. 05481 */ 05482 static int leavesReaderTermCmp(LeavesReader *lr1, LeavesReader *lr2){ 05483 if( leavesReaderAtEnd(lr1) ){ 05484 if( leavesReaderAtEnd(lr2) ) return 0; 05485 return 1; 05486 } 05487 if( leavesReaderAtEnd(lr2) ) return -1; 05488 05489 return leafReaderTermCmp(&lr1->leafReader, 05490 leavesReaderTerm(lr2), leavesReaderTermBytes(lr2), 05491 0); 05492 } 05493 05494 /* Similar to leavesReaderTermCmp(), with additional ordering by idx 05495 ** so that older segments sort before newer segments. 05496 */ 05497 static int leavesReaderCmp(LeavesReader *lr1, LeavesReader *lr2){ 05498 int c = leavesReaderTermCmp(lr1, lr2); 05499 if( c!=0 ) return c; 05500 return lr1->idx-lr2->idx; 05501 } 05502 05503 /* Assume that pLr[1]..pLr[nLr] are sorted. Bubble pLr[0] into its 05504 ** sorted position. 05505 */ 05506 static void leavesReaderReorder(LeavesReader *pLr, int nLr){ 05507 while( nLr>1 && leavesReaderCmp(pLr, pLr+1)>0 ){ 05508 LeavesReader tmp = pLr[0]; 05509 pLr[0] = pLr[1]; 05510 pLr[1] = tmp; 05511 nLr--; 05512 pLr++; 05513 } 05514 } 05515 05516 /* Initializes pReaders with the segments from level iLevel, returning 05517 ** the number of segments in *piReaders. Leaves pReaders in sorted 05518 ** order. 05519 */ 05520 static int leavesReadersInit(fulltext_vtab *v, int iLevel, 05521 LeavesReader *pReaders, int *piReaders){ 05522 sqlite3_stmt *s; 05523 int i, rc = sql_get_statement(v, SEGDIR_SELECT_LEVEL_STMT, &s); 05524 if( rc!=SQLITE_OK ) return rc; 05525 05526 rc = sqlite3_bind_int(s, 1, iLevel); 05527 if( rc!=SQLITE_OK ) return rc; 05528 05529 i = 0; 05530 while( (rc = sqlite3_step(s))==SQLITE_ROW ){ 05531 sqlite_int64 iStart = sqlite3_column_int64(s, 0); 05532 sqlite_int64 iEnd = sqlite3_column_int64(s, 1); 05533 const char *pRootData = sqlite3_column_blob(s, 2); 05534 int nRootData = sqlite3_column_bytes(s, 2); 05535 05536 assert( i<MERGE_COUNT ); 05537 rc = leavesReaderInit(v, i, iStart, iEnd, pRootData, nRootData, 05538 &pReaders[i]); 05539 if( rc!=SQLITE_OK ) break; 05540 05541 i++; 05542 } 05543 if( rc!=SQLITE_DONE ){ 05544 while( i-->0 ){ 05545 leavesReaderDestroy(&pReaders[i]); 05546 } 05547 return rc; 05548 } 05549 05550 *piReaders = i; 05551 05552 /* Leave our results sorted by term, then age. */ 05553 while( i-- ){ 05554 leavesReaderReorder(pReaders+i, *piReaders-i); 05555 } 05556 return SQLITE_OK; 05557 } 05558 05559 /* Merge doclists from pReaders[nReaders] into a single doclist, which 05560 ** is written to pWriter. Assumes pReaders is ordered oldest to 05561 ** newest. 05562 */ 05563 /* TODO(shess) Consider putting this inline in segmentMerge(). */ 05564 static int leavesReadersMerge(fulltext_vtab *v, 05565 LeavesReader *pReaders, int nReaders, 05566 LeafWriter *pWriter){ 05567 DLReader dlReaders[MERGE_COUNT]; 05568 const char *pTerm = leavesReaderTerm(pReaders); 05569 int i, nTerm = leavesReaderTermBytes(pReaders); 05570 05571 assert( nReaders<=MERGE_COUNT ); 05572 05573 for(i=0; i<nReaders; i++){ 05574 dlrInit(&dlReaders[i], DL_DEFAULT, 05575 leavesReaderData(pReaders+i), 05576 leavesReaderDataBytes(pReaders+i)); 05577 } 05578 05579 return leafWriterStepMerge(v, pWriter, pTerm, nTerm, dlReaders, nReaders); 05580 } 05581 05582 /* Forward ref due to mutual recursion with segdirNextIndex(). */ 05583 static int segmentMerge(fulltext_vtab *v, int iLevel); 05584 05585 /* Put the next available index at iLevel into *pidx. If iLevel 05586 ** already has MERGE_COUNT segments, they are merged to a higher 05587 ** level to make room. 05588 */ 05589 static int segdirNextIndex(fulltext_vtab *v, int iLevel, int *pidx){ 05590 int rc = segdir_max_index(v, iLevel, pidx); 05591 if( rc==SQLITE_DONE ){ /* No segments at iLevel. */ 05592 *pidx = 0; 05593 }else if( rc==SQLITE_ROW ){ 05594 if( *pidx==(MERGE_COUNT-1) ){ 05595 rc = segmentMerge(v, iLevel); 05596 if( rc!=SQLITE_OK ) return rc; 05597 *pidx = 0; 05598 }else{ 05599 (*pidx)++; 05600 } 05601 }else{ 05602 return rc; 05603 } 05604 return SQLITE_OK; 05605 } 05606 05607 /* Merge MERGE_COUNT segments at iLevel into a new segment at 05608 ** iLevel+1. If iLevel+1 is already full of segments, those will be 05609 ** merged to make room. 05610 */ 05611 static int segmentMerge(fulltext_vtab *v, int iLevel){ 05612 LeafWriter writer; 05613 LeavesReader lrs[MERGE_COUNT]; 05614 int i, rc, idx = 0; 05615 05616 /* Determine the next available segment index at the next level, 05617 ** merging as necessary. 05618 */ 05619 rc = segdirNextIndex(v, iLevel+1, &idx); 05620 if( rc!=SQLITE_OK ) return rc; 05621 05622 /* TODO(shess) This assumes that we'll always see exactly 05623 ** MERGE_COUNT segments to merge at a given level. That will be 05624 ** broken if we allow the developer to request preemptive or 05625 ** deferred merging. 05626 */ 05627 memset(&lrs, '\0', sizeof(lrs)); 05628 rc = leavesReadersInit(v, iLevel, lrs, &i); 05629 if( rc!=SQLITE_OK ) return rc; 05630 assert( i==MERGE_COUNT ); 05631 05632 leafWriterInit(iLevel+1, idx, &writer); 05633 05634 /* Since leavesReaderReorder() pushes readers at eof to the end, 05635 ** when the first reader is empty, all will be empty. 05636 */ 05637 while( !leavesReaderAtEnd(lrs) ){ 05638 /* Figure out how many readers share their next term. */ 05639 for(i=1; i<MERGE_COUNT && !leavesReaderAtEnd(lrs+i); i++){ 05640 if( 0!=leavesReaderTermCmp(lrs, lrs+i) ) break; 05641 } 05642 05643 rc = leavesReadersMerge(v, lrs, i, &writer); 05644 if( rc!=SQLITE_OK ) goto err; 05645 05646 /* Step forward those that were merged. */ 05647 while( i-->0 ){ 05648 rc = leavesReaderStep(v, lrs+i); 05649 if( rc!=SQLITE_OK ) goto err; 05650 05651 /* Reorder by term, then by age. */ 05652 leavesReaderReorder(lrs+i, MERGE_COUNT-i); 05653 } 05654 } 05655 05656 for(i=0; i<MERGE_COUNT; i++){ 05657 leavesReaderDestroy(&lrs[i]); 05658 } 05659 05660 rc = leafWriterFinalize(v, &writer); 05661 leafWriterDestroy(&writer); 05662 if( rc!=SQLITE_OK ) return rc; 05663 05664 /* Delete the merged segment data. */ 05665 return segdir_delete(v, iLevel); 05666 05667 err: 05668 for(i=0; i<MERGE_COUNT; i++){ 05669 leavesReaderDestroy(&lrs[i]); 05670 } 05671 leafWriterDestroy(&writer); 05672 return rc; 05673 } 05674 05675 /* Accumulate the union of *acc and *pData into *acc. */ 05676 static void docListAccumulateUnion(DataBuffer *acc, 05677 const char *pData, int nData) { 05678 DataBuffer tmp = *acc; 05679 dataBufferInit(acc, tmp.nData+nData); 05680 docListUnion(tmp.pData, tmp.nData, pData, nData, acc); 05681 dataBufferDestroy(&tmp); 05682 } 05683 05684 /* TODO(shess) It might be interesting to explore different merge 05685 ** strategies, here. For instance, since this is a sorted merge, we 05686 ** could easily merge many doclists in parallel. With some 05687 ** comprehension of the storage format, we could merge all of the 05688 ** doclists within a leaf node directly from the leaf node's storage. 05689 ** It may be worthwhile to merge smaller doclists before larger 05690 ** doclists, since they can be traversed more quickly - but the 05691 ** results may have less overlap, making them more expensive in a 05692 ** different way. 05693 */ 05694 05695 /* Scan pReader for pTerm/nTerm, and merge the term's doclist over 05696 ** *out (any doclists with duplicate docids overwrite those in *out). 05697 ** Internal function for loadSegmentLeaf(). 05698 */ 05699 static int loadSegmentLeavesInt(fulltext_vtab *v, LeavesReader *pReader, 05700 const char *pTerm, int nTerm, int isPrefix, 05701 DataBuffer *out){ 05702 /* doclist data is accumulated into pBuffers similar to how one does 05703 ** increment in binary arithmetic. If index 0 is empty, the data is 05704 ** stored there. If there is data there, it is merged and the 05705 ** results carried into position 1, with further merge-and-carry 05706 ** until an empty position is found. 05707 */ 05708 DataBuffer *pBuffers = NULL; 05709 int nBuffers = 0, nMaxBuffers = 0, rc; 05710 05711 assert( nTerm>0 ); 05712 05713 for(rc=SQLITE_OK; rc==SQLITE_OK && !leavesReaderAtEnd(pReader); 05714 rc=leavesReaderStep(v, pReader)){ 05715 /* TODO(shess) Really want leavesReaderTermCmp(), but that name is 05716 ** already taken to compare the terms of two LeavesReaders. Think 05717 ** on a better name. [Meanwhile, break encapsulation rather than 05718 ** use a confusing name.] 05719 */ 05720 int c = leafReaderTermCmp(&pReader->leafReader, pTerm, nTerm, isPrefix); 05721 if( c>0 ) break; /* Past any possible matches. */ 05722 if( c==0 ){ 05723 const char *pData = leavesReaderData(pReader); 05724 int iBuffer, nData = leavesReaderDataBytes(pReader); 05725 05726 /* Find the first empty buffer. */ 05727 for(iBuffer=0; iBuffer<nBuffers; ++iBuffer){ 05728 if( 0==pBuffers[iBuffer].nData ) break; 05729 } 05730 05731 /* Out of buffers, add an empty one. */ 05732 if( iBuffer==nBuffers ){ 05733 if( nBuffers==nMaxBuffers ){ 05734 DataBuffer *p; 05735 nMaxBuffers += 20; 05736 05737 /* Manual realloc so we can handle NULL appropriately. */ 05738 p = sqlite3_malloc(nMaxBuffers*sizeof(*pBuffers)); 05739 if( p==NULL ){ 05740 rc = SQLITE_NOMEM; 05741 break; 05742 } 05743 05744 if( nBuffers>0 ){ 05745 assert(pBuffers!=NULL); 05746 memcpy(p, pBuffers, nBuffers*sizeof(*pBuffers)); 05747 sqlite3_free(pBuffers); 05748 } 05749 pBuffers = p; 05750 } 05751 dataBufferInit(&(pBuffers[nBuffers]), 0); 05752 nBuffers++; 05753 } 05754 05755 /* At this point, must have an empty at iBuffer. */ 05756 assert(iBuffer<nBuffers && pBuffers[iBuffer].nData==0); 05757 05758 /* If empty was first buffer, no need for merge logic. */ 05759 if( iBuffer==0 ){ 05760 dataBufferReplace(&(pBuffers[0]), pData, nData); 05761 }else{ 05762 /* pAcc is the empty buffer the merged data will end up in. */ 05763 DataBuffer *pAcc = &(pBuffers[iBuffer]); 05764 DataBuffer *p = &(pBuffers[0]); 05765 05766 /* Handle position 0 specially to avoid need to prime pAcc 05767 ** with pData/nData. 05768 */ 05769 dataBufferSwap(p, pAcc); 05770 docListAccumulateUnion(pAcc, pData, nData); 05771 05772 /* Accumulate remaining doclists into pAcc. */ 05773 for(++p; p<pAcc; ++p){ 05774 docListAccumulateUnion(pAcc, p->pData, p->nData); 05775 05776 /* dataBufferReset() could allow a large doclist to blow up 05777 ** our memory requirements. 05778 */ 05779 if( p->nCapacity<1024 ){ 05780 dataBufferReset(p); 05781 }else{ 05782 dataBufferDestroy(p); 05783 dataBufferInit(p, 0); 05784 } 05785 } 05786 } 05787 } 05788 } 05789 05790 /* Union all the doclists together into *out. */ 05791 /* TODO(shess) What if *out is big? Sigh. */ 05792 if( rc==SQLITE_OK && nBuffers>0 ){ 05793 int iBuffer; 05794 for(iBuffer=0; iBuffer<nBuffers; ++iBuffer){ 05795 if( pBuffers[iBuffer].nData>0 ){ 05796 if( out->nData==0 ){ 05797 dataBufferSwap(out, &(pBuffers[iBuffer])); 05798 }else{ 05799 docListAccumulateUnion(out, pBuffers[iBuffer].pData, 05800 pBuffers[iBuffer].nData); 05801 } 05802 } 05803 } 05804 } 05805 05806 while( nBuffers-- ){ 05807 dataBufferDestroy(&(pBuffers[nBuffers])); 05808 } 05809 if( pBuffers!=NULL ) sqlite3_free(pBuffers); 05810 05811 return rc; 05812 } 05813 05814 /* Call loadSegmentLeavesInt() with pData/nData as input. */ 05815 static int loadSegmentLeaf(fulltext_vtab *v, const char *pData, int nData, 05816 const char *pTerm, int nTerm, int isPrefix, 05817 DataBuffer *out){ 05818 LeavesReader reader; 05819 int rc; 05820 05821 assert( nData>1 ); 05822 assert( *pData=='\0' ); 05823 rc = leavesReaderInit(v, 0, 0, 0, pData, nData, &reader); 05824 if( rc!=SQLITE_OK ) return rc; 05825 05826 rc = loadSegmentLeavesInt(v, &reader, pTerm, nTerm, isPrefix, out); 05827 leavesReaderReset(&reader); 05828 leavesReaderDestroy(&reader); 05829 return rc; 05830 } 05831 05832 /* Call loadSegmentLeavesInt() with the leaf nodes from iStartLeaf to 05833 ** iEndLeaf (inclusive) as input, and merge the resulting doclist into 05834 ** out. 05835 */ 05836 static int loadSegmentLeaves(fulltext_vtab *v, 05837 sqlite_int64 iStartLeaf, sqlite_int64 iEndLeaf, 05838 const char *pTerm, int nTerm, int isPrefix, 05839 DataBuffer *out){ 05840 int rc; 05841 LeavesReader reader; 05842 05843 assert( iStartLeaf<=iEndLeaf ); 05844 rc = leavesReaderInit(v, 0, iStartLeaf, iEndLeaf, NULL, 0, &reader); 05845 if( rc!=SQLITE_OK ) return rc; 05846 05847 rc = loadSegmentLeavesInt(v, &reader, pTerm, nTerm, isPrefix, out); 05848 leavesReaderReset(&reader); 05849 leavesReaderDestroy(&reader); 05850 return rc; 05851 } 05852 05853 /* Taking pData/nData as an interior node, find the sequence of child 05854 ** nodes which could include pTerm/nTerm/isPrefix. Note that the 05855 ** interior node terms logically come between the blocks, so there is 05856 ** one more blockid than there are terms (that block contains terms >= 05857 ** the last interior-node term). 05858 */ 05859 /* TODO(shess) The calling code may already know that the end child is 05860 ** not worth calculating, because the end may be in a later sibling 05861 ** node. Consider whether breaking symmetry is worthwhile. I suspect 05862 ** it is not worthwhile. 05863 */ 05864 static void getChildrenContaining(const char *pData, int nData, 05865 const char *pTerm, int nTerm, int isPrefix, 05866 sqlite_int64 *piStartChild, 05867 sqlite_int64 *piEndChild){ 05868 InteriorReader reader; 05869 05870 assert( nData>1 ); 05871 assert( *pData!='\0' ); 05872 interiorReaderInit(pData, nData, &reader); 05873 05874 /* Scan for the first child which could contain pTerm/nTerm. */ 05875 while( !interiorReaderAtEnd(&reader) ){ 05876 if( interiorReaderTermCmp(&reader, pTerm, nTerm, 0)>0 ) break; 05877 interiorReaderStep(&reader); 05878 } 05879 *piStartChild = interiorReaderCurrentBlockid(&reader); 05880 05881 /* Keep scanning to find a term greater than our term, using prefix 05882 ** comparison if indicated. If isPrefix is false, this will be the 05883 ** same blockid as the starting block. 05884 */ 05885 while( !interiorReaderAtEnd(&reader) ){ 05886 if( interiorReaderTermCmp(&reader, pTerm, nTerm, isPrefix)>0 ) break; 05887 interiorReaderStep(&reader); 05888 } 05889 *piEndChild = interiorReaderCurrentBlockid(&reader); 05890 05891 interiorReaderDestroy(&reader); 05892 05893 /* Children must ascend, and if !prefix, both must be the same. */ 05894 assert( *piEndChild>=*piStartChild ); 05895 assert( isPrefix || *piStartChild==*piEndChild ); 05896 } 05897 05898 /* Read block at iBlockid and pass it with other params to 05899 ** getChildrenContaining(). 05900 */ 05901 static int loadAndGetChildrenContaining( 05902 fulltext_vtab *v, 05903 sqlite_int64 iBlockid, 05904 const char *pTerm, int nTerm, int isPrefix, 05905 sqlite_int64 *piStartChild, sqlite_int64 *piEndChild 05906 ){ 05907 sqlite3_stmt *s = NULL; 05908 int rc; 05909 05910 assert( iBlockid!=0 ); 05911 assert( pTerm!=NULL ); 05912 assert( nTerm!=0 ); /* TODO(shess) Why not allow this? */ 05913 assert( piStartChild!=NULL ); 05914 assert( piEndChild!=NULL ); 05915 05916 rc = sql_get_statement(v, BLOCK_SELECT_STMT, &s); 05917 if( rc!=SQLITE_OK ) return rc; 05918 05919 rc = sqlite3_bind_int64(s, 1, iBlockid); 05920 if( rc!=SQLITE_OK ) return rc; 05921 05922 rc = sqlite3_step(s); 05923 if( rc==SQLITE_DONE ) return SQLITE_ERROR; 05924 if( rc!=SQLITE_ROW ) return rc; 05925 05926 getChildrenContaining(sqlite3_column_blob(s, 0), sqlite3_column_bytes(s, 0), 05927 pTerm, nTerm, isPrefix, piStartChild, piEndChild); 05928 05929 /* We expect only one row. We must execute another sqlite3_step() 05930 * to complete the iteration; otherwise the table will remain 05931 * locked. */ 05932 rc = sqlite3_step(s); 05933 if( rc==SQLITE_ROW ) return SQLITE_ERROR; 05934 if( rc!=SQLITE_DONE ) return rc; 05935 05936 return SQLITE_OK; 05937 } 05938 05939 /* Traverse the tree represented by pData[nData] looking for 05940 ** pTerm[nTerm], placing its doclist into *out. This is internal to 05941 ** loadSegment() to make error-handling cleaner. 05942 */ 05943 static int loadSegmentInt(fulltext_vtab *v, const char *pData, int nData, 05944 sqlite_int64 iLeavesEnd, 05945 const char *pTerm, int nTerm, int isPrefix, 05946 DataBuffer *out){ 05947 /* Special case where root is a leaf. */ 05948 if( *pData=='\0' ){ 05949 return loadSegmentLeaf(v, pData, nData, pTerm, nTerm, isPrefix, out); 05950 }else{ 05951 int rc; 05952 sqlite_int64 iStartChild, iEndChild; 05953 05954 /* Process pData as an interior node, then loop down the tree 05955 ** until we find the set of leaf nodes to scan for the term. 05956 */ 05957 getChildrenContaining(pData, nData, pTerm, nTerm, isPrefix, 05958 &iStartChild, &iEndChild); 05959 while( iStartChild>iLeavesEnd ){ 05960 sqlite_int64 iNextStart, iNextEnd; 05961 rc = loadAndGetChildrenContaining(v, iStartChild, pTerm, nTerm, isPrefix, 05962 &iNextStart, &iNextEnd); 05963 if( rc!=SQLITE_OK ) return rc; 05964 05965 /* If we've branched, follow the end branch, too. */ 05966 if( iStartChild!=iEndChild ){ 05967 sqlite_int64 iDummy; 05968 rc = loadAndGetChildrenContaining(v, iEndChild, pTerm, nTerm, isPrefix, 05969 &iDummy, &iNextEnd); 05970 if( rc!=SQLITE_OK ) return rc; 05971 } 05972 05973 assert( iNextStart<=iNextEnd ); 05974 iStartChild = iNextStart; 05975 iEndChild = iNextEnd; 05976 } 05977 assert( iStartChild<=iLeavesEnd ); 05978 assert( iEndChild<=iLeavesEnd ); 05979 05980 /* Scan through the leaf segments for doclists. */ 05981 return loadSegmentLeaves(v, iStartChild, iEndChild, 05982 pTerm, nTerm, isPrefix, out); 05983 } 05984 } 05985 05986 /* Call loadSegmentInt() to collect the doclist for pTerm/nTerm, then 05987 ** merge its doclist over *out (any duplicate doclists read from the 05988 ** segment rooted at pData will overwrite those in *out). 05989 */ 05990 /* TODO(shess) Consider changing this to determine the depth of the 05991 ** leaves using either the first characters of interior nodes (when 05992 ** ==1, we're one level above the leaves), or the first character of 05993 ** the root (which will describe the height of the tree directly). 05994 ** Either feels somewhat tricky to me. 05995 */ 05996 /* TODO(shess) The current merge is likely to be slow for large 05997 ** doclists (though it should process from newest/smallest to 05998 ** oldest/largest, so it may not be that bad). It might be useful to 05999 ** modify things to allow for N-way merging. This could either be 06000 ** within a segment, with pairwise merges across segments, or across 06001 ** all segments at once. 06002 */ 06003 static int loadSegment(fulltext_vtab *v, const char *pData, int nData, 06004 sqlite_int64 iLeavesEnd, 06005 const char *pTerm, int nTerm, int isPrefix, 06006 DataBuffer *out){ 06007 DataBuffer result; 06008 int rc; 06009 06010 assert( nData>1 ); 06011 06012 /* This code should never be called with buffered updates. */ 06013 assert( v->nPendingData<0 ); 06014 06015 dataBufferInit(&result, 0); 06016 rc = loadSegmentInt(v, pData, nData, iLeavesEnd, 06017 pTerm, nTerm, isPrefix, &result); 06018 if( rc==SQLITE_OK && result.nData>0 ){ 06019 if( out->nData==0 ){ 06020 DataBuffer tmp = *out; 06021 *out = result; 06022 result = tmp; 06023 }else{ 06024 DataBuffer merged; 06025 DLReader readers[2]; 06026 06027 dlrInit(&readers[0], DL_DEFAULT, out->pData, out->nData); 06028 dlrInit(&readers[1], DL_DEFAULT, result.pData, result.nData); 06029 dataBufferInit(&merged, out->nData+result.nData); 06030 docListMerge(&merged, readers, 2); 06031 dataBufferDestroy(out); 06032 *out = merged; 06033 dlrDestroy(&readers[0]); 06034 dlrDestroy(&readers[1]); 06035 } 06036 } 06037 dataBufferDestroy(&result); 06038 return rc; 06039 } 06040 06041 /* Scan the database and merge together the posting lists for the term 06042 ** into *out. 06043 */ 06044 static int termSelect(fulltext_vtab *v, int iColumn, 06045 const char *pTerm, int nTerm, int isPrefix, 06046 DocListType iType, DataBuffer *out){ 06047 DataBuffer doclist; 06048 sqlite3_stmt *s; 06049 int rc = sql_get_statement(v, SEGDIR_SELECT_ALL_STMT, &s); 06050 if( rc!=SQLITE_OK ) return rc; 06051 06052 /* This code should never be called with buffered updates. */ 06053 assert( v->nPendingData<0 ); 06054 06055 dataBufferInit(&doclist, 0); 06056 06057 /* Traverse the segments from oldest to newest so that newer doclist 06058 ** elements for given docids overwrite older elements. 06059 */ 06060 while( (rc = sqlite3_step(s))==SQLITE_ROW ){ 06061 const char *pData = sqlite3_column_blob(s, 2); 06062 const int nData = sqlite3_column_bytes(s, 2); 06063 const sqlite_int64 iLeavesEnd = sqlite3_column_int64(s, 1); 06064 rc = loadSegment(v, pData, nData, iLeavesEnd, pTerm, nTerm, isPrefix, 06065 &doclist); 06066 if( rc!=SQLITE_OK ) goto err; 06067 } 06068 if( rc==SQLITE_DONE ){ 06069 if( doclist.nData!=0 ){ 06070 /* TODO(shess) The old term_select_all() code applied the column 06071 ** restrict as we merged segments, leading to smaller buffers. 06072 ** This is probably worthwhile to bring back, once the new storage 06073 ** system is checked in. 06074 */ 06075 if( iColumn==v->nColumn) iColumn = -1; 06076 docListTrim(DL_DEFAULT, doclist.pData, doclist.nData, 06077 iColumn, iType, out); 06078 } 06079 rc = SQLITE_OK; 06080 } 06081 06082 err: 06083 dataBufferDestroy(&doclist); 06084 return rc; 06085 } 06086 06087 /****************************************************************/ 06088 /* Used to hold hashtable data for sorting. */ 06089 typedef struct TermData { 06090 const char *pTerm; 06091 int nTerm; 06092 DLCollector *pCollector; 06093 } TermData; 06094 06095 /* Orders TermData elements in strcmp fashion ( <0 for less-than, 0 06096 ** for equal, >0 for greater-than). 06097 */ 06098 static int termDataCmp(const void *av, const void *bv){ 06099 const TermData *a = (const TermData *)av; 06100 const TermData *b = (const TermData *)bv; 06101 int n = a->nTerm<b->nTerm ? a->nTerm : b->nTerm; 06102 int c = memcmp(a->pTerm, b->pTerm, n); 06103 if( c!=0 ) return c; 06104 return a->nTerm-b->nTerm; 06105 } 06106 06107 /* Order pTerms data by term, then write a new level 0 segment using 06108 ** LeafWriter. 06109 */ 06110 static int writeZeroSegment(fulltext_vtab *v, fts3Hash *pTerms){ 06111 fts3HashElem *e; 06112 int idx, rc, i, n; 06113 TermData *pData; 06114 LeafWriter writer; 06115 DataBuffer dl; 06116 06117 /* Determine the next index at level 0, merging as necessary. */ 06118 rc = segdirNextIndex(v, 0, &idx); 06119 if( rc!=SQLITE_OK ) return rc; 06120 06121 n = fts3HashCount(pTerms); 06122 pData = sqlite3_malloc(n*sizeof(TermData)); 06123 06124 for(i = 0, e = fts3HashFirst(pTerms); e; i++, e = fts3HashNext(e)){ 06125 assert( i<n ); 06126 pData[i].pTerm = fts3HashKey(e); 06127 pData[i].nTerm = fts3HashKeysize(e); 06128 pData[i].pCollector = fts3HashData(e); 06129 } 06130 assert( i==n ); 06131 06132 /* TODO(shess) Should we allow user-defined collation sequences, 06133 ** here? I think we only need that once we support prefix searches. 06134 */ 06135 if( n>1 ) qsort(pData, n, sizeof(*pData), termDataCmp); 06136 06137 /* TODO(shess) Refactor so that we can write directly to the segment 06138 ** DataBuffer, as happens for segment merges. 06139 */ 06140 leafWriterInit(0, idx, &writer); 06141 dataBufferInit(&dl, 0); 06142 for(i=0; i<n; i++){ 06143 dataBufferReset(&dl); 06144 dlcAddDoclist(pData[i].pCollector, &dl); 06145 rc = leafWriterStep(v, &writer, 06146 pData[i].pTerm, pData[i].nTerm, dl.pData, dl.nData); 06147 if( rc!=SQLITE_OK ) goto err; 06148 } 06149 rc = leafWriterFinalize(v, &writer); 06150 06151 err: 06152 dataBufferDestroy(&dl); 06153 sqlite3_free(pData); 06154 leafWriterDestroy(&writer); 06155 return rc; 06156 } 06157 06158 /* If pendingTerms has data, free it. */ 06159 static int clearPendingTerms(fulltext_vtab *v){ 06160 if( v->nPendingData>=0 ){ 06161 fts3HashElem *e; 06162 for(e=fts3HashFirst(&v->pendingTerms); e; e=fts3HashNext(e)){ 06163 dlcDelete(fts3HashData(e)); 06164 } 06165 fts3HashClear(&v->pendingTerms); 06166 v->nPendingData = -1; 06167 } 06168 return SQLITE_OK; 06169 } 06170 06171 /* If pendingTerms has data, flush it to a level-zero segment, and 06172 ** free it. 06173 */ 06174 static int flushPendingTerms(fulltext_vtab *v){ 06175 if( v->nPendingData>=0 ){ 06176 int rc = writeZeroSegment(v, &v->pendingTerms); 06177 if( rc==SQLITE_OK ) clearPendingTerms(v); 06178 return rc; 06179 } 06180 return SQLITE_OK; 06181 } 06182 06183 /* If pendingTerms is "too big", or docid is out of order, flush it. 06184 ** Regardless, be certain that pendingTerms is initialized for use. 06185 */ 06186 static int initPendingTerms(fulltext_vtab *v, sqlite_int64 iDocid){ 06187 /* TODO(shess) Explore whether partially flushing the buffer on 06188 ** forced-flush would provide better performance. I suspect that if 06189 ** we ordered the doclists by size and flushed the largest until the 06190 ** buffer was half empty, that would let the less frequent terms 06191 ** generate longer doclists. 06192 */ 06193 if( iDocid<=v->iPrevDocid || v->nPendingData>kPendingThreshold ){ 06194 int rc = flushPendingTerms(v); 06195 if( rc!=SQLITE_OK ) return rc; 06196 } 06197 if( v->nPendingData<0 ){ 06198 fts3HashInit(&v->pendingTerms, FTS3_HASH_STRING, 1); 06199 v->nPendingData = 0; 06200 } 06201 v->iPrevDocid = iDocid; 06202 return SQLITE_OK; 06203 } 06204 06205 /* This function implements the xUpdate callback; it is the top-level entry 06206 * point for inserting, deleting or updating a row in a full-text table. */ 06207 static int fulltextUpdate(sqlite3_vtab *pVtab, int nArg, sqlite3_value **ppArg, 06208 sqlite_int64 *pRowid){ 06209 fulltext_vtab *v = (fulltext_vtab *) pVtab; 06210 int rc; 06211 06212 FTSTRACE(("FTS3 Update %p\n", pVtab)); 06213 06214 if( nArg<2 ){ 06215 rc = index_delete(v, sqlite3_value_int64(ppArg[0])); 06216 if( rc==SQLITE_OK ){ 06217 /* If we just deleted the last row in the table, clear out the 06218 ** index data. 06219 */ 06220 rc = content_exists(v); 06221 if( rc==SQLITE_ROW ){ 06222 rc = SQLITE_OK; 06223 }else if( rc==SQLITE_DONE ){ 06224 /* Clear the pending terms so we don't flush a useless level-0 06225 ** segment when the transaction closes. 06226 */ 06227 rc = clearPendingTerms(v); 06228 if( rc==SQLITE_OK ){ 06229 rc = segdir_delete_all(v); 06230 } 06231 } 06232 } 06233 } else if( sqlite3_value_type(ppArg[0]) != SQLITE_NULL ){ 06234 /* An update: 06235 * ppArg[0] = old rowid 06236 * ppArg[1] = new rowid 06237 * ppArg[2..2+v->nColumn-1] = values 06238 * ppArg[2+v->nColumn] = value for magic column (we ignore this) 06239 * ppArg[2+v->nColumn+1] = value for docid 06240 */ 06241 sqlite_int64 rowid = sqlite3_value_int64(ppArg[0]); 06242 if( sqlite3_value_type(ppArg[1]) != SQLITE_INTEGER || 06243 sqlite3_value_int64(ppArg[1]) != rowid ){ 06244 rc = SQLITE_ERROR; /* we don't allow changing the rowid */ 06245 }else if( sqlite3_value_type(ppArg[2+v->nColumn+1]) != SQLITE_INTEGER || 06246 sqlite3_value_int64(ppArg[2+v->nColumn+1]) != rowid ){ 06247 rc = SQLITE_ERROR; /* we don't allow changing the docid */ 06248 }else{ 06249 assert( nArg==2+v->nColumn+2); 06250 rc = index_update(v, rowid, &ppArg[2]); 06251 } 06252 } else { 06253 /* An insert: 06254 * ppArg[1] = requested rowid 06255 * ppArg[2..2+v->nColumn-1] = values 06256 * ppArg[2+v->nColumn] = value for magic column (we ignore this) 06257 * ppArg[2+v->nColumn+1] = value for docid 06258 */ 06259 sqlite3_value *pRequestDocid = ppArg[2+v->nColumn+1]; 06260 assert( nArg==2+v->nColumn+2); 06261 if( SQLITE_NULL != sqlite3_value_type(pRequestDocid) && 06262 SQLITE_NULL != sqlite3_value_type(ppArg[1]) ){ 06263 /* TODO(shess) Consider allowing this to work if the values are 06264 ** identical. I'm inclined to discourage that usage, though, 06265 ** given that both rowid and docid are special columns. Better 06266 ** would be to define one or the other as the default winner, 06267 ** but should it be fts3-centric (docid) or SQLite-centric 06268 ** (rowid)? 06269 */ 06270 rc = SQLITE_ERROR; 06271 }else{ 06272 if( SQLITE_NULL == sqlite3_value_type(pRequestDocid) ){ 06273 pRequestDocid = ppArg[1]; 06274 } 06275 rc = index_insert(v, pRequestDocid, &ppArg[2], pRowid); 06276 } 06277 } 06278 06279 return rc; 06280 } 06281 06282 static int fulltextSync(sqlite3_vtab *pVtab){ 06283 FTSTRACE(("FTS3 xSync()\n")); 06284 return flushPendingTerms((fulltext_vtab *)pVtab); 06285 } 06286 06287 static int fulltextBegin(sqlite3_vtab *pVtab){ 06288 fulltext_vtab *v = (fulltext_vtab *) pVtab; 06289 FTSTRACE(("FTS3 xBegin()\n")); 06290 06291 /* Any buffered updates should have been cleared by the previous 06292 ** transaction. 06293 */ 06294 assert( v->nPendingData<0 ); 06295 return clearPendingTerms(v); 06296 } 06297 06298 static int fulltextCommit(sqlite3_vtab *pVtab){ 06299 fulltext_vtab *v = (fulltext_vtab *) pVtab; 06300 FTSTRACE(("FTS3 xCommit()\n")); 06301 06302 /* Buffered updates should have been cleared by fulltextSync(). */ 06303 assert( v->nPendingData<0 ); 06304 return clearPendingTerms(v); 06305 } 06306 06307 static int fulltextRollback(sqlite3_vtab *pVtab){ 06308 FTSTRACE(("FTS3 xRollback()\n")); 06309 return clearPendingTerms((fulltext_vtab *)pVtab); 06310 } 06311 06312 /* 06313 ** Implementation of the snippet() function for FTS3 06314 */ 06315 static void snippetFunc( 06316 sqlite3_context *pContext, 06317 int argc, 06318 sqlite3_value **argv 06319 ){ 06320 fulltext_cursor *pCursor; 06321 if( argc<1 ) return; 06322 if( sqlite3_value_type(argv[0])!=SQLITE_BLOB || 06323 sqlite3_value_bytes(argv[0])!=sizeof(pCursor) ){ 06324 sqlite3_result_error(pContext, "illegal first argument to html_snippet",-1); 06325 }else{ 06326 const char *zStart = "<b>"; 06327 const char *zEnd = "</b>"; 06328 const char *zEllipsis = "<b>...</b>"; 06329 memcpy(&pCursor, sqlite3_value_blob(argv[0]), sizeof(pCursor)); 06330 if( argc>=2 ){ 06331 zStart = (const char*)sqlite3_value_text(argv[1]); 06332 if( argc>=3 ){ 06333 zEnd = (const char*)sqlite3_value_text(argv[2]); 06334 if( argc>=4 ){ 06335 zEllipsis = (const char*)sqlite3_value_text(argv[3]); 06336 } 06337 } 06338 } 06339 snippetAllOffsets(pCursor); 06340 snippetText(pCursor, zStart, zEnd, zEllipsis); 06341 sqlite3_result_text(pContext, pCursor->snippet.zSnippet, 06342 pCursor->snippet.nSnippet, SQLITE_STATIC); 06343 } 06344 } 06345 06346 /* 06347 ** Implementation of the offsets() function for FTS3 06348 */ 06349 static void snippetOffsetsFunc( 06350 sqlite3_context *pContext, 06351 int argc, 06352 sqlite3_value **argv 06353 ){ 06354 fulltext_cursor *pCursor; 06355 if( argc<1 ) return; 06356 if( sqlite3_value_type(argv[0])!=SQLITE_BLOB || 06357 sqlite3_value_bytes(argv[0])!=sizeof(pCursor) ){ 06358 sqlite3_result_error(pContext, "illegal first argument to offsets",-1); 06359 }else{ 06360 memcpy(&pCursor, sqlite3_value_blob(argv[0]), sizeof(pCursor)); 06361 snippetAllOffsets(pCursor); 06362 snippetOffsetText(&pCursor->snippet); 06363 sqlite3_result_text(pContext, 06364 pCursor->snippet.zOffset, pCursor->snippet.nOffset, 06365 SQLITE_STATIC); 06366 } 06367 } 06368 06369 /* OptLeavesReader is nearly identical to LeavesReader, except that 06370 ** where LeavesReader is geared towards the merging of complete 06371 ** segment levels (with exactly MERGE_COUNT segments), OptLeavesReader 06372 ** is geared towards implementation of the optimize() function, and 06373 ** can merge all segments simultaneously. This version may be 06374 ** somewhat less efficient than LeavesReader because it merges into an 06375 ** accumulator rather than doing an N-way merge, but since segment 06376 ** size grows exponentially (so segment count logrithmically) this is 06377 ** probably not an immediate problem. 06378 */ 06379 /* TODO(shess): Prove that assertion, or extend the merge code to 06380 ** merge tree fashion (like the prefix-searching code does). 06381 */ 06382 /* TODO(shess): OptLeavesReader and LeavesReader could probably be 06383 ** merged with little or no loss of performance for LeavesReader. The 06384 ** merged code would need to handle >MERGE_COUNT segments, and would 06385 ** also need to be able to optionally optimize away deletes. 06386 */ 06387 typedef struct OptLeavesReader { 06388 /* Segment number, to order readers by age. */ 06389 int segment; 06390 LeavesReader reader; 06391 } OptLeavesReader; 06392 06393 static int optLeavesReaderAtEnd(OptLeavesReader *pReader){ 06394 return leavesReaderAtEnd(&pReader->reader); 06395 } 06396 static int optLeavesReaderTermBytes(OptLeavesReader *pReader){ 06397 return leavesReaderTermBytes(&pReader->reader); 06398 } 06399 static const char *optLeavesReaderData(OptLeavesReader *pReader){ 06400 return leavesReaderData(&pReader->reader); 06401 } 06402 static int optLeavesReaderDataBytes(OptLeavesReader *pReader){ 06403 return leavesReaderDataBytes(&pReader->reader); 06404 } 06405 static const char *optLeavesReaderTerm(OptLeavesReader *pReader){ 06406 return leavesReaderTerm(&pReader->reader); 06407 } 06408 static int optLeavesReaderStep(fulltext_vtab *v, OptLeavesReader *pReader){ 06409 return leavesReaderStep(v, &pReader->reader); 06410 } 06411 static int optLeavesReaderTermCmp(OptLeavesReader *lr1, OptLeavesReader *lr2){ 06412 return leavesReaderTermCmp(&lr1->reader, &lr2->reader); 06413 } 06414 /* Order by term ascending, segment ascending (oldest to newest), with 06415 ** exhausted readers to the end. 06416 */ 06417 static int optLeavesReaderCmp(OptLeavesReader *lr1, OptLeavesReader *lr2){ 06418 int c = optLeavesReaderTermCmp(lr1, lr2); 06419 if( c!=0 ) return c; 06420 return lr1->segment-lr2->segment; 06421 } 06422 /* Bubble pLr[0] to appropriate place in pLr[1..nLr-1]. Assumes that 06423 ** pLr[1..nLr-1] is already sorted. 06424 */ 06425 static void optLeavesReaderReorder(OptLeavesReader *pLr, int nLr){ 06426 while( nLr>1 && optLeavesReaderCmp(pLr, pLr+1)>0 ){ 06427 OptLeavesReader tmp = pLr[0]; 06428 pLr[0] = pLr[1]; 06429 pLr[1] = tmp; 06430 nLr--; 06431 pLr++; 06432 } 06433 } 06434 06435 /* optimize() helper function. Put the readers in order and iterate 06436 ** through them, merging doclists for matching terms into pWriter. 06437 ** Returns SQLITE_OK on success, or the SQLite error code which 06438 ** prevented success. 06439 */ 06440 static int optimizeInternal(fulltext_vtab *v, 06441 OptLeavesReader *readers, int nReaders, 06442 LeafWriter *pWriter){ 06443 int i, rc = SQLITE_OK; 06444 DataBuffer doclist, merged, tmp; 06445 06446 /* Order the readers. */ 06447 i = nReaders; 06448 while( i-- > 0 ){ 06449 optLeavesReaderReorder(&readers[i], nReaders-i); 06450 } 06451 06452 dataBufferInit(&doclist, LEAF_MAX); 06453 dataBufferInit(&merged, LEAF_MAX); 06454 06455 /* Exhausted readers bubble to the end, so when the first reader is 06456 ** at eof, all are at eof. 06457 */ 06458 while( !optLeavesReaderAtEnd(&readers[0]) ){ 06459 06460 /* Figure out how many readers share the next term. */ 06461 for(i=1; i<nReaders && !optLeavesReaderAtEnd(&readers[i]); i++){ 06462 if( 0!=optLeavesReaderTermCmp(&readers[0], &readers[i]) ) break; 06463 } 06464 06465 /* Special-case for no merge. */ 06466 if( i==1 ){ 06467 /* Trim deletions from the doclist. */ 06468 dataBufferReset(&merged); 06469 docListTrim(DL_DEFAULT, 06470 optLeavesReaderData(&readers[0]), 06471 optLeavesReaderDataBytes(&readers[0]), 06472 -1, DL_DEFAULT, &merged); 06473 }else{ 06474 DLReader dlReaders[MERGE_COUNT]; 06475 int iReader, nReaders; 06476 06477 /* Prime the pipeline with the first reader's doclist. After 06478 ** one pass index 0 will reference the accumulated doclist. 06479 */ 06480 dlrInit(&dlReaders[0], DL_DEFAULT, 06481 optLeavesReaderData(&readers[0]), 06482 optLeavesReaderDataBytes(&readers[0])); 06483 iReader = 1; 06484 06485 assert( iReader<i ); /* Must execute the loop at least once. */ 06486 while( iReader<i ){ 06487 /* Merge 16 inputs per pass. */ 06488 for( nReaders=1; iReader<i && nReaders<MERGE_COUNT; 06489 iReader++, nReaders++ ){ 06490 dlrInit(&dlReaders[nReaders], DL_DEFAULT, 06491 optLeavesReaderData(&readers[iReader]), 06492 optLeavesReaderDataBytes(&readers[iReader])); 06493 } 06494 06495 /* Merge doclists and swap result into accumulator. */ 06496 dataBufferReset(&merged); 06497 docListMerge(&merged, dlReaders, nReaders); 06498 tmp = merged; 06499 merged = doclist; 06500 doclist = tmp; 06501 06502 while( nReaders-- > 0 ){ 06503 dlrDestroy(&dlReaders[nReaders]); 06504 } 06505 06506 /* Accumulated doclist to reader 0 for next pass. */ 06507 dlrInit(&dlReaders[0], DL_DEFAULT, doclist.pData, doclist.nData); 06508 } 06509 06510 /* Destroy reader that was left in the pipeline. */ 06511 dlrDestroy(&dlReaders[0]); 06512 06513 /* Trim deletions from the doclist. */ 06514 dataBufferReset(&merged); 06515 docListTrim(DL_DEFAULT, doclist.pData, doclist.nData, 06516 -1, DL_DEFAULT, &merged); 06517 } 06518 06519 /* Only pass doclists with hits (skip if all hits deleted). */ 06520 if( merged.nData>0 ){ 06521 rc = leafWriterStep(v, pWriter, 06522 optLeavesReaderTerm(&readers[0]), 06523 optLeavesReaderTermBytes(&readers[0]), 06524 merged.pData, merged.nData); 06525 if( rc!=SQLITE_OK ) goto err; 06526 } 06527 06528 /* Step merged readers to next term and reorder. */ 06529 while( i-- > 0 ){ 06530 rc = optLeavesReaderStep(v, &readers[i]); 06531 if( rc!=SQLITE_OK ) goto err; 06532 06533 optLeavesReaderReorder(&readers[i], nReaders-i); 06534 } 06535 } 06536 06537 err: 06538 dataBufferDestroy(&doclist); 06539 dataBufferDestroy(&merged); 06540 return rc; 06541 } 06542 06543 /* Implement optimize() function for FTS3. optimize(t) merges all 06544 ** segments in the fts index into a single segment. 't' is the magic 06545 ** table-named column. 06546 */ 06547 static void optimizeFunc(sqlite3_context *pContext, 06548 int argc, sqlite3_value **argv){ 06549 fulltext_cursor *pCursor; 06550 if( argc>1 ){ 06551 sqlite3_result_error(pContext, "excess arguments to optimize()",-1); 06552 }else if( sqlite3_value_type(argv[0])!=SQLITE_BLOB || 06553 sqlite3_value_bytes(argv[0])!=sizeof(pCursor) ){ 06554 sqlite3_result_error(pContext, "illegal first argument to optimize",-1); 06555 }else{ 06556 fulltext_vtab *v; 06557 int i, rc, iMaxLevel; 06558 OptLeavesReader *readers; 06559 int nReaders; 06560 LeafWriter writer; 06561 sqlite3_stmt *s; 06562 06563 memcpy(&pCursor, sqlite3_value_blob(argv[0]), sizeof(pCursor)); 06564 v = cursor_vtab(pCursor); 06565 06566 /* Flush any buffered updates before optimizing. */ 06567 rc = flushPendingTerms(v); 06568 if( rc!=SQLITE_OK ) goto err; 06569 06570 rc = segdir_count(v, &nReaders, &iMaxLevel); 06571 if( rc!=SQLITE_OK ) goto err; 06572 if( nReaders==0 || nReaders==1 ){ 06573 sqlite3_result_text(pContext, "Index already optimal", -1, 06574 SQLITE_STATIC); 06575 return; 06576 } 06577 06578 rc = sql_get_statement(v, SEGDIR_SELECT_ALL_STMT, &s); 06579 if( rc!=SQLITE_OK ) goto err; 06580 06581 readers = sqlite3_malloc(nReaders*sizeof(readers[0])); 06582 if( readers==NULL ) goto err; 06583 06584 /* Note that there will already be a segment at this position 06585 ** until we call segdir_delete() on iMaxLevel. 06586 */ 06587 leafWriterInit(iMaxLevel, 0, &writer); 06588 06589 i = 0; 06590 while( (rc = sqlite3_step(s))==SQLITE_ROW ){ 06591 sqlite_int64 iStart = sqlite3_column_int64(s, 0); 06592 sqlite_int64 iEnd = sqlite3_column_int64(s, 1); 06593 const char *pRootData = sqlite3_column_blob(s, 2); 06594 int nRootData = sqlite3_column_bytes(s, 2); 06595 06596 assert( i<nReaders ); 06597 rc = leavesReaderInit(v, -1, iStart, iEnd, pRootData, nRootData, 06598 &readers[i].reader); 06599 if( rc!=SQLITE_OK ) break; 06600 06601 readers[i].segment = i; 06602 i++; 06603 } 06604 06605 /* If we managed to succesfully read them all, optimize them. */ 06606 if( rc==SQLITE_DONE ){ 06607 assert( i==nReaders ); 06608 rc = optimizeInternal(v, readers, nReaders, &writer); 06609 } 06610 06611 while( i-- > 0 ){ 06612 leavesReaderDestroy(&readers[i].reader); 06613 } 06614 sqlite3_free(readers); 06615 06616 /* If we've successfully gotten to here, delete the old segments 06617 ** and flush the interior structure of the new segment. 06618 */ 06619 if( rc==SQLITE_OK ){ 06620 for( i=0; i<=iMaxLevel; i++ ){ 06621 rc = segdir_delete(v, i); 06622 if( rc!=SQLITE_OK ) break; 06623 } 06624 06625 if( rc==SQLITE_OK ) rc = leafWriterFinalize(v, &writer); 06626 } 06627 06628 leafWriterDestroy(&writer); 06629 06630 if( rc!=SQLITE_OK ) goto err; 06631 06632 sqlite3_result_text(pContext, "Index optimized", -1, SQLITE_STATIC); 06633 return; 06634 06635 /* TODO(shess): Error-handling needs to be improved along the 06636 ** lines of the dump_ functions. 06637 */ 06638 err: 06639 { 06640 char buf[512]; 06641 sqlite3_snprintf(sizeof(buf), buf, "Error in optimize: %s", 06642 sqlite3_errmsg(sqlite3_context_db_handle(pContext))); 06643 sqlite3_result_error(pContext, buf, -1); 06644 } 06645 } 06646 } 06647 06648 #ifdef SQLITE_TEST 06649 /* Generate an error of the form "<prefix>: <msg>". If msg is NULL, 06650 ** pull the error from the context's db handle. 06651 */ 06652 static void generateError(sqlite3_context *pContext, 06653 const char *prefix, const char *msg){ 06654 char buf[512]; 06655 if( msg==NULL ) msg = sqlite3_errmsg(sqlite3_context_db_handle(pContext)); 06656 sqlite3_snprintf(sizeof(buf), buf, "%s: %s", prefix, msg); 06657 sqlite3_result_error(pContext, buf, -1); 06658 } 06659 06660 /* Helper function to collect the set of terms in the segment into 06661 ** pTerms. The segment is defined by the leaf nodes between 06662 ** iStartBlockid and iEndBlockid, inclusive, or by the contents of 06663 ** pRootData if iStartBlockid is 0 (in which case the entire segment 06664 ** fit in a leaf). 06665 */ 06666 static int collectSegmentTerms(fulltext_vtab *v, sqlite3_stmt *s, 06667 fts3Hash *pTerms){ 06668 const sqlite_int64 iStartBlockid = sqlite3_column_int64(s, 0); 06669 const sqlite_int64 iEndBlockid = sqlite3_column_int64(s, 1); 06670 const char *pRootData = sqlite3_column_blob(s, 2); 06671 const int nRootData = sqlite3_column_bytes(s, 2); 06672 LeavesReader reader; 06673 int rc = leavesReaderInit(v, 0, iStartBlockid, iEndBlockid, 06674 pRootData, nRootData, &reader); 06675 if( rc!=SQLITE_OK ) return rc; 06676 06677 while( rc==SQLITE_OK && !leavesReaderAtEnd(&reader) ){ 06678 const char *pTerm = leavesReaderTerm(&reader); 06679 const int nTerm = leavesReaderTermBytes(&reader); 06680 void *oldValue = sqlite3Fts3HashFind(pTerms, pTerm, nTerm); 06681 void *newValue = (void *)((char *)oldValue+1); 06682 06683 /* From the comment before sqlite3Fts3HashInsert in fts3_hash.c, 06684 ** the data value passed is returned in case of malloc failure. 06685 */ 06686 if( newValue==sqlite3Fts3HashInsert(pTerms, pTerm, nTerm, newValue) ){ 06687 rc = SQLITE_NOMEM; 06688 }else{ 06689 rc = leavesReaderStep(v, &reader); 06690 } 06691 } 06692 06693 leavesReaderDestroy(&reader); 06694 return rc; 06695 } 06696 06697 /* Helper function to build the result string for dump_terms(). */ 06698 static int generateTermsResult(sqlite3_context *pContext, fts3Hash *pTerms){ 06699 int iTerm, nTerms, nResultBytes, iByte; 06700 char *result; 06701 TermData *pData; 06702 fts3HashElem *e; 06703 06704 /* Iterate pTerms to generate an array of terms in pData for 06705 ** sorting. 06706 */ 06707 nTerms = fts3HashCount(pTerms); 06708 assert( nTerms>0 ); 06709 pData = sqlite3_malloc(nTerms*sizeof(TermData)); 06710 if( pData==NULL ) return SQLITE_NOMEM; 06711 06712 nResultBytes = 0; 06713 for(iTerm = 0, e = fts3HashFirst(pTerms); e; iTerm++, e = fts3HashNext(e)){ 06714 nResultBytes += fts3HashKeysize(e)+1; /* Term plus trailing space */ 06715 assert( iTerm<nTerms ); 06716 pData[iTerm].pTerm = fts3HashKey(e); 06717 pData[iTerm].nTerm = fts3HashKeysize(e); 06718 pData[iTerm].pCollector = fts3HashData(e); /* unused */ 06719 } 06720 assert( iTerm==nTerms ); 06721 06722 assert( nResultBytes>0 ); /* nTerms>0, nResultsBytes must be, too. */ 06723 result = sqlite3_malloc(nResultBytes); 06724 if( result==NULL ){ 06725 sqlite3_free(pData); 06726 return SQLITE_NOMEM; 06727 } 06728 06729 if( nTerms>1 ) qsort(pData, nTerms, sizeof(*pData), termDataCmp); 06730 06731 /* Read the terms in order to build the result. */ 06732 iByte = 0; 06733 for(iTerm=0; iTerm<nTerms; ++iTerm){ 06734 memcpy(result+iByte, pData[iTerm].pTerm, pData[iTerm].nTerm); 06735 iByte += pData[iTerm].nTerm; 06736 result[iByte++] = ' '; 06737 } 06738 assert( iByte==nResultBytes ); 06739 assert( result[nResultBytes-1]==' ' ); 06740 result[nResultBytes-1] = '\0'; 06741 06742 /* Passes away ownership of result. */ 06743 sqlite3_result_text(pContext, result, nResultBytes-1, sqlite3_free); 06744 sqlite3_free(pData); 06745 return SQLITE_OK; 06746 } 06747 06748 /* Implements dump_terms() for use in inspecting the fts3 index from 06749 ** tests. TEXT result containing the ordered list of terms joined by 06750 ** spaces. dump_terms(t, level, idx) dumps the terms for the segment 06751 ** specified by level, idx (in %_segdir), while dump_terms(t) dumps 06752 ** all terms in the index. In both cases t is the fts table's magic 06753 ** table-named column. 06754 */ 06755 static void dumpTermsFunc( 06756 sqlite3_context *pContext, 06757 int argc, sqlite3_value **argv 06758 ){ 06759 fulltext_cursor *pCursor; 06760 if( argc!=3 && argc!=1 ){ 06761 generateError(pContext, "dump_terms", "incorrect arguments"); 06762 }else if( sqlite3_value_type(argv[0])!=SQLITE_BLOB || 06763 sqlite3_value_bytes(argv[0])!=sizeof(pCursor) ){ 06764 generateError(pContext, "dump_terms", "illegal first argument"); 06765 }else{ 06766 fulltext_vtab *v; 06767 fts3Hash terms; 06768 sqlite3_stmt *s = NULL; 06769 int rc; 06770 06771 memcpy(&pCursor, sqlite3_value_blob(argv[0]), sizeof(pCursor)); 06772 v = cursor_vtab(pCursor); 06773 06774 /* If passed only the cursor column, get all segments. Otherwise 06775 ** get the segment described by the following two arguments. 06776 */ 06777 if( argc==1 ){ 06778 rc = sql_get_statement(v, SEGDIR_SELECT_ALL_STMT, &s); 06779 }else{ 06780 rc = sql_get_statement(v, SEGDIR_SELECT_SEGMENT_STMT, &s); 06781 if( rc==SQLITE_OK ){ 06782 rc = sqlite3_bind_int(s, 1, sqlite3_value_int(argv[1])); 06783 if( rc==SQLITE_OK ){ 06784 rc = sqlite3_bind_int(s, 2, sqlite3_value_int(argv[2])); 06785 } 06786 } 06787 } 06788 06789 if( rc!=SQLITE_OK ){ 06790 generateError(pContext, "dump_terms", NULL); 06791 return; 06792 } 06793 06794 /* Collect the terms for each segment. */ 06795 sqlite3Fts3HashInit(&terms, FTS3_HASH_STRING, 1); 06796 while( (rc = sqlite3_step(s))==SQLITE_ROW ){ 06797 rc = collectSegmentTerms(v, s, &terms); 06798 if( rc!=SQLITE_OK ) break; 06799 } 06800 06801 if( rc!=SQLITE_DONE ){ 06802 sqlite3_reset(s); 06803 generateError(pContext, "dump_terms", NULL); 06804 }else{ 06805 const int nTerms = fts3HashCount(&terms); 06806 if( nTerms>0 ){ 06807 rc = generateTermsResult(pContext, &terms); 06808 if( rc==SQLITE_NOMEM ){ 06809 generateError(pContext, "dump_terms", "out of memory"); 06810 }else{ 06811 assert( rc==SQLITE_OK ); 06812 } 06813 }else if( argc==3 ){ 06814 /* The specific segment asked for could not be found. */ 06815 generateError(pContext, "dump_terms", "segment not found"); 06816 }else{ 06817 /* No segments found. */ 06818 /* TODO(shess): It should be impossible to reach this. This 06819 ** case can only happen for an empty table, in which case 06820 ** SQLite has no rows to call this function on. 06821 */ 06822 sqlite3_result_null(pContext); 06823 } 06824 } 06825 sqlite3Fts3HashClear(&terms); 06826 } 06827 } 06828 06829 /* Expand the DL_DEFAULT doclist in pData into a text result in 06830 ** pContext. 06831 */ 06832 static void createDoclistResult(sqlite3_context *pContext, 06833 const char *pData, int nData){ 06834 DataBuffer dump; 06835 DLReader dlReader; 06836 06837 assert( pData!=NULL && nData>0 ); 06838 06839 dataBufferInit(&dump, 0); 06840 dlrInit(&dlReader, DL_DEFAULT, pData, nData); 06841 for( ; !dlrAtEnd(&dlReader); dlrStep(&dlReader) ){ 06842 char buf[256]; 06843 PLReader plReader; 06844 06845 plrInit(&plReader, &dlReader); 06846 if( DL_DEFAULT==DL_DOCIDS || plrAtEnd(&plReader) ){ 06847 sqlite3_snprintf(sizeof(buf), buf, "[%lld] ", dlrDocid(&dlReader)); 06848 dataBufferAppend(&dump, buf, strlen(buf)); 06849 }else{ 06850 int iColumn = plrColumn(&plReader); 06851 06852 sqlite3_snprintf(sizeof(buf), buf, "[%lld %d[", 06853 dlrDocid(&dlReader), iColumn); 06854 dataBufferAppend(&dump, buf, strlen(buf)); 06855 06856 for( ; !plrAtEnd(&plReader); plrStep(&plReader) ){ 06857 if( plrColumn(&plReader)!=iColumn ){ 06858 iColumn = plrColumn(&plReader); 06859 sqlite3_snprintf(sizeof(buf), buf, "] %d[", iColumn); 06860 assert( dump.nData>0 ); 06861 dump.nData--; /* Overwrite trailing space. */ 06862 assert( dump.pData[dump.nData]==' '); 06863 dataBufferAppend(&dump, buf, strlen(buf)); 06864 } 06865 if( DL_DEFAULT==DL_POSITIONS_OFFSETS ){ 06866 sqlite3_snprintf(sizeof(buf), buf, "%d,%d,%d ", 06867 plrPosition(&plReader), 06868 plrStartOffset(&plReader), plrEndOffset(&plReader)); 06869 }else if( DL_DEFAULT==DL_POSITIONS ){ 06870 sqlite3_snprintf(sizeof(buf), buf, "%d ", plrPosition(&plReader)); 06871 }else{ 06872 assert( NULL=="Unhandled DL_DEFAULT value"); 06873 } 06874 dataBufferAppend(&dump, buf, strlen(buf)); 06875 } 06876 plrDestroy(&plReader); 06877 06878 assert( dump.nData>0 ); 06879 dump.nData--; /* Overwrite trailing space. */ 06880 assert( dump.pData[dump.nData]==' '); 06881 dataBufferAppend(&dump, "]] ", 3); 06882 } 06883 } 06884 dlrDestroy(&dlReader); 06885 06886 assert( dump.nData>0 ); 06887 dump.nData--; /* Overwrite trailing space. */ 06888 assert( dump.pData[dump.nData]==' '); 06889 dump.pData[dump.nData] = '\0'; 06890 assert( dump.nData>0 ); 06891 06892 /* Passes ownership of dump's buffer to pContext. */ 06893 sqlite3_result_text(pContext, dump.pData, dump.nData, sqlite3_free); 06894 dump.pData = NULL; 06895 dump.nData = dump.nCapacity = 0; 06896 } 06897 06898 /* Implements dump_doclist() for use in inspecting the fts3 index from 06899 ** tests. TEXT result containing a string representation of the 06900 ** doclist for the indicated term. dump_doclist(t, term, level, idx) 06901 ** dumps the doclist for term from the segment specified by level, idx 06902 ** (in %_segdir), while dump_doclist(t, term) dumps the logical 06903 ** doclist for the term across all segments. The per-segment doclist 06904 ** can contain deletions, while the full-index doclist will not 06905 ** (deletions are omitted). 06906 ** 06907 ** Result formats differ with the setting of DL_DEFAULTS. Examples: 06908 ** 06909 ** DL_DOCIDS: [1] [3] [7] 06910 ** DL_POSITIONS: [1 0[0 4] 1[17]] [3 1[5]] 06911 ** DL_POSITIONS_OFFSETS: [1 0[0,0,3 4,23,26] 1[17,102,105]] [3 1[5,20,23]] 06912 ** 06913 ** In each case the number after the outer '[' is the docid. In the 06914 ** latter two cases, the number before the inner '[' is the column 06915 ** associated with the values within. For DL_POSITIONS the numbers 06916 ** within are the positions, for DL_POSITIONS_OFFSETS they are the 06917 ** position, the start offset, and the end offset. 06918 */ 06919 static void dumpDoclistFunc( 06920 sqlite3_context *pContext, 06921 int argc, sqlite3_value **argv 06922 ){ 06923 fulltext_cursor *pCursor; 06924 if( argc!=2 && argc!=4 ){ 06925 generateError(pContext, "dump_doclist", "incorrect arguments"); 06926 }else if( sqlite3_value_type(argv[0])!=SQLITE_BLOB || 06927 sqlite3_value_bytes(argv[0])!=sizeof(pCursor) ){ 06928 generateError(pContext, "dump_doclist", "illegal first argument"); 06929 }else if( sqlite3_value_text(argv[1])==NULL || 06930 sqlite3_value_text(argv[1])[0]=='\0' ){ 06931 generateError(pContext, "dump_doclist", "empty second argument"); 06932 }else{ 06933 const char *pTerm = (const char *)sqlite3_value_text(argv[1]); 06934 const int nTerm = strlen(pTerm); 06935 fulltext_vtab *v; 06936 int rc; 06937 DataBuffer doclist; 06938 06939 memcpy(&pCursor, sqlite3_value_blob(argv[0]), sizeof(pCursor)); 06940 v = cursor_vtab(pCursor); 06941 06942 dataBufferInit(&doclist, 0); 06943 06944 /* termSelect() yields the same logical doclist that queries are 06945 ** run against. 06946 */ 06947 if( argc==2 ){ 06948 rc = termSelect(v, v->nColumn, pTerm, nTerm, 0, DL_DEFAULT, &doclist); 06949 }else{ 06950 sqlite3_stmt *s = NULL; 06951 06952 /* Get our specific segment's information. */ 06953 rc = sql_get_statement(v, SEGDIR_SELECT_SEGMENT_STMT, &s); 06954 if( rc==SQLITE_OK ){ 06955 rc = sqlite3_bind_int(s, 1, sqlite3_value_int(argv[2])); 06956 if( rc==SQLITE_OK ){ 06957 rc = sqlite3_bind_int(s, 2, sqlite3_value_int(argv[3])); 06958 } 06959 } 06960 06961 if( rc==SQLITE_OK ){ 06962 rc = sqlite3_step(s); 06963 06964 if( rc==SQLITE_DONE ){ 06965 dataBufferDestroy(&doclist); 06966 generateError(pContext, "dump_doclist", "segment not found"); 06967 return; 06968 } 06969 06970 /* Found a segment, load it into doclist. */ 06971 if( rc==SQLITE_ROW ){ 06972 const sqlite_int64 iLeavesEnd = sqlite3_column_int64(s, 1); 06973 const char *pData = sqlite3_column_blob(s, 2); 06974 const int nData = sqlite3_column_bytes(s, 2); 06975 06976 /* loadSegment() is used by termSelect() to load each 06977 ** segment's data. 06978 */ 06979 rc = loadSegment(v, pData, nData, iLeavesEnd, pTerm, nTerm, 0, 06980 &doclist); 06981 if( rc==SQLITE_OK ){ 06982 rc = sqlite3_step(s); 06983 06984 /* Should not have more than one matching segment. */ 06985 if( rc!=SQLITE_DONE ){ 06986 sqlite3_reset(s); 06987 dataBufferDestroy(&doclist); 06988 generateError(pContext, "dump_doclist", "invalid segdir"); 06989 return; 06990 } 06991 rc = SQLITE_OK; 06992 } 06993 } 06994 } 06995 06996 sqlite3_reset(s); 06997 } 06998 06999 if( rc==SQLITE_OK ){ 07000 if( doclist.nData>0 ){ 07001 createDoclistResult(pContext, doclist.pData, doclist.nData); 07002 }else{ 07003 /* TODO(shess): This can happen if the term is not present, or 07004 ** if all instances of the term have been deleted and this is 07005 ** an all-index dump. It may be interesting to distinguish 07006 ** these cases. 07007 */ 07008 sqlite3_result_text(pContext, "", 0, SQLITE_STATIC); 07009 } 07010 }else if( rc==SQLITE_NOMEM ){ 07011 /* Handle out-of-memory cases specially because if they are 07012 ** generated in fts3 code they may not be reflected in the db 07013 ** handle. 07014 */ 07015 /* TODO(shess): Handle this more comprehensively. 07016 ** sqlite3ErrStr() has what I need, but is internal. 07017 */ 07018 generateError(pContext, "dump_doclist", "out of memory"); 07019 }else{ 07020 generateError(pContext, "dump_doclist", NULL); 07021 } 07022 07023 dataBufferDestroy(&doclist); 07024 } 07025 } 07026 #endif 07027 07028 /* 07029 ** This routine implements the xFindFunction method for the FTS3 07030 ** virtual table. 07031 */ 07032 static int fulltextFindFunction( 07033 sqlite3_vtab *pVtab, 07034 int nArg, 07035 const char *zName, 07036 void (**pxFunc)(sqlite3_context*,int,sqlite3_value**), 07037 void **ppArg 07038 ){ 07039 if( strcmp(zName,"snippet")==0 ){ 07040 *pxFunc = snippetFunc; 07041 return 1; 07042 }else if( strcmp(zName,"offsets")==0 ){ 07043 *pxFunc = snippetOffsetsFunc; 07044 return 1; 07045 }else if( strcmp(zName,"optimize")==0 ){ 07046 *pxFunc = optimizeFunc; 07047 return 1; 07048 #ifdef SQLITE_TEST 07049 /* NOTE(shess): These functions are present only for testing 07050 ** purposes. No particular effort is made to optimize their 07051 ** execution or how they build their results. 07052 */ 07053 }else if( strcmp(zName,"dump_terms")==0 ){ 07054 /* fprintf(stderr, "Found dump_terms\n"); */ 07055 *pxFunc = dumpTermsFunc; 07056 return 1; 07057 }else if( strcmp(zName,"dump_doclist")==0 ){ 07058 /* fprintf(stderr, "Found dump_doclist\n"); */ 07059 *pxFunc = dumpDoclistFunc; 07060 return 1; 07061 #endif 07062 } 07063 return 0; 07064 } 07065 07066 /* 07067 ** Rename an fts3 table. 07068 */ 07069 static int fulltextRename( 07070 sqlite3_vtab *pVtab, 07071 const char *zName 07072 ){ 07073 fulltext_vtab *p = (fulltext_vtab *)pVtab; 07074 int rc = SQLITE_NOMEM; 07075 char *zSql = sqlite3_mprintf( 07076 "ALTER TABLE %Q.'%q_content' RENAME TO '%q_content';" 07077 "ALTER TABLE %Q.'%q_segments' RENAME TO '%q_segments';" 07078 "ALTER TABLE %Q.'%q_segdir' RENAME TO '%q_segdir';" 07079 , p->zDb, p->zName, zName 07080 , p->zDb, p->zName, zName 07081 , p->zDb, p->zName, zName 07082 ); 07083 if( zSql ){ 07084 rc = sqlite3_exec(p->db, zSql, 0, 0, 0); 07085 sqlite3_free(zSql); 07086 } 07087 return rc; 07088 } 07089 07090 static const sqlite3_module fts3Module = { 07091 /* iVersion */ 0, 07092 /* xCreate */ fulltextCreate, 07093 /* xConnect */ fulltextConnect, 07094 /* xBestIndex */ fulltextBestIndex, 07095 /* xDisconnect */ fulltextDisconnect, 07096 /* xDestroy */ fulltextDestroy, 07097 /* xOpen */ fulltextOpen, 07098 /* xClose */ fulltextClose, 07099 /* xFilter */ fulltextFilter, 07100 /* xNext */ fulltextNext, 07101 /* xEof */ fulltextEof, 07102 /* xColumn */ fulltextColumn, 07103 /* xRowid */ fulltextRowid, 07104 /* xUpdate */ fulltextUpdate, 07105 /* xBegin */ fulltextBegin, 07106 /* xSync */ fulltextSync, 07107 /* xCommit */ fulltextCommit, 07108 /* xRollback */ fulltextRollback, 07109 /* xFindFunction */ fulltextFindFunction, 07110 /* xRename */ fulltextRename, 07111 }; 07112 07113 static void hashDestroy(void *p){ 07114 fts3Hash *pHash = (fts3Hash *)p; 07115 sqlite3Fts3HashClear(pHash); 07116 sqlite3_free(pHash); 07117 } 07118 07119 /* 07120 ** The fts3 built-in tokenizers - "simple" and "porter" - are implemented 07121 ** in files fts3_tokenizer1.c and fts3_porter.c respectively. The following 07122 ** two forward declarations are for functions declared in these files 07123 ** used to retrieve the respective implementations. 07124 ** 07125 ** Calling sqlite3Fts3SimpleTokenizerModule() sets the value pointed 07126 ** to by the argument to point a the "simple" tokenizer implementation. 07127 ** Function ...PorterTokenizerModule() sets *pModule to point to the 07128 ** porter tokenizer/stemmer implementation. 07129 */ 07130 void sqlite3Fts3SimpleTokenizerModule(sqlite3_tokenizer_module const**ppModule); 07131 void sqlite3Fts3PorterTokenizerModule(sqlite3_tokenizer_module const**ppModule); 07132 void sqlite3Fts3IcuTokenizerModule(sqlite3_tokenizer_module const**ppModule); 07133 07134 int sqlite3Fts3InitHashTable(sqlite3 *, fts3Hash *, const char *); 07135 07136 /* 07137 ** Initialise the fts3 extension. If this extension is built as part 07138 ** of the sqlite library, then this function is called directly by 07139 ** SQLite. If fts3 is built as a dynamically loadable extension, this 07140 ** function is called by the sqlite3_extension_init() entry point. 07141 */ 07142 int sqlite3Fts3Init(sqlite3 *db){ 07143 int rc = SQLITE_OK; 07144 fts3Hash *pHash = 0; 07145 const sqlite3_tokenizer_module *pSimple = 0; 07146 const sqlite3_tokenizer_module *pPorter = 0; 07147 const sqlite3_tokenizer_module *pIcu = 0; 07148 07149 sqlite3Fts3SimpleTokenizerModule(&pSimple); 07150 sqlite3Fts3PorterTokenizerModule(&pPorter); 07151 #ifdef SQLITE_ENABLE_ICU 07152 sqlite3Fts3IcuTokenizerModule(&pIcu); 07153 #endif 07154 07155 /* Allocate and initialise the hash-table used to store tokenizers. */ 07156 pHash = sqlite3_malloc(sizeof(fts3Hash)); 07157 if( !pHash ){ 07158 rc = SQLITE_NOMEM; 07159 }else{ 07160 sqlite3Fts3HashInit(pHash, FTS3_HASH_STRING, 1); 07161 } 07162 07163 /* Load the built-in tokenizers into the hash table */ 07164 if( rc==SQLITE_OK ){ 07165 if( sqlite3Fts3HashInsert(pHash, "simple", 7, (void *)pSimple) 07166 || sqlite3Fts3HashInsert(pHash, "porter", 7, (void *)pPorter) 07167 || (pIcu && sqlite3Fts3HashInsert(pHash, "icu", 4, (void *)pIcu)) 07168 ){ 07169 rc = SQLITE_NOMEM; 07170 } 07171 } 07172 07173 /* Create the virtual table wrapper around the hash-table and overload 07174 ** the two scalar functions. If this is successful, register the 07175 ** module with sqlite. 07176 */ 07177 if( SQLITE_OK==rc 07178 && SQLITE_OK==(rc = sqlite3Fts3InitHashTable(db, pHash, "fts3_tokenizer")) 07179 && SQLITE_OK==(rc = sqlite3_overload_function(db, "snippet", -1)) 07180 && SQLITE_OK==(rc = sqlite3_overload_function(db, "offsets", -1)) 07181 && SQLITE_OK==(rc = sqlite3_overload_function(db, "optimize", -1)) 07182 #ifdef SQLITE_TEST 07183 && SQLITE_OK==(rc = sqlite3_overload_function(db, "dump_terms", -1)) 07184 && SQLITE_OK==(rc = sqlite3_overload_function(db, "dump_doclist", -1)) 07185 #endif 07186 ){ 07187 return sqlite3_create_module_v2( 07188 db, "fts3", &fts3Module, (void *)pHash, hashDestroy 07189 ); 07190 } 07191 07192 /* An error has occured. Delete the hash table and return the error code. */ 07193 assert( rc!=SQLITE_OK ); 07194 if( pHash ){ 07195 sqlite3Fts3HashClear(pHash); 07196 sqlite3_free(pHash); 07197 } 07198 return rc; 07199 } 07200 07201 #if !SQLITE_CORE 07202 int sqlite3_extension_init( 07203 sqlite3 *db, 07204 char **pzErrMsg, 07205 const sqlite3_api_routines *pApi 07206 ){ 07207 SQLITE_EXTENSION_INIT2(pApi) 07208 return sqlite3Fts3Init(db); 07209 } 07210 #endif 07211 07212 #endif /* !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3) */
ContextLogger2—ContextLogger2 Logger Daemon Internals—Generated on Mon May 2 13:49:53 2011 by Doxygen 1.6.1