00001 /* 00002 ** 2007 May 6 00003 ** 00004 ** The author disclaims copyright to this source code. In place of 00005 ** a legal notice, here is a blessing: 00006 ** 00007 ** May you do good and not evil. 00008 ** May you find forgiveness for yourself and forgive others. 00009 ** May you share freely, never taking more than you give. 00010 ** 00011 ************************************************************************* 00012 ** $Id: icu.c,v 1.7 2007/12/13 21:54:11 drh Exp $ 00013 ** 00014 ** This file implements an integration between the ICU library 00015 ** ("International Components for Unicode", an open-source library 00016 ** for handling unicode data) and SQLite. The integration uses 00017 ** ICU to provide the following to SQLite: 00018 ** 00019 ** * An implementation of the SQL regexp() function (and hence REGEXP 00020 ** operator) using the ICU uregex_XX() APIs. 00021 ** 00022 ** * Implementations of the SQL scalar upper() and lower() functions 00023 ** for case mapping. 00024 ** 00025 ** * Integration of ICU and SQLite collation seqences. 00026 ** 00027 ** * An implementation of the LIKE operator that uses ICU to 00028 ** provide case-independent matching. 00029 */ 00030 00031 #if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_ICU) 00032 00033 /* Include ICU headers */ 00034 #include <unicode/utypes.h> 00035 #include <unicode/uregex.h> 00036 #include <unicode/ustring.h> 00037 #include <unicode/ucol.h> 00038 00039 #include <assert.h> 00040 00041 #ifndef SQLITE_CORE 00042 #include "sqlite3ext.h" 00043 SQLITE_EXTENSION_INIT1 00044 #else 00045 #include "sqlite3.h" 00046 #endif 00047 00048 /* 00049 ** Maximum length (in bytes) of the pattern in a LIKE or GLOB 00050 ** operator. 00051 */ 00052 #ifndef SQLITE_MAX_LIKE_PATTERN_LENGTH 00053 # define SQLITE_MAX_LIKE_PATTERN_LENGTH 50000 00054 #endif 00055 00056 /* 00057 ** Version of sqlite3_free() that is always a function, never a macro. 00058 */ 00059 static void xFree(void *p){ 00060 sqlite3_free(p); 00061 } 00062 00063 /* 00064 ** Compare two UTF-8 strings for equality where the first string is 00065 ** a "LIKE" expression. Return true (1) if they are the same and 00066 ** false (0) if they are different. 00067 */ 00068 static int icuLikeCompare( 00069 const uint8_t *zPattern, /* LIKE pattern */ 00070 const uint8_t *zString, /* The UTF-8 string to compare against */ 00071 const UChar32 uEsc /* The escape character */ 00072 ){ 00073 static const int MATCH_ONE = (UChar32)'_'; 00074 static const int MATCH_ALL = (UChar32)'%'; 00075 00076 int iPattern = 0; /* Current byte index in zPattern */ 00077 int iString = 0; /* Current byte index in zString */ 00078 00079 int prevEscape = 0; /* True if the previous character was uEsc */ 00080 00081 while( zPattern[iPattern]!=0 ){ 00082 00083 /* Read (and consume) the next character from the input pattern. */ 00084 UChar32 uPattern; 00085 U8_NEXT_UNSAFE(zPattern, iPattern, uPattern); 00086 assert(uPattern!=0); 00087 00088 /* There are now 4 possibilities: 00089 ** 00090 ** 1. uPattern is an unescaped match-all character "%", 00091 ** 2. uPattern is an unescaped match-one character "_", 00092 ** 3. uPattern is an unescaped escape character, or 00093 ** 4. uPattern is to be handled as an ordinary character 00094 */ 00095 if( !prevEscape && uPattern==MATCH_ALL ){ 00096 /* Case 1. */ 00097 uint8_t c; 00098 00099 /* Skip any MATCH_ALL or MATCH_ONE characters that follow a 00100 ** MATCH_ALL. For each MATCH_ONE, skip one character in the 00101 ** test string. 00102 */ 00103 while( (c=zPattern[iPattern]) == MATCH_ALL || c == MATCH_ONE ){ 00104 if( c==MATCH_ONE ){ 00105 if( zString[iString]==0 ) return 0; 00106 U8_FWD_1_UNSAFE(zString, iString); 00107 } 00108 iPattern++; 00109 } 00110 00111 if( zPattern[iPattern]==0 ) return 1; 00112 00113 while( zString[iString] ){ 00114 if( icuLikeCompare(&zPattern[iPattern], &zString[iString], uEsc) ){ 00115 return 1; 00116 } 00117 U8_FWD_1_UNSAFE(zString, iString); 00118 } 00119 return 0; 00120 00121 }else if( !prevEscape && uPattern==MATCH_ONE ){ 00122 /* Case 2. */ 00123 if( zString[iString]==0 ) return 0; 00124 U8_FWD_1_UNSAFE(zString, iString); 00125 00126 }else if( !prevEscape && uPattern==uEsc){ 00127 /* Case 3. */ 00128 prevEscape = 1; 00129 00130 }else{ 00131 /* Case 4. */ 00132 UChar32 uString; 00133 U8_NEXT_UNSAFE(zString, iString, uString); 00134 uString = u_foldCase(uString, U_FOLD_CASE_DEFAULT); 00135 uPattern = u_foldCase(uPattern, U_FOLD_CASE_DEFAULT); 00136 if( uString!=uPattern ){ 00137 return 0; 00138 } 00139 prevEscape = 0; 00140 } 00141 } 00142 00143 return zString[iString]==0; 00144 } 00145 00146 /* 00147 ** Implementation of the like() SQL function. This function implements 00148 ** the build-in LIKE operator. The first argument to the function is the 00149 ** pattern and the second argument is the string. So, the SQL statements: 00150 ** 00151 ** A LIKE B 00152 ** 00153 ** is implemented as like(B, A). If there is an escape character E, 00154 ** 00155 ** A LIKE B ESCAPE E 00156 ** 00157 ** is mapped to like(B, A, E). 00158 */ 00159 static void icuLikeFunc( 00160 sqlite3_context *context, 00161 int argc, 00162 sqlite3_value **argv 00163 ){ 00164 const unsigned char *zA = sqlite3_value_text(argv[0]); 00165 const unsigned char *zB = sqlite3_value_text(argv[1]); 00166 UChar32 uEsc = 0; 00167 00168 /* Limit the length of the LIKE or GLOB pattern to avoid problems 00169 ** of deep recursion and N*N behavior in patternCompare(). 00170 */ 00171 if( sqlite3_value_bytes(argv[0])>SQLITE_MAX_LIKE_PATTERN_LENGTH ){ 00172 sqlite3_result_error(context, "LIKE or GLOB pattern too complex", -1); 00173 return; 00174 } 00175 00176 00177 if( argc==3 ){ 00178 /* The escape character string must consist of a single UTF-8 character. 00179 ** Otherwise, return an error. 00180 */ 00181 int nE= sqlite3_value_bytes(argv[2]); 00182 const unsigned char *zE = sqlite3_value_text(argv[2]); 00183 int i = 0; 00184 if( zE==0 ) return; 00185 U8_NEXT(zE, i, nE, uEsc); 00186 if( i!=nE){ 00187 sqlite3_result_error(context, 00188 "ESCAPE expression must be a single character", -1); 00189 return; 00190 } 00191 } 00192 00193 if( zA && zB ){ 00194 sqlite3_result_int(context, icuLikeCompare(zA, zB, uEsc)); 00195 } 00196 } 00197 00198 /* 00199 ** This function is called when an ICU function called from within 00200 ** the implementation of an SQL scalar function returns an error. 00201 ** 00202 ** The scalar function context passed as the first argument is 00203 ** loaded with an error message based on the following two args. 00204 */ 00205 static void icuFunctionError( 00206 sqlite3_context *pCtx, /* SQLite scalar function context */ 00207 const char *zName, /* Name of ICU function that failed */ 00208 UErrorCode e /* Error code returned by ICU function */ 00209 ){ 00210 char zBuf[128]; 00211 sqlite3_snprintf(128, zBuf, "ICU error: %s(): %s", zName, u_errorName(e)); 00212 zBuf[127] = '\0'; 00213 sqlite3_result_error(pCtx, zBuf, -1); 00214 } 00215 00216 /* 00217 ** Function to delete compiled regexp objects. Registered as 00218 ** a destructor function with sqlite3_set_auxdata(). 00219 */ 00220 static void icuRegexpDelete(void *p){ 00221 URegularExpression *pExpr = (URegularExpression *)p; 00222 uregex_close(pExpr); 00223 } 00224 00225 /* 00226 ** Implementation of SQLite REGEXP operator. This scalar function takes 00227 ** two arguments. The first is a regular expression pattern to compile 00228 ** the second is a string to match against that pattern. If either 00229 ** argument is an SQL NULL, then NULL Is returned. Otherwise, the result 00230 ** is 1 if the string matches the pattern, or 0 otherwise. 00231 ** 00232 ** SQLite maps the regexp() function to the regexp() operator such 00233 ** that the following two are equivalent: 00234 ** 00235 ** zString REGEXP zPattern 00236 ** regexp(zPattern, zString) 00237 ** 00238 ** Uses the following ICU regexp APIs: 00239 ** 00240 ** uregex_open() 00241 ** uregex_matches() 00242 ** uregex_close() 00243 */ 00244 static void icuRegexpFunc(sqlite3_context *p, int nArg, sqlite3_value **apArg){ 00245 UErrorCode status = U_ZERO_ERROR; 00246 URegularExpression *pExpr; 00247 UBool res; 00248 const UChar *zString = sqlite3_value_text16(apArg[1]); 00249 00250 /* If the left hand side of the regexp operator is NULL, 00251 ** then the result is also NULL. 00252 */ 00253 if( !zString ){ 00254 return; 00255 } 00256 00257 pExpr = sqlite3_get_auxdata(p, 0); 00258 if( !pExpr ){ 00259 const UChar *zPattern = sqlite3_value_text16(apArg[0]); 00260 if( !zPattern ){ 00261 return; 00262 } 00263 pExpr = uregex_open(zPattern, -1, 0, 0, &status); 00264 00265 if( U_SUCCESS(status) ){ 00266 sqlite3_set_auxdata(p, 0, pExpr, icuRegexpDelete); 00267 }else{ 00268 assert(!pExpr); 00269 icuFunctionError(p, "uregex_open", status); 00270 return; 00271 } 00272 } 00273 00274 /* Configure the text that the regular expression operates on. */ 00275 uregex_setText(pExpr, zString, -1, &status); 00276 if( !U_SUCCESS(status) ){ 00277 icuFunctionError(p, "uregex_setText", status); 00278 return; 00279 } 00280 00281 /* Attempt the match */ 00282 res = uregex_matches(pExpr, 0, &status); 00283 if( !U_SUCCESS(status) ){ 00284 icuFunctionError(p, "uregex_matches", status); 00285 return; 00286 } 00287 00288 /* Set the text that the regular expression operates on to a NULL 00289 ** pointer. This is not really necessary, but it is tidier than 00290 ** leaving the regular expression object configured with an invalid 00291 ** pointer after this function returns. 00292 */ 00293 uregex_setText(pExpr, 0, 0, &status); 00294 00295 /* Return 1 or 0. */ 00296 sqlite3_result_int(p, res ? 1 : 0); 00297 } 00298 00299 /* 00300 ** Implementations of scalar functions for case mapping - upper() and 00301 ** lower(). Function upper() converts its input to upper-case (ABC). 00302 ** Function lower() converts to lower-case (abc). 00303 ** 00304 ** ICU provides two types of case mapping, "general" case mapping and 00305 ** "language specific". Refer to ICU documentation for the differences 00306 ** between the two. 00307 ** 00308 ** To utilise "general" case mapping, the upper() or lower() scalar 00309 ** functions are invoked with one argument: 00310 ** 00311 ** upper('ABC') -> 'abc' 00312 ** lower('abc') -> 'ABC' 00313 ** 00314 ** To access ICU "language specific" case mapping, upper() or lower() 00315 ** should be invoked with two arguments. The second argument is the name 00316 ** of the locale to use. Passing an empty string ("") or SQL NULL value 00317 ** as the second argument is the same as invoking the 1 argument version 00318 ** of upper() or lower(). 00319 ** 00320 ** lower('I', 'en_us') -> 'i' 00321 ** lower('I', 'tr_tr') -> 'ı' (small dotless i) 00322 ** 00323 ** http://www.icu-project.org/userguide/posix.html#case_mappings 00324 */ 00325 static void icuCaseFunc16(sqlite3_context *p, int nArg, sqlite3_value **apArg){ 00326 const UChar *zInput; 00327 UChar *zOutput; 00328 int nInput; 00329 int nOutput; 00330 00331 UErrorCode status = U_ZERO_ERROR; 00332 const char *zLocale = 0; 00333 00334 assert(nArg==1 || nArg==2); 00335 if( nArg==2 ){ 00336 zLocale = (const char *)sqlite3_value_text(apArg[1]); 00337 } 00338 00339 zInput = sqlite3_value_text16(apArg[0]); 00340 if( !zInput ){ 00341 return; 00342 } 00343 nInput = sqlite3_value_bytes16(apArg[0]); 00344 00345 nOutput = nInput * 2 + 2; 00346 zOutput = sqlite3_malloc(nOutput); 00347 if( !zOutput ){ 00348 return; 00349 } 00350 00351 if( sqlite3_user_data(p) ){ 00352 u_strToUpper(zOutput, nOutput/2, zInput, nInput/2, zLocale, &status); 00353 }else{ 00354 u_strToLower(zOutput, nOutput/2, zInput, nInput/2, zLocale, &status); 00355 } 00356 00357 if( !U_SUCCESS(status) ){ 00358 icuFunctionError(p, "u_strToLower()/u_strToUpper", status); 00359 return; 00360 } 00361 00362 sqlite3_result_text16(p, zOutput, -1, xFree); 00363 } 00364 00365 /* 00366 ** Collation sequence destructor function. The pCtx argument points to 00367 ** a UCollator structure previously allocated using ucol_open(). 00368 */ 00369 static void icuCollationDel(void *pCtx){ 00370 UCollator *p = (UCollator *)pCtx; 00371 ucol_close(p); 00372 } 00373 00374 /* 00375 ** Collation sequence comparison function. The pCtx argument points to 00376 ** a UCollator structure previously allocated using ucol_open(). 00377 */ 00378 static int icuCollationColl( 00379 void *pCtx, 00380 int nLeft, 00381 const void *zLeft, 00382 int nRight, 00383 const void *zRight 00384 ){ 00385 UCollationResult res; 00386 UCollator *p = (UCollator *)pCtx; 00387 res = ucol_strcoll(p, (UChar *)zLeft, nLeft/2, (UChar *)zRight, nRight/2); 00388 switch( res ){ 00389 case UCOL_LESS: return -1; 00390 case UCOL_GREATER: return +1; 00391 case UCOL_EQUAL: return 0; 00392 } 00393 assert(!"Unexpected return value from ucol_strcoll()"); 00394 return 0; 00395 } 00396 00397 /* 00398 ** Implementation of the scalar function icu_load_collation(). 00399 ** 00400 ** This scalar function is used to add ICU collation based collation 00401 ** types to an SQLite database connection. It is intended to be called 00402 ** as follows: 00403 ** 00404 ** SELECT icu_load_collation(<locale>, <collation-name>); 00405 ** 00406 ** Where <locale> is a string containing an ICU locale identifier (i.e. 00407 ** "en_AU", "tr_TR" etc.) and <collation-name> is the name of the 00408 ** collation sequence to create. 00409 */ 00410 static void icuLoadCollation( 00411 sqlite3_context *p, 00412 int nArg, 00413 sqlite3_value **apArg 00414 ){ 00415 sqlite3 *db = (sqlite3 *)sqlite3_user_data(p); 00416 UErrorCode status = U_ZERO_ERROR; 00417 const char *zLocale; /* Locale identifier - (eg. "jp_JP") */ 00418 const char *zName; /* SQL Collation sequence name (eg. "japanese") */ 00419 UCollator *pUCollator; /* ICU library collation object */ 00420 int rc; /* Return code from sqlite3_create_collation_x() */ 00421 00422 assert(nArg==2); 00423 zLocale = (const char *)sqlite3_value_text(apArg[0]); 00424 zName = (const char *)sqlite3_value_text(apArg[1]); 00425 00426 if( !zLocale || !zName ){ 00427 return; 00428 } 00429 00430 pUCollator = ucol_open(zLocale, &status); 00431 if( !U_SUCCESS(status) ){ 00432 icuFunctionError(p, "ucol_open", status); 00433 return; 00434 } 00435 assert(p); 00436 00437 rc = sqlite3_create_collation_v2(db, zName, SQLITE_UTF16, (void *)pUCollator, 00438 icuCollationColl, icuCollationDel 00439 ); 00440 if( rc!=SQLITE_OK ){ 00441 ucol_close(pUCollator); 00442 sqlite3_result_error(p, "Error registering collation function", -1); 00443 } 00444 } 00445 00446 /* 00447 ** Register the ICU extension functions with database db. 00448 */ 00449 int sqlite3IcuInit(sqlite3 *db){ 00450 struct IcuScalar { 00451 const char *zName; /* Function name */ 00452 int nArg; /* Number of arguments */ 00453 int enc; /* Optimal text encoding */ 00454 void *pContext; /* sqlite3_user_data() context */ 00455 void (*xFunc)(sqlite3_context*,int,sqlite3_value**); 00456 } scalars[] = { 00457 {"regexp",-1, SQLITE_ANY, 0, icuRegexpFunc}, 00458 00459 {"lower", 1, SQLITE_UTF16, 0, icuCaseFunc16}, 00460 {"lower", 2, SQLITE_UTF16, 0, icuCaseFunc16}, 00461 {"upper", 1, SQLITE_UTF16, (void*)1, icuCaseFunc16}, 00462 {"upper", 2, SQLITE_UTF16, (void*)1, icuCaseFunc16}, 00463 00464 {"lower", 1, SQLITE_UTF8, 0, icuCaseFunc16}, 00465 {"lower", 2, SQLITE_UTF8, 0, icuCaseFunc16}, 00466 {"upper", 1, SQLITE_UTF8, (void*)1, icuCaseFunc16}, 00467 {"upper", 2, SQLITE_UTF8, (void*)1, icuCaseFunc16}, 00468 00469 {"like", 2, SQLITE_UTF8, 0, icuLikeFunc}, 00470 {"like", 3, SQLITE_UTF8, 0, icuLikeFunc}, 00471 00472 {"icu_load_collation", 2, SQLITE_UTF8, (void*)db, icuLoadCollation}, 00473 }; 00474 00475 int rc = SQLITE_OK; 00476 int i; 00477 00478 for(i=0; rc==SQLITE_OK && i<(sizeof(scalars)/sizeof(struct IcuScalar)); i++){ 00479 struct IcuScalar *p = &scalars[i]; 00480 rc = sqlite3_create_function( 00481 db, p->zName, p->nArg, p->enc, p->pContext, p->xFunc, 0, 0 00482 ); 00483 } 00484 00485 return rc; 00486 } 00487 00488 #if !SQLITE_CORE 00489 int sqlite3_extension_init( 00490 sqlite3 *db, 00491 char **pzErrMsg, 00492 const sqlite3_api_routines *pApi 00493 ){ 00494 SQLITE_EXTENSION_INIT2(pApi) 00495 return sqlite3IcuInit(db); 00496 } 00497 #endif 00498 00499 #endif
ContextLogger2—ContextLogger2 Logger Daemon Internals—Generated on Mon May 2 13:49:54 2011 by Doxygen 1.6.1