00001 /* 00002 ** 2001 September 15 00003 ** 00004 ** The author disclaims copyright to this source code. In place of 00005 ** a legal notice, here is a blessing: 00006 ** 00007 ** May you do good and not evil. 00008 ** May you find forgiveness for yourself and forgive others. 00009 ** May you share freely, never taking more than you give. 00010 ** 00011 ************************************************************************* 00012 ** Main file for the SQLite library. The routines in this file 00013 ** implement the programmer interface to the library. Routines in 00014 ** other files are for internal use by SQLite and should not be 00015 ** accessed by users of the library. 00016 ** 00017 ** $Id: main.c,v 1.511 2008/11/10 18:05:36 shane Exp $ 00018 */ 00019 #include "sqliteInt.h" 00020 #include <ctype.h> 00021 00022 #ifdef SQLITE_ENABLE_FTS3 00023 # include "fts3.h" 00024 #endif 00025 #ifdef SQLITE_ENABLE_RTREE 00026 # include "rtree.h" 00027 #endif 00028 #ifdef SQLITE_ENABLE_ICU 00029 # include "sqliteicu.h" 00030 #endif 00031 00032 /* 00033 ** The version of the library 00034 */ 00035 const char sqlite3_version[] = SQLITE_VERSION; 00036 const char *sqlite3_libversion(void){ return sqlite3_version; } 00037 int sqlite3_libversion_number(void){ return SQLITE_VERSION_NUMBER; } 00038 int sqlite3_threadsafe(void){ return SQLITE_THREADSAFE; } 00039 00040 #if !defined(SQLITE_OMIT_TRACE) && defined(SQLITE_ENABLE_IOTRACE) 00041 /* 00042 ** If the following function pointer is not NULL and if 00043 ** SQLITE_ENABLE_IOTRACE is enabled, then messages describing 00044 ** I/O active are written using this function. These messages 00045 ** are intended for debugging activity only. 00046 */ 00047 void (*sqlite3IoTrace)(const char*, ...) = 0; 00048 #endif 00049 00050 /* 00051 ** If the following global variable points to a string which is the 00052 ** name of a directory, then that directory will be used to store 00053 ** temporary files. 00054 ** 00055 ** See also the "PRAGMA temp_store_directory" SQL command. 00056 */ 00057 char *sqlite3_temp_directory = 0; 00058 00059 /* 00060 ** Initialize SQLite. 00061 ** 00062 ** This routine must be called to initialize the memory allocation, 00063 ** VFS, and mutex subsystems prior to doing any serious work with 00064 ** SQLite. But as long as you do not compile with SQLITE_OMIT_AUTOINIT 00065 ** this routine will be called automatically by key routines such as 00066 ** sqlite3_open(). 00067 ** 00068 ** This routine is a no-op except on its very first call for the process, 00069 ** or for the first call after a call to sqlite3_shutdown. 00070 ** 00071 ** The first thread to call this routine runs the initialization to 00072 ** completion. If subsequent threads call this routine before the first 00073 ** thread has finished the initialization process, then the subsequent 00074 ** threads must block until the first thread finishes with the initialization. 00075 ** 00076 ** The first thread might call this routine recursively. Recursive 00077 ** calls to this routine should not block, of course. Otherwise the 00078 ** initialization process would never complete. 00079 ** 00080 ** Let X be the first thread to enter this routine. Let Y be some other 00081 ** thread. Then while the initial invocation of this routine by X is 00082 ** incomplete, it is required that: 00083 ** 00084 ** * Calls to this routine from Y must block until the outer-most 00085 ** call by X completes. 00086 ** 00087 ** * Recursive calls to this routine from thread X return immediately 00088 ** without blocking. 00089 */ 00090 int sqlite3_initialize(void){ 00091 sqlite3_mutex *pMaster; /* The main static mutex */ 00092 int rc; /* Result code */ 00093 00094 #ifdef SQLITE_OMIT_WSD 00095 rc = sqlite3_wsd_init(4096, 24); 00096 if( rc!=SQLITE_OK ){ 00097 return rc; 00098 } 00099 #endif 00100 00101 /* If SQLite is already completely initialized, then this call 00102 ** to sqlite3_initialize() should be a no-op. But the initialization 00103 ** must be complete. So isInit must not be set until the very end 00104 ** of this routine. 00105 */ 00106 if( sqlite3GlobalConfig.isInit ) return SQLITE_OK; 00107 00108 /* Make sure the mutex subsystem is initialized. If unable to 00109 ** initialize the mutex subsystem, return early with the error. 00110 ** If the system is so sick that we are unable to allocate a mutex, 00111 ** there is not much SQLite is going to be able to do. 00112 ** 00113 ** The mutex subsystem must take care of serializing its own 00114 ** initialization. 00115 */ 00116 rc = sqlite3MutexInit(); 00117 if( rc ) return rc; 00118 00119 /* Initialize the malloc() system and the recursive pInitMutex mutex. 00120 ** This operation is protected by the STATIC_MASTER mutex. Note that 00121 ** MutexAlloc() is called for a static mutex prior to initializing the 00122 ** malloc subsystem - this implies that the allocation of a static 00123 ** mutex must not require support from the malloc subsystem. 00124 */ 00125 pMaster = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER); 00126 sqlite3_mutex_enter(pMaster); 00127 if( !sqlite3GlobalConfig.isMallocInit ){ 00128 rc = sqlite3MallocInit(); 00129 } 00130 if( rc==SQLITE_OK ){ 00131 sqlite3GlobalConfig.isMallocInit = 1; 00132 if( !sqlite3GlobalConfig.pInitMutex ){ 00133 sqlite3GlobalConfig.pInitMutex = sqlite3MutexAlloc(SQLITE_MUTEX_RECURSIVE); 00134 if( sqlite3GlobalConfig.bCoreMutex && !sqlite3GlobalConfig.pInitMutex ){ 00135 rc = SQLITE_NOMEM; 00136 } 00137 } 00138 } 00139 if( rc==SQLITE_OK ){ 00140 sqlite3GlobalConfig.nRefInitMutex++; 00141 } 00142 sqlite3_mutex_leave(pMaster); 00143 00144 /* If unable to initialize the malloc subsystem, then return early. 00145 ** There is little hope of getting SQLite to run if the malloc 00146 ** subsystem cannot be initialized. 00147 */ 00148 if( rc!=SQLITE_OK ){ 00149 return rc; 00150 } 00151 00152 /* Do the rest of the initialization under the recursive mutex so 00153 ** that we will be able to handle recursive calls into 00154 ** sqlite3_initialize(). The recursive calls normally come through 00155 ** sqlite3_os_init() when it invokes sqlite3_vfs_register(), but other 00156 ** recursive calls might also be possible. 00157 */ 00158 sqlite3_mutex_enter(sqlite3GlobalConfig.pInitMutex); 00159 if( sqlite3GlobalConfig.isInit==0 && sqlite3GlobalConfig.inProgress==0 ){ 00160 FuncDefHash *pHash = &GLOBAL(FuncDefHash, sqlite3GlobalFunctions); 00161 sqlite3GlobalConfig.inProgress = 1; 00162 memset(pHash, 0, sizeof(sqlite3GlobalFunctions)); 00163 sqlite3RegisterGlobalFunctions(); 00164 rc = sqlite3_os_init(); 00165 if( rc==SQLITE_OK ){ 00166 rc = sqlite3PcacheInitialize(); 00167 sqlite3PCacheBufferSetup( sqlite3GlobalConfig.pPage, 00168 sqlite3GlobalConfig.szPage, sqlite3GlobalConfig.nPage); 00169 } 00170 sqlite3GlobalConfig.inProgress = 0; 00171 sqlite3GlobalConfig.isInit = (rc==SQLITE_OK ? 1 : 0); 00172 } 00173 sqlite3_mutex_leave(sqlite3GlobalConfig.pInitMutex); 00174 00175 /* Go back under the static mutex and clean up the recursive 00176 ** mutex to prevent a resource leak. 00177 */ 00178 sqlite3_mutex_enter(pMaster); 00179 sqlite3GlobalConfig.nRefInitMutex--; 00180 if( sqlite3GlobalConfig.nRefInitMutex<=0 ){ 00181 assert( sqlite3GlobalConfig.nRefInitMutex==0 ); 00182 sqlite3_mutex_free(sqlite3GlobalConfig.pInitMutex); 00183 sqlite3GlobalConfig.pInitMutex = 0; 00184 } 00185 sqlite3_mutex_leave(pMaster); 00186 00187 /* The following is just a sanity check to make sure SQLite has 00188 ** been compiled correctly. It is important to run this code, but 00189 ** we don't want to run it too often and soak up CPU cycles for no 00190 ** reason. So we run it once during initialization. 00191 */ 00192 #ifndef NDEBUG 00193 /* This section of code's only "output" is via assert() statements. */ 00194 if ( rc==SQLITE_OK ){ 00195 u64 x = (((u64)1)<<63)-1; 00196 double y; 00197 assert(sizeof(x)==8); 00198 assert(sizeof(x)==sizeof(y)); 00199 memcpy(&y, &x, 8); 00200 assert( sqlite3IsNaN(y) ); 00201 } 00202 #endif 00203 00204 return rc; 00205 } 00206 00207 /* 00208 ** Undo the effects of sqlite3_initialize(). Must not be called while 00209 ** there are outstanding database connections or memory allocations or 00210 ** while any part of SQLite is otherwise in use in any thread. This 00211 ** routine is not threadsafe. Not by a long shot. 00212 */ 00213 int sqlite3_shutdown(void){ 00214 sqlite3GlobalConfig.isMallocInit = 0; 00215 sqlite3PcacheShutdown(); 00216 if( sqlite3GlobalConfig.isInit ){ 00217 sqlite3_os_end(); 00218 } 00219 sqlite3MallocEnd(); 00220 sqlite3MutexEnd(); 00221 sqlite3GlobalConfig.isInit = 0; 00222 return SQLITE_OK; 00223 } 00224 00225 /* 00226 ** This API allows applications to modify the global configuration of 00227 ** the SQLite library at run-time. 00228 ** 00229 ** This routine should only be called when there are no outstanding 00230 ** database connections or memory allocations. This routine is not 00231 ** threadsafe. Failure to heed these warnings can lead to unpredictable 00232 ** behavior. 00233 */ 00234 int sqlite3_config(int op, ...){ 00235 va_list ap; 00236 int rc = SQLITE_OK; 00237 00238 /* sqlite3_config() shall return SQLITE_MISUSE if it is invoked while 00239 ** the SQLite library is in use. */ 00240 if( sqlite3GlobalConfig.isInit ) return SQLITE_MISUSE; 00241 00242 va_start(ap, op); 00243 switch( op ){ 00244 00245 /* Mutex configuration options are only available in a threadsafe 00246 ** compile. 00247 */ 00248 #if SQLITE_THREADSAFE 00249 case SQLITE_CONFIG_SINGLETHREAD: { 00250 /* Disable all mutexing */ 00251 sqlite3GlobalConfig.bCoreMutex = 0; 00252 sqlite3GlobalConfig.bFullMutex = 0; 00253 break; 00254 } 00255 case SQLITE_CONFIG_MULTITHREAD: { 00256 /* Disable mutexing of database connections */ 00257 /* Enable mutexing of core data structures */ 00258 sqlite3GlobalConfig.bCoreMutex = 1; 00259 sqlite3GlobalConfig.bFullMutex = 0; 00260 break; 00261 } 00262 case SQLITE_CONFIG_SERIALIZED: { 00263 /* Enable all mutexing */ 00264 sqlite3GlobalConfig.bCoreMutex = 1; 00265 sqlite3GlobalConfig.bFullMutex = 1; 00266 break; 00267 } 00268 case SQLITE_CONFIG_MUTEX: { 00269 /* Specify an alternative mutex implementation */ 00270 sqlite3GlobalConfig.mutex = *va_arg(ap, sqlite3_mutex_methods*); 00271 break; 00272 } 00273 case SQLITE_CONFIG_GETMUTEX: { 00274 /* Retrieve the current mutex implementation */ 00275 *va_arg(ap, sqlite3_mutex_methods*) = sqlite3GlobalConfig.mutex; 00276 break; 00277 } 00278 #endif 00279 00280 00281 case SQLITE_CONFIG_MALLOC: { 00282 /* Specify an alternative malloc implementation */ 00283 sqlite3GlobalConfig.m = *va_arg(ap, sqlite3_mem_methods*); 00284 break; 00285 } 00286 case SQLITE_CONFIG_GETMALLOC: { 00287 /* Retrieve the current malloc() implementation */ 00288 if( sqlite3GlobalConfig.m.xMalloc==0 ) sqlite3MemSetDefault(); 00289 *va_arg(ap, sqlite3_mem_methods*) = sqlite3GlobalConfig.m; 00290 break; 00291 } 00292 case SQLITE_CONFIG_MEMSTATUS: { 00293 /* Enable or disable the malloc status collection */ 00294 sqlite3GlobalConfig.bMemstat = va_arg(ap, int); 00295 break; 00296 } 00297 case SQLITE_CONFIG_SCRATCH: { 00298 /* Designate a buffer for scratch memory space */ 00299 sqlite3GlobalConfig.pScratch = va_arg(ap, void*); 00300 sqlite3GlobalConfig.szScratch = va_arg(ap, int); 00301 sqlite3GlobalConfig.nScratch = va_arg(ap, int); 00302 break; 00303 } 00304 case SQLITE_CONFIG_PAGECACHE: { 00305 /* Designate a buffer for scratch memory space */ 00306 sqlite3GlobalConfig.pPage = va_arg(ap, void*); 00307 sqlite3GlobalConfig.szPage = va_arg(ap, int); 00308 sqlite3GlobalConfig.nPage = va_arg(ap, int); 00309 break; 00310 } 00311 00312 #if defined(SQLITE_ENABLE_MEMSYS3) || defined(SQLITE_ENABLE_MEMSYS5) 00313 case SQLITE_CONFIG_HEAP: { 00314 /* Designate a buffer for heap memory space */ 00315 sqlite3GlobalConfig.pHeap = va_arg(ap, void*); 00316 sqlite3GlobalConfig.nHeap = va_arg(ap, int); 00317 sqlite3GlobalConfig.mnReq = va_arg(ap, int); 00318 00319 if( sqlite3GlobalConfig.pHeap==0 ){ 00320 /* If the heap pointer is NULL, then restore the malloc implementation 00321 ** back to NULL pointers too. This will cause the malloc to go 00322 ** back to its default implementation when sqlite3_initialize() is 00323 ** run. 00324 */ 00325 memset(&sqlite3GlobalConfig.m, 0, sizeof(sqlite3GlobalConfig.m)); 00326 }else{ 00327 /* The heap pointer is not NULL, then install one of the 00328 ** mem5.c/mem3.c methods. If neither ENABLE_MEMSYS3 nor 00329 ** ENABLE_MEMSYS5 is defined, return an error. 00330 ** the default case and return an error. 00331 */ 00332 #ifdef SQLITE_ENABLE_MEMSYS3 00333 sqlite3GlobalConfig.m = *sqlite3MemGetMemsys3(); 00334 #endif 00335 #ifdef SQLITE_ENABLE_MEMSYS5 00336 sqlite3GlobalConfig.m = *sqlite3MemGetMemsys5(); 00337 #endif 00338 } 00339 break; 00340 } 00341 #endif 00342 00343 case SQLITE_CONFIG_LOOKASIDE: { 00344 sqlite3GlobalConfig.szLookaside = va_arg(ap, int); 00345 sqlite3GlobalConfig.nLookaside = va_arg(ap, int); 00346 break; 00347 } 00348 00349 default: { 00350 rc = SQLITE_ERROR; 00351 break; 00352 } 00353 } 00354 va_end(ap); 00355 return rc; 00356 } 00357 00358 /* 00359 ** Set up the lookaside buffers for a database connection. 00360 ** Return SQLITE_OK on success. 00361 ** If lookaside is already active, return SQLITE_BUSY. 00362 ** 00363 ** The sz parameter is the number of bytes in each lookaside slot. 00364 ** The cnt parameter is the number of slots. If pStart is NULL the 00365 ** space for the lookaside memory is obtained from sqlite3_malloc(). 00366 ** If pStart is not NULL then it is sz*cnt bytes of memory to use for 00367 ** the lookaside memory. 00368 */ 00369 static int setupLookaside(sqlite3 *db, void *pBuf, int sz, int cnt){ 00370 void *pStart; 00371 if( db->lookaside.nOut ){ 00372 return SQLITE_BUSY; 00373 } 00374 if( sz<0 ) sz = 0; 00375 if( cnt<0 ) cnt = 0; 00376 if( pBuf==0 ){ 00377 sz = (sz + 7)&~7; 00378 sqlite3BeginBenignMalloc(); 00379 pStart = sqlite3Malloc( sz*cnt ); 00380 sqlite3EndBenignMalloc(); 00381 }else{ 00382 sz = sz&~7; 00383 pStart = pBuf; 00384 } 00385 if( db->lookaside.bMalloced ){ 00386 sqlite3_free(db->lookaside.pStart); 00387 } 00388 db->lookaside.pStart = pStart; 00389 db->lookaside.pFree = 0; 00390 db->lookaside.sz = sz; 00391 db->lookaside.bMalloced = pBuf==0; 00392 if( pStart ){ 00393 int i; 00394 LookasideSlot *p; 00395 p = (LookasideSlot*)pStart; 00396 for(i=cnt-1; i>=0; i--){ 00397 p->pNext = db->lookaside.pFree; 00398 db->lookaside.pFree = p; 00399 p = (LookasideSlot*)&((u8*)p)[sz]; 00400 } 00401 db->lookaside.pEnd = p; 00402 db->lookaside.bEnabled = 1; 00403 }else{ 00404 db->lookaside.pEnd = 0; 00405 db->lookaside.bEnabled = 0; 00406 } 00407 return SQLITE_OK; 00408 } 00409 00410 /* 00411 ** Return the mutex associated with a database connection. 00412 */ 00413 sqlite3_mutex *sqlite3_db_mutex(sqlite3 *db){ 00414 return db->mutex; 00415 } 00416 00417 /* 00418 ** Configuration settings for an individual database connection 00419 */ 00420 int sqlite3_db_config(sqlite3 *db, int op, ...){ 00421 va_list ap; 00422 int rc; 00423 va_start(ap, op); 00424 switch( op ){ 00425 case SQLITE_DBCONFIG_LOOKASIDE: { 00426 void *pBuf = va_arg(ap, void*); 00427 int sz = va_arg(ap, int); 00428 int cnt = va_arg(ap, int); 00429 rc = setupLookaside(db, pBuf, sz, cnt); 00430 break; 00431 } 00432 default: { 00433 rc = SQLITE_ERROR; 00434 break; 00435 } 00436 } 00437 va_end(ap); 00438 return rc; 00439 } 00440 00441 /* 00442 ** Routine needed to support the testcase() macro. 00443 */ 00444 #ifdef SQLITE_COVERAGE_TEST 00445 void sqlite3Coverage(int x){ 00446 static int dummy = 0; 00447 dummy += x; 00448 } 00449 #endif 00450 00451 00452 /* 00453 ** Return true if the buffer z[0..n-1] contains all spaces. 00454 */ 00455 static int allSpaces(const char *z, int n){ 00456 while( n>0 && z[n-1]==' ' ){ n--; } 00457 return n==0; 00458 } 00459 00460 /* 00461 ** This is the default collating function named "BINARY" which is always 00462 ** available. 00463 ** 00464 ** If the padFlag argument is not NULL then space padding at the end 00465 ** of strings is ignored. This implements the RTRIM collation. 00466 */ 00467 static int binCollFunc( 00468 void *padFlag, 00469 int nKey1, const void *pKey1, 00470 int nKey2, const void *pKey2 00471 ){ 00472 int rc, n; 00473 n = nKey1<nKey2 ? nKey1 : nKey2; 00474 rc = memcmp(pKey1, pKey2, n); 00475 if( rc==0 ){ 00476 if( padFlag 00477 && allSpaces(((char*)pKey1)+n, nKey1-n) 00478 && allSpaces(((char*)pKey2)+n, nKey2-n) 00479 ){ 00480 /* Leave rc unchanged at 0 */ 00481 }else{ 00482 rc = nKey1 - nKey2; 00483 } 00484 } 00485 return rc; 00486 } 00487 00488 /* 00489 ** Another built-in collating sequence: NOCASE. 00490 ** 00491 ** This collating sequence is intended to be used for "case independant 00492 ** comparison". SQLite's knowledge of upper and lower case equivalents 00493 ** extends only to the 26 characters used in the English language. 00494 ** 00495 ** At the moment there is only a UTF-8 implementation. 00496 */ 00497 static int nocaseCollatingFunc( 00498 void *NotUsed, 00499 int nKey1, const void *pKey1, 00500 int nKey2, const void *pKey2 00501 ){ 00502 int r = sqlite3StrNICmp( 00503 (const char *)pKey1, (const char *)pKey2, (nKey1<nKey2)?nKey1:nKey2); 00504 if( 0==r ){ 00505 r = nKey1-nKey2; 00506 } 00507 return r; 00508 } 00509 00510 /* 00511 ** Return the ROWID of the most recent insert 00512 */ 00513 sqlite_int64 sqlite3_last_insert_rowid(sqlite3 *db){ 00514 return db->lastRowid; 00515 } 00516 00517 /* 00518 ** Return the number of changes in the most recent call to sqlite3_exec(). 00519 */ 00520 int sqlite3_changes(sqlite3 *db){ 00521 return db->nChange; 00522 } 00523 00524 /* 00525 ** Return the number of changes since the database handle was opened. 00526 */ 00527 int sqlite3_total_changes(sqlite3 *db){ 00528 return db->nTotalChange; 00529 } 00530 00531 /* 00532 ** Close an existing SQLite database 00533 */ 00534 EXPORT_C int sqlite3_close(sqlite3 *db){ 00535 HashElem *i; 00536 int j; 00537 00538 if( !db ){ 00539 return SQLITE_OK; 00540 } 00541 if( !sqlite3SafetyCheckSickOrOk(db) ){ 00542 return SQLITE_MISUSE; 00543 } 00544 sqlite3_mutex_enter(db->mutex); 00545 00546 #ifdef SQLITE_SSE 00547 { 00548 extern void sqlite3SseCleanup(sqlite3*); 00549 sqlite3SseCleanup(db); 00550 } 00551 #endif 00552 00553 sqlite3ResetInternalSchema(db, 0); 00554 00555 /* If a transaction is open, the ResetInternalSchema() call above 00556 ** will not have called the xDisconnect() method on any virtual 00557 ** tables in the db->aVTrans[] array. The following sqlite3VtabRollback() 00558 ** call will do so. We need to do this before the check for active 00559 ** SQL statements below, as the v-table implementation may be storing 00560 ** some prepared statements internally. 00561 */ 00562 sqlite3VtabRollback(db); 00563 00564 /* If there are any outstanding VMs, return SQLITE_BUSY. */ 00565 if( db->pVdbe ){ 00566 sqlite3Error(db, SQLITE_BUSY, 00567 "Unable to close due to unfinalised statements"); 00568 sqlite3_mutex_leave(db->mutex); 00569 return SQLITE_BUSY; 00570 } 00571 assert( sqlite3SafetyCheckSickOrOk(db) ); 00572 00573 for(j=0; j<db->nDb; j++){ 00574 struct Db *pDb = &db->aDb[j]; 00575 if( pDb->pBt ){ 00576 sqlite3BtreeClose(pDb->pBt); 00577 pDb->pBt = 0; 00578 if( j!=1 ){ 00579 pDb->pSchema = 0; 00580 } 00581 } 00582 } 00583 sqlite3ResetInternalSchema(db, 0); 00584 assert( db->nDb<=2 ); 00585 assert( db->aDb==db->aDbStatic ); 00586 for(j=0; j<ArraySize(db->aFunc.a); j++){ 00587 FuncDef *pNext, *pHash, *p; 00588 for(p=db->aFunc.a[j]; p; p=pHash){ 00589 pHash = p->pHash; 00590 while( p ){ 00591 pNext = p->pNext; 00592 sqlite3DbFree(db, p); 00593 p = pNext; 00594 } 00595 } 00596 } 00597 for(i=sqliteHashFirst(&db->aCollSeq); i; i=sqliteHashNext(i)){ 00598 CollSeq *pColl = (CollSeq *)sqliteHashData(i); 00599 /* Invoke any destructors registered for collation sequence user data. */ 00600 for(j=0; j<3; j++){ 00601 if( pColl[j].xDel ){ 00602 pColl[j].xDel(pColl[j].pUser); 00603 } 00604 } 00605 sqlite3DbFree(db, pColl); 00606 } 00607 sqlite3HashClear(&db->aCollSeq); 00608 #ifndef SQLITE_OMIT_VIRTUALTABLE 00609 for(i=sqliteHashFirst(&db->aModule); i; i=sqliteHashNext(i)){ 00610 Module *pMod = (Module *)sqliteHashData(i); 00611 if( pMod->xDestroy ){ 00612 pMod->xDestroy(pMod->pAux); 00613 } 00614 sqlite3DbFree(db, pMod); 00615 } 00616 sqlite3HashClear(&db->aModule); 00617 #endif 00618 00619 sqlite3Error(db, SQLITE_OK, 0); /* Deallocates any cached error strings. */ 00620 if( db->pErr ){ 00621 sqlite3ValueFree(db->pErr); 00622 } 00623 sqlite3CloseExtensions(db); 00624 00625 db->magic = SQLITE_MAGIC_ERROR; 00626 00627 /* The temp-database schema is allocated differently from the other schema 00628 ** objects (using sqliteMalloc() directly, instead of sqlite3BtreeSchema()). 00629 ** So it needs to be freed here. Todo: Why not roll the temp schema into 00630 ** the same sqliteMalloc() as the one that allocates the database 00631 ** structure? 00632 */ 00633 sqlite3DbFree(db, db->aDb[1].pSchema); 00634 sqlite3_mutex_leave(db->mutex); 00635 db->magic = SQLITE_MAGIC_CLOSED; 00636 sqlite3_mutex_free(db->mutex); 00637 assert( db->lookaside.nOut==0 ); /* Fails on a lookaside memory leak */ 00638 if( db->lookaside.bMalloced ){ 00639 sqlite3_free(db->lookaside.pStart); 00640 } 00641 sqlite3_free(db); 00642 return SQLITE_OK; 00643 } 00644 00645 /* 00646 ** Rollback all database files. 00647 */ 00648 void sqlite3RollbackAll(sqlite3 *db){ 00649 int i; 00650 int inTrans = 0; 00651 assert( sqlite3_mutex_held(db->mutex) ); 00652 sqlite3BeginBenignMalloc(); 00653 for(i=0; i<db->nDb; i++){ 00654 if( db->aDb[i].pBt ){ 00655 if( sqlite3BtreeIsInTrans(db->aDb[i].pBt) ){ 00656 inTrans = 1; 00657 } 00658 sqlite3BtreeRollback(db->aDb[i].pBt); 00659 db->aDb[i].inTrans = 0; 00660 } 00661 } 00662 sqlite3VtabRollback(db); 00663 sqlite3EndBenignMalloc(); 00664 00665 if( db->flags&SQLITE_InternChanges ){ 00666 sqlite3ExpirePreparedStatements(db); 00667 sqlite3ResetInternalSchema(db, 0); 00668 } 00669 00670 /* If one has been configured, invoke the rollback-hook callback */ 00671 if( db->xRollbackCallback && (inTrans || !db->autoCommit) ){ 00672 db->xRollbackCallback(db->pRollbackArg); 00673 } 00674 } 00675 00676 /* 00677 ** Return a static string that describes the kind of error specified in the 00678 ** argument. 00679 */ 00680 const char *sqlite3ErrStr(int rc){ 00681 const char *z; 00682 switch( rc & 0xff ){ 00683 case SQLITE_ROW: 00684 case SQLITE_DONE: 00685 case SQLITE_OK: z = "not an error"; break; 00686 case SQLITE_ERROR: z = "SQL logic error or missing database"; break; 00687 case SQLITE_PERM: z = "access permission denied"; break; 00688 case SQLITE_ABORT: z = "callback requested query abort"; break; 00689 case SQLITE_BUSY: z = "database is locked"; break; 00690 case SQLITE_LOCKED: z = "database table is locked"; break; 00691 case SQLITE_NOMEM: z = "out of memory"; break; 00692 case SQLITE_READONLY: z = "attempt to write a readonly database"; break; 00693 case SQLITE_INTERRUPT: z = "interrupted"; break; 00694 case SQLITE_IOERR: z = "disk I/O error"; break; 00695 case SQLITE_CORRUPT: z = "database disk image is malformed"; break; 00696 case SQLITE_FULL: z = "database or disk is full"; break; 00697 case SQLITE_CANTOPEN: z = "unable to open database file"; break; 00698 case SQLITE_EMPTY: z = "table contains no data"; break; 00699 case SQLITE_SCHEMA: z = "database schema has changed"; break; 00700 case SQLITE_TOOBIG: z = "String or BLOB exceeded size limit"; break; 00701 case SQLITE_CONSTRAINT: z = "constraint failed"; break; 00702 case SQLITE_MISMATCH: z = "datatype mismatch"; break; 00703 case SQLITE_MISUSE: z = "library routine called out of sequence";break; 00704 case SQLITE_NOLFS: z = "large file support is disabled"; break; 00705 case SQLITE_AUTH: z = "authorization denied"; break; 00706 case SQLITE_FORMAT: z = "auxiliary database format error"; break; 00707 case SQLITE_RANGE: z = "bind or column index out of range"; break; 00708 case SQLITE_NOTADB: z = "file is encrypted or is not a database";break; 00709 default: z = "unknown error"; break; 00710 } 00711 return z; 00712 } 00713 00714 /* 00715 ** This routine implements a busy callback that sleeps and tries 00716 ** again until a timeout value is reached. The timeout value is 00717 ** an integer number of milliseconds passed in as the first 00718 ** argument. 00719 */ 00720 static int sqliteDefaultBusyCallback( 00721 void *ptr, /* Database connection */ 00722 int count /* Number of times table has been busy */ 00723 ){ 00724 #if SQLITE_OS_WIN || (defined(HAVE_USLEEP) && HAVE_USLEEP) 00725 static const u8 delays[] = 00726 { 1, 2, 5, 10, 15, 20, 25, 25, 25, 50, 50, 100 }; 00727 static const u8 totals[] = 00728 { 0, 1, 3, 8, 18, 33, 53, 78, 103, 128, 178, 228 }; 00729 # define NDELAY (sizeof(delays)/sizeof(delays[0])) 00730 sqlite3 *db = (sqlite3 *)ptr; 00731 int timeout = db->busyTimeout; 00732 int delay, prior; 00733 00734 assert( count>=0 ); 00735 if( count < NDELAY ){ 00736 delay = delays[count]; 00737 prior = totals[count]; 00738 }else{ 00739 delay = delays[NDELAY-1]; 00740 prior = totals[NDELAY-1] + delay*(count-(NDELAY-1)); 00741 } 00742 if( prior + delay > timeout ){ 00743 delay = timeout - prior; 00744 if( delay<=0 ) return 0; 00745 } 00746 sqlite3OsSleep(db->pVfs, delay*1000); 00747 return 1; 00748 #else 00749 sqlite3 *db = (sqlite3 *)ptr; 00750 int timeout = ((sqlite3 *)ptr)->busyTimeout; 00751 if( (count+1)*1000 > timeout ){ 00752 return 0; 00753 } 00754 sqlite3OsSleep(db->pVfs, 1000000); 00755 return 1; 00756 #endif 00757 } 00758 00759 /* 00760 ** Invoke the given busy handler. 00761 ** 00762 ** This routine is called when an operation failed with a lock. 00763 ** If this routine returns non-zero, the lock is retried. If it 00764 ** returns 0, the operation aborts with an SQLITE_BUSY error. 00765 */ 00766 int sqlite3InvokeBusyHandler(BusyHandler *p){ 00767 int rc; 00768 if( NEVER(p==0) || p->xFunc==0 || p->nBusy<0 ) return 0; 00769 rc = p->xFunc(p->pArg, p->nBusy); 00770 if( rc==0 ){ 00771 p->nBusy = -1; 00772 }else{ 00773 p->nBusy++; 00774 } 00775 return rc; 00776 } 00777 00778 /* 00779 ** This routine sets the busy callback for an Sqlite database to the 00780 ** given callback function with the given argument. 00781 */ 00782 int sqlite3_busy_handler( 00783 sqlite3 *db, 00784 int (*xBusy)(void*,int), 00785 void *pArg 00786 ){ 00787 sqlite3_mutex_enter(db->mutex); 00788 db->busyHandler.xFunc = xBusy; 00789 db->busyHandler.pArg = pArg; 00790 db->busyHandler.nBusy = 0; 00791 sqlite3_mutex_leave(db->mutex); 00792 return SQLITE_OK; 00793 } 00794 00795 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK 00796 /* 00797 ** This routine sets the progress callback for an Sqlite database to the 00798 ** given callback function with the given argument. The progress callback will 00799 ** be invoked every nOps opcodes. 00800 */ 00801 void sqlite3_progress_handler( 00802 sqlite3 *db, 00803 int nOps, 00804 int (*xProgress)(void*), 00805 void *pArg 00806 ){ 00807 sqlite3_mutex_enter(db->mutex); 00808 if( nOps>0 ){ 00809 db->xProgress = xProgress; 00810 db->nProgressOps = nOps; 00811 db->pProgressArg = pArg; 00812 }else{ 00813 db->xProgress = 0; 00814 db->nProgressOps = 0; 00815 db->pProgressArg = 0; 00816 } 00817 sqlite3_mutex_leave(db->mutex); 00818 } 00819 #endif 00820 00821 00822 /* 00823 ** This routine installs a default busy handler that waits for the 00824 ** specified number of milliseconds before returning 0. 00825 */ 00826 int sqlite3_busy_timeout(sqlite3 *db, int ms){ 00827 if( ms>0 ){ 00828 db->busyTimeout = ms; 00829 sqlite3_busy_handler(db, sqliteDefaultBusyCallback, (void*)db); 00830 }else{ 00831 sqlite3_busy_handler(db, 0, 0); 00832 } 00833 return SQLITE_OK; 00834 } 00835 00836 /* 00837 ** Cause any pending operation to stop at its earliest opportunity. 00838 */ 00839 void sqlite3_interrupt(sqlite3 *db){ 00840 db->u1.isInterrupted = 1; 00841 } 00842 00843 00844 /* 00845 ** This function is exactly the same as sqlite3_create_function(), except 00846 ** that it is designed to be called by internal code. The difference is 00847 ** that if a malloc() fails in sqlite3_create_function(), an error code 00848 ** is returned and the mallocFailed flag cleared. 00849 */ 00850 int sqlite3CreateFunc( 00851 sqlite3 *db, 00852 const char *zFunctionName, 00853 int nArg, 00854 int enc, 00855 void *pUserData, 00856 void (*xFunc)(sqlite3_context*,int,sqlite3_value **), 00857 void (*xStep)(sqlite3_context*,int,sqlite3_value **), 00858 void (*xFinal)(sqlite3_context*) 00859 ){ 00860 FuncDef *p; 00861 int nName; 00862 00863 assert( sqlite3_mutex_held(db->mutex) ); 00864 if( zFunctionName==0 || 00865 (xFunc && (xFinal || xStep)) || 00866 (!xFunc && (xFinal && !xStep)) || 00867 (!xFunc && (!xFinal && xStep)) || 00868 (nArg<-1 || nArg>SQLITE_MAX_FUNCTION_ARG) || 00869 (255<(nName = sqlite3Strlen(db, zFunctionName))) ){ 00870 sqlite3Error(db, SQLITE_ERROR, "bad parameters"); 00871 return SQLITE_ERROR; 00872 } 00873 00874 #ifndef SQLITE_OMIT_UTF16 00875 /* If SQLITE_UTF16 is specified as the encoding type, transform this 00876 ** to one of SQLITE_UTF16LE or SQLITE_UTF16BE using the 00877 ** SQLITE_UTF16NATIVE macro. SQLITE_UTF16 is not used internally. 00878 ** 00879 ** If SQLITE_ANY is specified, add three versions of the function 00880 ** to the hash table. 00881 */ 00882 if( enc==SQLITE_UTF16 ){ 00883 enc = SQLITE_UTF16NATIVE; 00884 }else if( enc==SQLITE_ANY ){ 00885 int rc; 00886 rc = sqlite3CreateFunc(db, zFunctionName, nArg, SQLITE_UTF8, 00887 pUserData, xFunc, xStep, xFinal); 00888 if( rc==SQLITE_OK ){ 00889 rc = sqlite3CreateFunc(db, zFunctionName, nArg, SQLITE_UTF16LE, 00890 pUserData, xFunc, xStep, xFinal); 00891 } 00892 if( rc!=SQLITE_OK ){ 00893 return rc; 00894 } 00895 enc = SQLITE_UTF16BE; 00896 } 00897 #else 00898 enc = SQLITE_UTF8; 00899 #endif 00900 00901 /* Check if an existing function is being overridden or deleted. If so, 00902 ** and there are active VMs, then return SQLITE_BUSY. If a function 00903 ** is being overridden/deleted but there are no active VMs, allow the 00904 ** operation to continue but invalidate all precompiled statements. 00905 */ 00906 p = sqlite3FindFunction(db, zFunctionName, nName, nArg, enc, 0); 00907 if( p && p->iPrefEnc==enc && p->nArg==nArg ){ 00908 if( db->activeVdbeCnt ){ 00909 sqlite3Error(db, SQLITE_BUSY, 00910 "Unable to delete/modify user-function due to active statements"); 00911 assert( !db->mallocFailed ); 00912 return SQLITE_BUSY; 00913 }else{ 00914 sqlite3ExpirePreparedStatements(db); 00915 } 00916 } 00917 00918 p = sqlite3FindFunction(db, zFunctionName, nName, nArg, enc, 1); 00919 assert(p || db->mallocFailed); 00920 if( !p ){ 00921 return SQLITE_NOMEM; 00922 } 00923 p->flags = 0; 00924 p->xFunc = xFunc; 00925 p->xStep = xStep; 00926 p->xFinalize = xFinal; 00927 p->pUserData = pUserData; 00928 p->nArg = nArg; 00929 return SQLITE_OK; 00930 } 00931 00932 /* 00933 ** Create new user functions. 00934 */ 00935 int sqlite3_create_function( 00936 sqlite3 *db, 00937 const char *zFunctionName, 00938 int nArg, 00939 int enc, 00940 void *p, 00941 void (*xFunc)(sqlite3_context*,int,sqlite3_value **), 00942 void (*xStep)(sqlite3_context*,int,sqlite3_value **), 00943 void (*xFinal)(sqlite3_context*) 00944 ){ 00945 int rc; 00946 sqlite3_mutex_enter(db->mutex); 00947 rc = sqlite3CreateFunc(db, zFunctionName, nArg, enc, p, xFunc, xStep, xFinal); 00948 rc = sqlite3ApiExit(db, rc); 00949 sqlite3_mutex_leave(db->mutex); 00950 return rc; 00951 } 00952 00953 #ifndef SQLITE_OMIT_UTF16 00954 int sqlite3_create_function16( 00955 sqlite3 *db, 00956 const void *zFunctionName, 00957 int nArg, 00958 int eTextRep, 00959 void *p, 00960 void (*xFunc)(sqlite3_context*,int,sqlite3_value**), 00961 void (*xStep)(sqlite3_context*,int,sqlite3_value**), 00962 void (*xFinal)(sqlite3_context*) 00963 ){ 00964 int rc; 00965 char *zFunc8; 00966 sqlite3_mutex_enter(db->mutex); 00967 assert( !db->mallocFailed ); 00968 zFunc8 = sqlite3Utf16to8(db, zFunctionName, -1); 00969 rc = sqlite3CreateFunc(db, zFunc8, nArg, eTextRep, p, xFunc, xStep, xFinal); 00970 sqlite3DbFree(db, zFunc8); 00971 rc = sqlite3ApiExit(db, rc); 00972 sqlite3_mutex_leave(db->mutex); 00973 return rc; 00974 } 00975 #endif 00976 00977 00978 /* 00979 ** Declare that a function has been overloaded by a virtual table. 00980 ** 00981 ** If the function already exists as a regular global function, then 00982 ** this routine is a no-op. If the function does not exist, then create 00983 ** a new one that always throws a run-time error. 00984 ** 00985 ** When virtual tables intend to provide an overloaded function, they 00986 ** should call this routine to make sure the global function exists. 00987 ** A global function must exist in order for name resolution to work 00988 ** properly. 00989 */ 00990 int sqlite3_overload_function( 00991 sqlite3 *db, 00992 const char *zName, 00993 int nArg 00994 ){ 00995 int nName = sqlite3Strlen(db, zName); 00996 int rc; 00997 sqlite3_mutex_enter(db->mutex); 00998 if( sqlite3FindFunction(db, zName, nName, nArg, SQLITE_UTF8, 0)==0 ){ 00999 sqlite3CreateFunc(db, zName, nArg, SQLITE_UTF8, 01000 0, sqlite3InvalidFunction, 0, 0); 01001 } 01002 rc = sqlite3ApiExit(db, SQLITE_OK); 01003 sqlite3_mutex_leave(db->mutex); 01004 return rc; 01005 } 01006 01007 #ifndef SQLITE_OMIT_TRACE 01008 /* 01009 ** Register a trace function. The pArg from the previously registered trace 01010 ** is returned. 01011 ** 01012 ** A NULL trace function means that no tracing is executes. A non-NULL 01013 ** trace is a pointer to a function that is invoked at the start of each 01014 ** SQL statement. 01015 */ 01016 void *sqlite3_trace(sqlite3 *db, void (*xTrace)(void*,const char*), void *pArg){ 01017 void *pOld; 01018 sqlite3_mutex_enter(db->mutex); 01019 pOld = db->pTraceArg; 01020 db->xTrace = xTrace; 01021 db->pTraceArg = pArg; 01022 sqlite3_mutex_leave(db->mutex); 01023 return pOld; 01024 } 01025 /* 01026 ** Register a profile function. The pArg from the previously registered 01027 ** profile function is returned. 01028 ** 01029 ** A NULL profile function means that no profiling is executes. A non-NULL 01030 ** profile is a pointer to a function that is invoked at the conclusion of 01031 ** each SQL statement that is run. 01032 */ 01033 void *sqlite3_profile( 01034 sqlite3 *db, 01035 void (*xProfile)(void*,const char*,sqlite_uint64), 01036 void *pArg 01037 ){ 01038 void *pOld; 01039 sqlite3_mutex_enter(db->mutex); 01040 pOld = db->pProfileArg; 01041 db->xProfile = xProfile; 01042 db->pProfileArg = pArg; 01043 sqlite3_mutex_leave(db->mutex); 01044 return pOld; 01045 } 01046 #endif /* SQLITE_OMIT_TRACE */ 01047 01048 /*** EXPERIMENTAL *** 01049 ** 01050 ** Register a function to be invoked when a transaction comments. 01051 ** If the invoked function returns non-zero, then the commit becomes a 01052 ** rollback. 01053 */ 01054 void *sqlite3_commit_hook( 01055 sqlite3 *db, /* Attach the hook to this database */ 01056 int (*xCallback)(void*), /* Function to invoke on each commit */ 01057 void *pArg /* Argument to the function */ 01058 ){ 01059 void *pOld; 01060 sqlite3_mutex_enter(db->mutex); 01061 pOld = db->pCommitArg; 01062 db->xCommitCallback = xCallback; 01063 db->pCommitArg = pArg; 01064 sqlite3_mutex_leave(db->mutex); 01065 return pOld; 01066 } 01067 01068 /* 01069 ** Register a callback to be invoked each time a row is updated, 01070 ** inserted or deleted using this database connection. 01071 */ 01072 void *sqlite3_update_hook( 01073 sqlite3 *db, /* Attach the hook to this database */ 01074 void (*xCallback)(void*,int,char const *,char const *,sqlite_int64), 01075 void *pArg /* Argument to the function */ 01076 ){ 01077 void *pRet; 01078 sqlite3_mutex_enter(db->mutex); 01079 pRet = db->pUpdateArg; 01080 db->xUpdateCallback = xCallback; 01081 db->pUpdateArg = pArg; 01082 sqlite3_mutex_leave(db->mutex); 01083 return pRet; 01084 } 01085 01086 /* 01087 ** Register a callback to be invoked each time a transaction is rolled 01088 ** back by this database connection. 01089 */ 01090 void *sqlite3_rollback_hook( 01091 sqlite3 *db, /* Attach the hook to this database */ 01092 void (*xCallback)(void*), /* Callback function */ 01093 void *pArg /* Argument to the function */ 01094 ){ 01095 void *pRet; 01096 sqlite3_mutex_enter(db->mutex); 01097 pRet = db->pRollbackArg; 01098 db->xRollbackCallback = xCallback; 01099 db->pRollbackArg = pArg; 01100 sqlite3_mutex_leave(db->mutex); 01101 return pRet; 01102 } 01103 01104 /* 01105 ** This routine is called to create a connection to a database BTree 01106 ** driver. If zFilename is the name of a file, then that file is 01107 ** opened and used. If zFilename is the magic name ":memory:" then 01108 ** the database is stored in memory (and is thus forgotten as soon as 01109 ** the connection is closed.) If zFilename is NULL then the database 01110 ** is a "virtual" database for transient use only and is deleted as 01111 ** soon as the connection is closed. 01112 ** 01113 ** A virtual database can be either a disk file (that is automatically 01114 ** deleted when the file is closed) or it an be held entirely in memory, 01115 ** depending on the values of the SQLITE_TEMP_STORE compile-time macro and the 01116 ** db->temp_store variable, according to the following chart: 01117 ** 01118 ** SQLITE_TEMP_STORE db->temp_store Location of temporary database 01119 ** ----------------- -------------- ------------------------------ 01120 ** 0 any file 01121 ** 1 1 file 01122 ** 1 2 memory 01123 ** 1 0 file 01124 ** 2 1 file 01125 ** 2 2 memory 01126 ** 2 0 memory 01127 ** 3 any memory 01128 */ 01129 int sqlite3BtreeFactory( 01130 const sqlite3 *db, /* Main database when opening aux otherwise 0 */ 01131 const char *zFilename, /* Name of the file containing the BTree database */ 01132 int omitJournal, /* if TRUE then do not journal this file */ 01133 int nCache, /* How many pages in the page cache */ 01134 int vfsFlags, /* Flags passed through to vfsOpen */ 01135 Btree **ppBtree /* Pointer to new Btree object written here */ 01136 ){ 01137 int btFlags = 0; 01138 int rc; 01139 01140 assert( sqlite3_mutex_held(db->mutex) ); 01141 assert( ppBtree != 0); 01142 if( omitJournal ){ 01143 btFlags |= BTREE_OMIT_JOURNAL; 01144 } 01145 if( db->flags & SQLITE_NoReadlock ){ 01146 btFlags |= BTREE_NO_READLOCK; 01147 } 01148 if( zFilename==0 ){ 01149 #if SQLITE_TEMP_STORE==0 01150 /* Do nothing */ 01151 #endif 01152 #ifndef SQLITE_OMIT_MEMORYDB 01153 #if SQLITE_TEMP_STORE==1 01154 if( db->temp_store==2 ) zFilename = ":memory:"; 01155 #endif 01156 #if SQLITE_TEMP_STORE==2 01157 if( db->temp_store!=1 ) zFilename = ":memory:"; 01158 #endif 01159 #if SQLITE_TEMP_STORE==3 01160 zFilename = ":memory:"; 01161 #endif 01162 #endif /* SQLITE_OMIT_MEMORYDB */ 01163 } 01164 01165 if( (vfsFlags & SQLITE_OPEN_MAIN_DB)!=0 && (zFilename==0 || *zFilename==0) ){ 01166 vfsFlags = (vfsFlags & ~SQLITE_OPEN_MAIN_DB) | SQLITE_OPEN_TEMP_DB; 01167 } 01168 rc = sqlite3BtreeOpen(zFilename, (sqlite3 *)db, ppBtree, btFlags, vfsFlags); 01169 01170 /* If the B-Tree was successfully opened, set the pager-cache size to the 01171 ** default value. Except, if the call to BtreeOpen() returned a handle 01172 ** open on an existing shared pager-cache, do not change the pager-cache 01173 ** size. 01174 */ 01175 if( rc==SQLITE_OK && 0==sqlite3BtreeSchema(*ppBtree, 0, 0) ){ 01176 sqlite3BtreeSetCacheSize(*ppBtree, nCache); 01177 } 01178 return rc; 01179 } 01180 01181 /* 01182 ** Return UTF-8 encoded English language explanation of the most recent 01183 ** error. 01184 */ 01185 EXPORT_C const char *sqlite3_errmsg(sqlite3 *db){ 01186 const char *z; 01187 if( !db ){ 01188 return sqlite3ErrStr(SQLITE_NOMEM); 01189 } 01190 if( !sqlite3SafetyCheckSickOrOk(db) ){ 01191 return sqlite3ErrStr(SQLITE_MISUSE); 01192 } 01193 sqlite3_mutex_enter(db->mutex); 01194 assert( !db->mallocFailed ); 01195 z = (char*)sqlite3_value_text(db->pErr); 01196 assert( !db->mallocFailed ); 01197 if( z==0 ){ 01198 z = sqlite3ErrStr(db->errCode); 01199 } 01200 sqlite3_mutex_leave(db->mutex); 01201 return z; 01202 } 01203 01204 #ifndef SQLITE_OMIT_UTF16 01205 /* 01206 ** Return UTF-16 encoded English language explanation of the most recent 01207 ** error. 01208 */ 01209 const void *sqlite3_errmsg16(sqlite3 *db){ 01210 /* Because all the characters in the string are in the unicode 01211 ** range 0x00-0xFF, if we pad the big-endian string with a 01212 ** zero byte, we can obtain the little-endian string with 01213 ** &big_endian[1]. 01214 */ 01215 static const char outOfMemBe[] = { 01216 0, 'o', 0, 'u', 0, 't', 0, ' ', 01217 0, 'o', 0, 'f', 0, ' ', 01218 0, 'm', 0, 'e', 0, 'm', 0, 'o', 0, 'r', 0, 'y', 0, 0, 0 01219 }; 01220 static const char misuseBe [] = { 01221 0, 'l', 0, 'i', 0, 'b', 0, 'r', 0, 'a', 0, 'r', 0, 'y', 0, ' ', 01222 0, 'r', 0, 'o', 0, 'u', 0, 't', 0, 'i', 0, 'n', 0, 'e', 0, ' ', 01223 0, 'c', 0, 'a', 0, 'l', 0, 'l', 0, 'e', 0, 'd', 0, ' ', 01224 0, 'o', 0, 'u', 0, 't', 0, ' ', 01225 0, 'o', 0, 'f', 0, ' ', 01226 0, 's', 0, 'e', 0, 'q', 0, 'u', 0, 'e', 0, 'n', 0, 'c', 0, 'e', 0, 0, 0 01227 }; 01228 01229 const void *z; 01230 if( !db ){ 01231 return (void *)(&outOfMemBe[SQLITE_UTF16NATIVE==SQLITE_UTF16LE?1:0]); 01232 } 01233 if( !sqlite3SafetyCheckSickOrOk(db) ){ 01234 return (void *)(&misuseBe[SQLITE_UTF16NATIVE==SQLITE_UTF16LE?1:0]); 01235 } 01236 sqlite3_mutex_enter(db->mutex); 01237 assert( !db->mallocFailed ); 01238 z = sqlite3_value_text16(db->pErr); 01239 if( z==0 ){ 01240 sqlite3ValueSetStr(db->pErr, -1, sqlite3ErrStr(db->errCode), 01241 SQLITE_UTF8, SQLITE_STATIC); 01242 z = sqlite3_value_text16(db->pErr); 01243 } 01244 /* A malloc() may have failed within the call to sqlite3_value_text16() 01245 ** above. If this is the case, then the db->mallocFailed flag needs to 01246 ** be cleared before returning. Do this directly, instead of via 01247 ** sqlite3ApiExit(), to avoid setting the database handle error message. 01248 */ 01249 db->mallocFailed = 0; 01250 sqlite3_mutex_leave(db->mutex); 01251 return z; 01252 } 01253 #endif /* SQLITE_OMIT_UTF16 */ 01254 01255 /* 01256 ** Return the most recent error code generated by an SQLite routine. If NULL is 01257 ** passed to this function, we assume a malloc() failed during sqlite3_open(). 01258 */ 01259 int sqlite3_errcode(sqlite3 *db){ 01260 if( db && !sqlite3SafetyCheckSickOrOk(db) ){ 01261 return SQLITE_MISUSE; 01262 } 01263 if( !db || db->mallocFailed ){ 01264 return SQLITE_NOMEM; 01265 } 01266 return db->errCode & db->errMask; 01267 } 01268 int sqlite3_extended_errcode(sqlite3 *db){ 01269 if( db && !sqlite3SafetyCheckSickOrOk(db) ){ 01270 return SQLITE_MISUSE; 01271 } 01272 if( !db || db->mallocFailed ){ 01273 return SQLITE_NOMEM; 01274 } 01275 return db->errCode; 01276 } 01277 01278 /* 01279 ** Create a new collating function for database "db". The name is zName 01280 ** and the encoding is enc. 01281 */ 01282 static int createCollation( 01283 sqlite3* db, 01284 const char *zName, 01285 int enc, 01286 void* pCtx, 01287 int(*xCompare)(void*,int,const void*,int,const void*), 01288 void(*xDel)(void*) 01289 ){ 01290 CollSeq *pColl; 01291 int enc2; 01292 int nName; 01293 01294 assert( sqlite3_mutex_held(db->mutex) ); 01295 01296 /* If SQLITE_UTF16 is specified as the encoding type, transform this 01297 ** to one of SQLITE_UTF16LE or SQLITE_UTF16BE using the 01298 ** SQLITE_UTF16NATIVE macro. SQLITE_UTF16 is not used internally. 01299 */ 01300 enc2 = enc & ~SQLITE_UTF16_ALIGNED; 01301 if( enc2==SQLITE_UTF16 ){ 01302 enc2 = SQLITE_UTF16NATIVE; 01303 } 01304 if( (enc2&~3)!=0 ){ 01305 return SQLITE_MISUSE; 01306 } 01307 01308 /* Check if this call is removing or replacing an existing collation 01309 ** sequence. If so, and there are active VMs, return busy. If there 01310 ** are no active VMs, invalidate any pre-compiled statements. 01311 */ 01312 nName = sqlite3Strlen(db, zName); 01313 pColl = sqlite3FindCollSeq(db, (u8)enc2, zName, nName, 0); 01314 if( pColl && pColl->xCmp ){ 01315 if( db->activeVdbeCnt ){ 01316 sqlite3Error(db, SQLITE_BUSY, 01317 "Unable to delete/modify collation sequence due to active statements"); 01318 return SQLITE_BUSY; 01319 } 01320 sqlite3ExpirePreparedStatements(db); 01321 01322 /* If collation sequence pColl was created directly by a call to 01323 ** sqlite3_create_collation, and not generated by synthCollSeq(), 01324 ** then any copies made by synthCollSeq() need to be invalidated. 01325 ** Also, collation destructor - CollSeq.xDel() - function may need 01326 ** to be called. 01327 */ 01328 if( (pColl->enc & ~SQLITE_UTF16_ALIGNED)==enc2 ){ 01329 CollSeq *aColl = sqlite3HashFind(&db->aCollSeq, zName, nName); 01330 int j; 01331 for(j=0; j<3; j++){ 01332 CollSeq *p = &aColl[j]; 01333 if( p->enc==pColl->enc ){ 01334 if( p->xDel ){ 01335 p->xDel(p->pUser); 01336 } 01337 p->xCmp = 0; 01338 } 01339 } 01340 } 01341 } 01342 01343 pColl = sqlite3FindCollSeq(db, (u8)enc2, zName, nName, 1); 01344 if( pColl ){ 01345 pColl->xCmp = xCompare; 01346 pColl->pUser = pCtx; 01347 pColl->xDel = xDel; 01348 pColl->enc = enc2 | (enc & SQLITE_UTF16_ALIGNED); 01349 } 01350 sqlite3Error(db, SQLITE_OK, 0); 01351 return SQLITE_OK; 01352 } 01353 01354 01355 /* 01356 ** This array defines hard upper bounds on limit values. The 01357 ** initializer must be kept in sync with the SQLITE_LIMIT_* 01358 ** #defines in sqlite3.h. 01359 */ 01360 static const int aHardLimit[] = { 01361 SQLITE_MAX_LENGTH, 01362 SQLITE_MAX_SQL_LENGTH, 01363 SQLITE_MAX_COLUMN, 01364 SQLITE_MAX_EXPR_DEPTH, 01365 SQLITE_MAX_COMPOUND_SELECT, 01366 SQLITE_MAX_VDBE_OP, 01367 SQLITE_MAX_FUNCTION_ARG, 01368 SQLITE_MAX_ATTACHED, 01369 SQLITE_MAX_LIKE_PATTERN_LENGTH, 01370 SQLITE_MAX_VARIABLE_NUMBER, 01371 }; 01372 01373 /* 01374 ** Make sure the hard limits are set to reasonable values 01375 */ 01376 #if SQLITE_MAX_LENGTH<100 01377 # error SQLITE_MAX_LENGTH must be at least 100 01378 #endif 01379 #if SQLITE_MAX_SQL_LENGTH<100 01380 # error SQLITE_MAX_SQL_LENGTH must be at least 100 01381 #endif 01382 #if SQLITE_MAX_SQL_LENGTH>SQLITE_MAX_LENGTH 01383 # error SQLITE_MAX_SQL_LENGTH must not be greater than SQLITE_MAX_LENGTH 01384 #endif 01385 #if SQLITE_MAX_COMPOUND_SELECT<2 01386 # error SQLITE_MAX_COMPOUND_SELECT must be at least 2 01387 #endif 01388 #if SQLITE_MAX_VDBE_OP<40 01389 # error SQLITE_MAX_VDBE_OP must be at least 40 01390 #endif 01391 #if SQLITE_MAX_FUNCTION_ARG<0 || SQLITE_MAX_FUNCTION_ARG>1000 01392 # error SQLITE_MAX_FUNCTION_ARG must be between 0 and 1000 01393 #endif 01394 #if SQLITE_MAX_ATTACHED<0 || SQLITE_MAX_ATTACHED>30 01395 # error SQLITE_MAX_ATTACHED must be between 0 and 30 01396 #endif 01397 #if SQLITE_MAX_LIKE_PATTERN_LENGTH<1 01398 # error SQLITE_MAX_LIKE_PATTERN_LENGTH must be at least 1 01399 #endif 01400 #if SQLITE_MAX_VARIABLE_NUMBER<1 01401 # error SQLITE_MAX_VARIABLE_NUMBER must be at least 1 01402 #endif 01403 #if SQLITE_MAX_COLUMN>32767 01404 # error SQLITE_MAX_COLUMN must not exceed 32767 01405 #endif 01406 01407 01408 /* 01409 ** Change the value of a limit. Report the old value. 01410 ** If an invalid limit index is supplied, report -1. 01411 ** Make no changes but still report the old value if the 01412 ** new limit is negative. 01413 ** 01414 ** A new lower limit does not shrink existing constructs. 01415 ** It merely prevents new constructs that exceed the limit 01416 ** from forming. 01417 */ 01418 int sqlite3_limit(sqlite3 *db, int limitId, int newLimit){ 01419 int oldLimit; 01420 if( limitId<0 || limitId>=SQLITE_N_LIMIT ){ 01421 return -1; 01422 } 01423 oldLimit = db->aLimit[limitId]; 01424 if( newLimit>=0 ){ 01425 if( newLimit>aHardLimit[limitId] ){ 01426 newLimit = aHardLimit[limitId]; 01427 } 01428 db->aLimit[limitId] = newLimit; 01429 } 01430 return oldLimit; 01431 } 01432 01433 /* 01434 ** This routine does the work of opening a database on behalf of 01435 ** sqlite3_open() and sqlite3_open16(). The database filename "zFilename" 01436 ** is UTF-8 encoded. 01437 */ 01438 static int openDatabase( 01439 const char *zFilename, /* Database filename UTF-8 encoded */ 01440 sqlite3 **ppDb, /* OUT: Returned database handle */ 01441 unsigned flags, /* Operational flags */ 01442 const char *zVfs /* Name of the VFS to use */ 01443 ){ 01444 sqlite3 *db; 01445 int rc; 01446 CollSeq *pColl; 01447 int isThreadsafe; 01448 01449 #ifndef SQLITE_OMIT_AUTOINIT 01450 rc = sqlite3_initialize(); 01451 if( rc ) return rc; 01452 #endif 01453 01454 if( sqlite3GlobalConfig.bCoreMutex==0 ){ 01455 isThreadsafe = 0; 01456 }else if( flags & SQLITE_OPEN_NOMUTEX ){ 01457 isThreadsafe = 0; 01458 }else if( flags & SQLITE_OPEN_FULLMUTEX ){ 01459 isThreadsafe = 1; 01460 }else{ 01461 isThreadsafe = sqlite3GlobalConfig.bFullMutex; 01462 } 01463 01464 /* Remove harmful bits from the flags parameter */ 01465 flags &= ~( SQLITE_OPEN_DELETEONCLOSE | 01466 SQLITE_OPEN_MAIN_DB | 01467 SQLITE_OPEN_TEMP_DB | 01468 SQLITE_OPEN_TRANSIENT_DB | 01469 SQLITE_OPEN_MAIN_JOURNAL | 01470 SQLITE_OPEN_TEMP_JOURNAL | 01471 SQLITE_OPEN_SUBJOURNAL | 01472 SQLITE_OPEN_MASTER_JOURNAL | 01473 SQLITE_OPEN_NOMUTEX | 01474 SQLITE_OPEN_FULLMUTEX 01475 ); 01476 01477 /* Allocate the sqlite data structure */ 01478 db = sqlite3MallocZero( sizeof(sqlite3) ); 01479 if( db==0 ) goto opendb_out; 01480 if( isThreadsafe ){ 01481 db->mutex = sqlite3MutexAlloc(SQLITE_MUTEX_RECURSIVE); 01482 if( db->mutex==0 ){ 01483 sqlite3_free(db); 01484 db = 0; 01485 goto opendb_out; 01486 } 01487 } 01488 sqlite3_mutex_enter(db->mutex); 01489 db->errMask = 0xff; 01490 db->priorNewRowid = 0; 01491 db->nDb = 2; 01492 db->magic = SQLITE_MAGIC_BUSY; 01493 db->aDb = db->aDbStatic; 01494 01495 assert( sizeof(db->aLimit)==sizeof(aHardLimit) ); 01496 memcpy(db->aLimit, aHardLimit, sizeof(db->aLimit)); 01497 db->autoCommit = 1; 01498 db->nextAutovac = -1; 01499 db->nextPagesize = 0; 01500 db->flags |= SQLITE_ShortColNames 01501 #if SQLITE_DEFAULT_FILE_FORMAT<4 01502 | SQLITE_LegacyFileFmt 01503 #endif 01504 #ifdef SQLITE_ENABLE_LOAD_EXTENSION 01505 | SQLITE_LoadExtension 01506 #endif 01507 ; 01508 sqlite3HashInit(&db->aCollSeq, 0); 01509 #ifndef SQLITE_OMIT_VIRTUALTABLE 01510 sqlite3HashInit(&db->aModule, 0); 01511 #endif 01512 01513 db->pVfs = sqlite3_vfs_find(zVfs); 01514 if( !db->pVfs ){ 01515 rc = SQLITE_ERROR; 01516 sqlite3Error(db, rc, "no such vfs: %s", zVfs); 01517 goto opendb_out; 01518 } 01519 01520 /* Add the default collation sequence BINARY. BINARY works for both UTF-8 01521 ** and UTF-16, so add a version for each to avoid any unnecessary 01522 ** conversions. The only error that can occur here is a malloc() failure. 01523 */ 01524 createCollation(db, "BINARY", SQLITE_UTF8, 0, binCollFunc, 0); 01525 createCollation(db, "BINARY", SQLITE_UTF16BE, 0, binCollFunc, 0); 01526 createCollation(db, "BINARY", SQLITE_UTF16LE, 0, binCollFunc, 0); 01527 createCollation(db, "RTRIM", SQLITE_UTF8, (void*)1, binCollFunc, 0); 01528 if( db->mallocFailed ){ 01529 goto opendb_out; 01530 } 01531 db->pDfltColl = sqlite3FindCollSeq(db, SQLITE_UTF8, "BINARY", 6, 0); 01532 assert( db->pDfltColl!=0 ); 01533 01534 /* Also add a UTF-8 case-insensitive collation sequence. */ 01535 createCollation(db, "NOCASE", SQLITE_UTF8, 0, nocaseCollatingFunc, 0); 01536 01537 /* Set flags on the built-in collating sequences */ 01538 db->pDfltColl->type = SQLITE_COLL_BINARY; 01539 pColl = sqlite3FindCollSeq(db, SQLITE_UTF8, "NOCASE", 6, 0); 01540 if( pColl ){ 01541 pColl->type = SQLITE_COLL_NOCASE; 01542 } 01543 01544 /* Open the backend database driver */ 01545 db->openFlags = flags; 01546 rc = sqlite3BtreeFactory(db, zFilename, 0, SQLITE_DEFAULT_CACHE_SIZE, 01547 flags | SQLITE_OPEN_MAIN_DB, 01548 &db->aDb[0].pBt); 01549 if( rc!=SQLITE_OK ){ 01550 if( rc==SQLITE_IOERR_NOMEM ){ 01551 rc = SQLITE_NOMEM; 01552 } 01553 sqlite3Error(db, rc, 0); 01554 goto opendb_out; 01555 } 01556 db->aDb[0].pSchema = sqlite3SchemaGet(db, db->aDb[0].pBt); 01557 db->aDb[1].pSchema = sqlite3SchemaGet(db, 0); 01558 01559 01560 /* The default safety_level for the main database is 'full'; for the temp 01561 ** database it is 'NONE'. This matches the pager layer defaults. 01562 */ 01563 db->aDb[0].zName = "main"; 01564 db->aDb[0].safety_level = 3; 01565 #ifndef SQLITE_OMIT_TEMPDB 01566 db->aDb[1].zName = "temp"; 01567 db->aDb[1].safety_level = 1; 01568 #endif 01569 01570 db->magic = SQLITE_MAGIC_OPEN; 01571 if( db->mallocFailed ){ 01572 goto opendb_out; 01573 } 01574 01575 /* Register all built-in functions, but do not attempt to read the 01576 ** database schema yet. This is delayed until the first time the database 01577 ** is accessed. 01578 */ 01579 sqlite3Error(db, SQLITE_OK, 0); 01580 sqlite3RegisterBuiltinFunctions(db); 01581 01582 /* Load automatic extensions - extensions that have been registered 01583 ** using the sqlite3_automatic_extension() API. 01584 */ 01585 (void)sqlite3AutoLoadExtensions(db); 01586 if( sqlite3_errcode(db)!=SQLITE_OK ){ 01587 goto opendb_out; 01588 } 01589 01590 #ifdef SQLITE_ENABLE_FTS1 01591 if( !db->mallocFailed ){ 01592 extern int sqlite3Fts1Init(sqlite3*); 01593 rc = sqlite3Fts1Init(db); 01594 } 01595 #endif 01596 01597 #ifdef SQLITE_ENABLE_FTS2 01598 if( !db->mallocFailed && rc==SQLITE_OK ){ 01599 extern int sqlite3Fts2Init(sqlite3*); 01600 rc = sqlite3Fts2Init(db); 01601 } 01602 #endif 01603 01604 #ifdef SQLITE_ENABLE_FTS3 01605 if( !db->mallocFailed && rc==SQLITE_OK ){ 01606 rc = sqlite3Fts3Init(db); 01607 } 01608 #endif 01609 01610 #ifdef SQLITE_ENABLE_ICU 01611 if( !db->mallocFailed && rc==SQLITE_OK ){ 01612 rc = sqlite3IcuInit(db); 01613 } 01614 #endif 01615 01616 #ifdef SQLITE_ENABLE_RTREE 01617 if( !db->mallocFailed && rc==SQLITE_OK){ 01618 rc = sqlite3RtreeInit(db); 01619 } 01620 #endif 01621 01622 sqlite3Error(db, rc, 0); 01623 01624 /* -DSQLITE_DEFAULT_LOCKING_MODE=1 makes EXCLUSIVE the default locking 01625 ** mode. -DSQLITE_DEFAULT_LOCKING_MODE=0 make NORMAL the default locking 01626 ** mode. Doing nothing at all also makes NORMAL the default. 01627 */ 01628 #ifdef SQLITE_DEFAULT_LOCKING_MODE 01629 db->dfltLockMode = SQLITE_DEFAULT_LOCKING_MODE; 01630 sqlite3PagerLockingMode(sqlite3BtreePager(db->aDb[0].pBt), 01631 SQLITE_DEFAULT_LOCKING_MODE); 01632 #endif 01633 01634 /* Enable the lookaside-malloc subsystem */ 01635 setupLookaside(db, 0, sqlite3GlobalConfig.szLookaside, 01636 sqlite3GlobalConfig.nLookaside); 01637 01638 opendb_out: 01639 if( db ){ 01640 assert( db->mutex!=0 || isThreadsafe==0 || sqlite3GlobalConfig.bFullMutex==0 ); 01641 sqlite3_mutex_leave(db->mutex); 01642 } 01643 rc = sqlite3_errcode(db); 01644 if( rc==SQLITE_NOMEM ){ 01645 sqlite3_close(db); 01646 db = 0; 01647 }else if( rc!=SQLITE_OK ){ 01648 db->magic = SQLITE_MAGIC_SICK; 01649 } 01650 *ppDb = db; 01651 return sqlite3ApiExit(0, rc); 01652 } 01653 01654 /* 01655 ** Open a new database handle. 01656 */ 01657 EXPORT_C int sqlite3_open( 01658 const char *zFilename, 01659 sqlite3 **ppDb 01660 ){ 01661 return openDatabase(zFilename, ppDb, 01662 SQLITE_OPEN_READWRITE | SQLITE_OPEN_CREATE, 0); 01663 } 01664 int sqlite3_open_v2( 01665 const char *filename, /* Database filename (UTF-8) */ 01666 sqlite3 **ppDb, /* OUT: SQLite db handle */ 01667 int flags, /* Flags */ 01668 const char *zVfs /* Name of VFS module to use */ 01669 ){ 01670 return openDatabase(filename, ppDb, flags, zVfs); 01671 } 01672 01673 #ifndef SQLITE_OMIT_UTF16 01674 /* 01675 ** Open a new database handle. 01676 */ 01677 int sqlite3_open16( 01678 const void *zFilename, 01679 sqlite3 **ppDb 01680 ){ 01681 char const *zFilename8; /* zFilename encoded in UTF-8 instead of UTF-16 */ 01682 sqlite3_value *pVal; 01683 int rc; 01684 01685 assert( zFilename ); 01686 assert( ppDb ); 01687 *ppDb = 0; 01688 #ifndef SQLITE_OMIT_AUTOINIT 01689 rc = sqlite3_initialize(); 01690 if( rc ) return rc; 01691 #endif 01692 pVal = sqlite3ValueNew(0); 01693 sqlite3ValueSetStr(pVal, -1, zFilename, SQLITE_UTF16NATIVE, SQLITE_STATIC); 01694 zFilename8 = sqlite3ValueText(pVal, SQLITE_UTF8); 01695 if( zFilename8 ){ 01696 rc = openDatabase(zFilename8, ppDb, 01697 SQLITE_OPEN_READWRITE | SQLITE_OPEN_CREATE, 0); 01698 assert( *ppDb || rc==SQLITE_NOMEM ); 01699 if( rc==SQLITE_OK && !DbHasProperty(*ppDb, 0, DB_SchemaLoaded) ){ 01700 ENC(*ppDb) = SQLITE_UTF16NATIVE; 01701 } 01702 }else{ 01703 rc = SQLITE_NOMEM; 01704 } 01705 sqlite3ValueFree(pVal); 01706 01707 return sqlite3ApiExit(0, rc); 01708 } 01709 #endif /* SQLITE_OMIT_UTF16 */ 01710 01711 /* 01712 ** Register a new collation sequence with the database handle db. 01713 */ 01714 int sqlite3_create_collation( 01715 sqlite3* db, 01716 const char *zName, 01717 int enc, 01718 void* pCtx, 01719 int(*xCompare)(void*,int,const void*,int,const void*) 01720 ){ 01721 int rc; 01722 sqlite3_mutex_enter(db->mutex); 01723 assert( !db->mallocFailed ); 01724 rc = createCollation(db, zName, enc, pCtx, xCompare, 0); 01725 rc = sqlite3ApiExit(db, rc); 01726 sqlite3_mutex_leave(db->mutex); 01727 return rc; 01728 } 01729 01730 /* 01731 ** Register a new collation sequence with the database handle db. 01732 */ 01733 int sqlite3_create_collation_v2( 01734 sqlite3* db, 01735 const char *zName, 01736 int enc, 01737 void* pCtx, 01738 int(*xCompare)(void*,int,const void*,int,const void*), 01739 void(*xDel)(void*) 01740 ){ 01741 int rc; 01742 sqlite3_mutex_enter(db->mutex); 01743 assert( !db->mallocFailed ); 01744 rc = createCollation(db, zName, enc, pCtx, xCompare, xDel); 01745 rc = sqlite3ApiExit(db, rc); 01746 sqlite3_mutex_leave(db->mutex); 01747 return rc; 01748 } 01749 01750 #ifndef SQLITE_OMIT_UTF16 01751 /* 01752 ** Register a new collation sequence with the database handle db. 01753 */ 01754 int sqlite3_create_collation16( 01755 sqlite3* db, 01756 const void *zName, 01757 int enc, 01758 void* pCtx, 01759 int(*xCompare)(void*,int,const void*,int,const void*) 01760 ){ 01761 int rc = SQLITE_OK; 01762 char *zName8; 01763 sqlite3_mutex_enter(db->mutex); 01764 assert( !db->mallocFailed ); 01765 zName8 = sqlite3Utf16to8(db, zName, -1); 01766 if( zName8 ){ 01767 rc = createCollation(db, zName8, enc, pCtx, xCompare, 0); 01768 sqlite3DbFree(db, zName8); 01769 } 01770 rc = sqlite3ApiExit(db, rc); 01771 sqlite3_mutex_leave(db->mutex); 01772 return rc; 01773 } 01774 #endif /* SQLITE_OMIT_UTF16 */ 01775 01776 /* 01777 ** Register a collation sequence factory callback with the database handle 01778 ** db. Replace any previously installed collation sequence factory. 01779 */ 01780 int sqlite3_collation_needed( 01781 sqlite3 *db, 01782 void *pCollNeededArg, 01783 void(*xCollNeeded)(void*,sqlite3*,int eTextRep,const char*) 01784 ){ 01785 sqlite3_mutex_enter(db->mutex); 01786 db->xCollNeeded = xCollNeeded; 01787 db->xCollNeeded16 = 0; 01788 db->pCollNeededArg = pCollNeededArg; 01789 sqlite3_mutex_leave(db->mutex); 01790 return SQLITE_OK; 01791 } 01792 01793 #ifndef SQLITE_OMIT_UTF16 01794 /* 01795 ** Register a collation sequence factory callback with the database handle 01796 ** db. Replace any previously installed collation sequence factory. 01797 */ 01798 int sqlite3_collation_needed16( 01799 sqlite3 *db, 01800 void *pCollNeededArg, 01801 void(*xCollNeeded16)(void*,sqlite3*,int eTextRep,const void*) 01802 ){ 01803 sqlite3_mutex_enter(db->mutex); 01804 db->xCollNeeded = 0; 01805 db->xCollNeeded16 = xCollNeeded16; 01806 db->pCollNeededArg = pCollNeededArg; 01807 sqlite3_mutex_leave(db->mutex); 01808 return SQLITE_OK; 01809 } 01810 #endif /* SQLITE_OMIT_UTF16 */ 01811 01812 #ifndef SQLITE_OMIT_GLOBALRECOVER 01813 #ifndef SQLITE_OMIT_DEPRECATED 01814 /* 01815 ** This function is now an anachronism. It used to be used to recover from a 01816 ** malloc() failure, but SQLite now does this automatically. 01817 */ 01818 int sqlite3_global_recover(void){ 01819 return SQLITE_OK; 01820 } 01821 #endif 01822 #endif 01823 01824 /* 01825 ** Test to see whether or not the database connection is in autocommit 01826 ** mode. Return TRUE if it is and FALSE if not. Autocommit mode is on 01827 ** by default. Autocommit is disabled by a BEGIN statement and reenabled 01828 ** by the next COMMIT or ROLLBACK. 01829 ** 01830 ******* THIS IS AN EXPERIMENTAL API AND IS SUBJECT TO CHANGE ****** 01831 */ 01832 int sqlite3_get_autocommit(sqlite3 *db){ 01833 return db->autoCommit; 01834 } 01835 01836 #ifdef SQLITE_DEBUG 01837 /* 01838 ** The following routine is subtituted for constant SQLITE_CORRUPT in 01839 ** debugging builds. This provides a way to set a breakpoint for when 01840 ** corruption is first detected. 01841 */ 01842 int sqlite3Corrupt(void){ 01843 return SQLITE_CORRUPT; 01844 } 01845 #endif 01846 01847 #ifndef SQLITE_OMIT_DEPRECATED 01848 /* 01849 ** This is a convenience routine that makes sure that all thread-specific 01850 ** data for this thread has been deallocated. 01851 ** 01852 ** SQLite no longer uses thread-specific data so this routine is now a 01853 ** no-op. It is retained for historical compatibility. 01854 */ 01855 void sqlite3_thread_cleanup(void){ 01856 } 01857 #endif 01858 01859 /* 01860 ** Return meta information about a specific column of a database table. 01861 ** See comment in sqlite3.h (sqlite.h.in) for details. 01862 */ 01863 #ifdef SQLITE_ENABLE_COLUMN_METADATA 01864 int sqlite3_table_column_metadata( 01865 sqlite3 *db, /* Connection handle */ 01866 const char *zDbName, /* Database name or NULL */ 01867 const char *zTableName, /* Table name */ 01868 const char *zColumnName, /* Column name */ 01869 char const **pzDataType, /* OUTPUT: Declared data type */ 01870 char const **pzCollSeq, /* OUTPUT: Collation sequence name */ 01871 int *pNotNull, /* OUTPUT: True if NOT NULL constraint exists */ 01872 int *pPrimaryKey, /* OUTPUT: True if column part of PK */ 01873 int *pAutoinc /* OUTPUT: True if column is auto-increment */ 01874 ){ 01875 int rc; 01876 char *zErrMsg = 0; 01877 Table *pTab = 0; 01878 Column *pCol = 0; 01879 int iCol; 01880 01881 char const *zDataType = 0; 01882 char const *zCollSeq = 0; 01883 int notnull = 0; 01884 int primarykey = 0; 01885 int autoinc = 0; 01886 01887 /* Ensure the database schema has been loaded */ 01888 sqlite3_mutex_enter(db->mutex); 01889 (void)sqlite3SafetyOn(db); 01890 sqlite3BtreeEnterAll(db); 01891 rc = sqlite3Init(db, &zErrMsg); 01892 sqlite3BtreeLeaveAll(db); 01893 if( SQLITE_OK!=rc ){ 01894 goto error_out; 01895 } 01896 01897 /* Locate the table in question */ 01898 pTab = sqlite3FindTable(db, zTableName, zDbName); 01899 if( !pTab || pTab->pSelect ){ 01900 pTab = 0; 01901 goto error_out; 01902 } 01903 01904 /* Find the column for which info is requested */ 01905 if( sqlite3IsRowid(zColumnName) ){ 01906 iCol = pTab->iPKey; 01907 if( iCol>=0 ){ 01908 pCol = &pTab->aCol[iCol]; 01909 } 01910 }else{ 01911 for(iCol=0; iCol<pTab->nCol; iCol++){ 01912 pCol = &pTab->aCol[iCol]; 01913 if( 0==sqlite3StrICmp(pCol->zName, zColumnName) ){ 01914 break; 01915 } 01916 } 01917 if( iCol==pTab->nCol ){ 01918 pTab = 0; 01919 goto error_out; 01920 } 01921 } 01922 01923 /* The following block stores the meta information that will be returned 01924 ** to the caller in local variables zDataType, zCollSeq, notnull, primarykey 01925 ** and autoinc. At this point there are two possibilities: 01926 ** 01927 ** 1. The specified column name was rowid", "oid" or "_rowid_" 01928 ** and there is no explicitly declared IPK column. 01929 ** 01930 ** 2. The table is not a view and the column name identified an 01931 ** explicitly declared column. Copy meta information from *pCol. 01932 */ 01933 if( pCol ){ 01934 zDataType = pCol->zType; 01935 zCollSeq = pCol->zColl; 01936 notnull = pCol->notNull!=0; 01937 primarykey = pCol->isPrimKey!=0; 01938 autoinc = pTab->iPKey==iCol && (pTab->tabFlags & TF_Autoincrement)!=0; 01939 }else{ 01940 zDataType = "INTEGER"; 01941 primarykey = 1; 01942 } 01943 if( !zCollSeq ){ 01944 zCollSeq = "BINARY"; 01945 } 01946 01947 error_out: 01948 (void)sqlite3SafetyOff(db); 01949 01950 /* Whether the function call succeeded or failed, set the output parameters 01951 ** to whatever their local counterparts contain. If an error did occur, 01952 ** this has the effect of zeroing all output parameters. 01953 */ 01954 if( pzDataType ) *pzDataType = zDataType; 01955 if( pzCollSeq ) *pzCollSeq = zCollSeq; 01956 if( pNotNull ) *pNotNull = notnull; 01957 if( pPrimaryKey ) *pPrimaryKey = primarykey; 01958 if( pAutoinc ) *pAutoinc = autoinc; 01959 01960 if( SQLITE_OK==rc && !pTab ){ 01961 sqlite3DbFree(db, zErrMsg); 01962 zErrMsg = sqlite3MPrintf(db, "no such table column: %s.%s", zTableName, 01963 zColumnName); 01964 rc = SQLITE_ERROR; 01965 } 01966 sqlite3Error(db, rc, (zErrMsg?"%s":0), zErrMsg); 01967 sqlite3DbFree(db, zErrMsg); 01968 rc = sqlite3ApiExit(db, rc); 01969 sqlite3_mutex_leave(db->mutex); 01970 return rc; 01971 } 01972 #endif 01973 01974 /* 01975 ** Sleep for a little while. Return the amount of time slept. 01976 */ 01977 int sqlite3_sleep(int ms){ 01978 sqlite3_vfs *pVfs; 01979 int rc; 01980 pVfs = sqlite3_vfs_find(0); 01981 if( pVfs==0 ) return 0; 01982 01983 /* This function works in milliseconds, but the underlying OsSleep() 01984 ** API uses microseconds. Hence the 1000's. 01985 */ 01986 rc = (sqlite3OsSleep(pVfs, 1000*ms)/1000); 01987 return rc; 01988 } 01989 01990 /* 01991 ** Enable or disable the extended result codes. 01992 */ 01993 EXPORT_C int sqlite3_extended_result_codes(sqlite3 *db, int onoff){ 01994 sqlite3_mutex_enter(db->mutex); 01995 db->errMask = onoff ? 0xffffffff : 0xff; 01996 sqlite3_mutex_leave(db->mutex); 01997 return SQLITE_OK; 01998 } 01999 02000 /* 02001 ** Invoke the xFileControl method on a particular database. 02002 */ 02003 int sqlite3_file_control(sqlite3 *db, const char *zDbName, int op, void *pArg){ 02004 int rc = SQLITE_ERROR; 02005 int iDb; 02006 sqlite3_mutex_enter(db->mutex); 02007 if( zDbName==0 ){ 02008 iDb = 0; 02009 }else{ 02010 for(iDb=0; iDb<db->nDb; iDb++){ 02011 if( strcmp(db->aDb[iDb].zName, zDbName)==0 ) break; 02012 } 02013 } 02014 if( iDb<db->nDb ){ 02015 Btree *pBtree = db->aDb[iDb].pBt; 02016 if( pBtree ){ 02017 Pager *pPager; 02018 sqlite3_file *fd; 02019 sqlite3BtreeEnter(pBtree); 02020 pPager = sqlite3BtreePager(pBtree); 02021 assert( pPager!=0 ); 02022 fd = sqlite3PagerFile(pPager); 02023 assert( fd!=0 ); 02024 if( fd->pMethods ){ 02025 rc = sqlite3OsFileControl(fd, op, pArg); 02026 } 02027 sqlite3BtreeLeave(pBtree); 02028 } 02029 } 02030 sqlite3_mutex_leave(db->mutex); 02031 return rc; 02032 } 02033 02034 /* 02035 ** Interface to the testing logic. 02036 */ 02037 int sqlite3_test_control(int op, ...){ 02038 int rc = 0; 02039 #ifndef SQLITE_OMIT_BUILTIN_TEST 02040 va_list ap; 02041 va_start(ap, op); 02042 switch( op ){ 02043 02044 /* 02045 ** Save the current state of the PRNG. 02046 */ 02047 case SQLITE_TESTCTRL_PRNG_SAVE: { 02048 sqlite3PrngSaveState(); 02049 break; 02050 } 02051 02052 /* 02053 ** Restore the state of the PRNG to the last state saved using 02054 ** PRNG_SAVE. If PRNG_SAVE has never before been called, then 02055 ** this verb acts like PRNG_RESET. 02056 */ 02057 case SQLITE_TESTCTRL_PRNG_RESTORE: { 02058 sqlite3PrngRestoreState(); 02059 break; 02060 } 02061 02062 /* 02063 ** Reset the PRNG back to its uninitialized state. The next call 02064 ** to sqlite3_randomness() will reseed the PRNG using a single call 02065 ** to the xRandomness method of the default VFS. 02066 */ 02067 case SQLITE_TESTCTRL_PRNG_RESET: { 02068 sqlite3PrngResetState(); 02069 break; 02070 } 02071 02072 /* 02073 ** sqlite3_test_control(BITVEC_TEST, size, program) 02074 ** 02075 ** Run a test against a Bitvec object of size. The program argument 02076 ** is an array of integers that defines the test. Return -1 on a 02077 ** memory allocation error, 0 on success, or non-zero for an error. 02078 ** See the sqlite3BitvecBuiltinTest() for additional information. 02079 */ 02080 case SQLITE_TESTCTRL_BITVEC_TEST: { 02081 int sz = va_arg(ap, int); 02082 int *aProg = va_arg(ap, int*); 02083 rc = sqlite3BitvecBuiltinTest(sz, aProg); 02084 break; 02085 } 02086 02087 /* 02088 ** sqlite3_test_control(BENIGN_MALLOC_HOOKS, xBegin, xEnd) 02089 ** 02090 ** Register hooks to call to indicate which malloc() failures 02091 ** are benign. 02092 */ 02093 case SQLITE_TESTCTRL_BENIGN_MALLOC_HOOKS: { 02094 typedef void (*void_function)(void); 02095 void_function xBenignBegin; 02096 void_function xBenignEnd; 02097 xBenignBegin = va_arg(ap, void_function); 02098 xBenignEnd = va_arg(ap, void_function); 02099 sqlite3BenignMallocHooks(xBenignBegin, xBenignEnd); 02100 break; 02101 } 02102 } 02103 va_end(ap); 02104 #endif /* SQLITE_OMIT_BUILTIN_TEST */ 02105 return rc; 02106 }
ContextLogger2—ContextLogger2 Logger Daemon Internals—Generated on Mon May 2 13:49:55 2011 by Doxygen 1.6.1